1
|
Chen Q, Kirsch GE, Zhang D, Brugada R, Brugada J, Brugada P, Potenza D, Moya A, Borggrefe M, Breithardt G, Ortiz-Lopez R, Wang Z, Antzelevitch C, O'Brien RE, Schulze-Bahr E, Keating MT, Towbin JA, Wang Q. Genetic basis and molecular mechanism for idiopathic ventricular fibrillation. Nature 1998; 392:293-6. [PMID: 9521325 DOI: 10.1038/32675] [Citation(s) in RCA: 1142] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ventricular fibrillation causes more than 300,000 sudden deaths each year in the USA alone. In approximately 5-12% of these cases, there are no demonstrable cardiac or non-cardiac causes to account for the episode, which is therefore classified as idiopathic ventricular fibrillation (IVF). A distinct group of IVF patients has been found to present with a characteristic electrocardiographic pattern. Because of the small size of most pedigrees and the high incidence of sudden death, however, molecular genetic studies of IVF have not yet been done. Because IVF causes cardiac rhythm disturbance, we investigated whether malfunction of ion channels could cause the disorder by studying mutations in the cardiac sodium channel gene SCN5A. We have now identified a missense mutation, a splice-donor mutation, and a frameshift mutation in the coding region of SCN5A in three IVF families. We show that sodium channels with the missense mutation recover from inactivation more rapidly than normal and that the frameshift mutation causes the sodium channel to be non-functional. Our results indicate that mutations in cardiac ion-channel genes contribute to the risk of developing IVF.
Collapse
|
|
27 |
1142 |
2
|
Carstea ED, Morris JA, Coleman KG, Loftus SK, Zhang D, Cummings C, Gu J, Rosenfeld MA, Pavan WJ, Krizman DB, Nagle J, Polymeropoulos MH, Sturley SL, Ioannou YA, Higgins ME, Comly M, Cooney A, Brown A, Kaneski CR, Blanchette-Mackie EJ, Dwyer NK, Neufeld EB, Chang TY, Liscum L, Strauss JF, Ohno K, Zeigler M, Carmi R, Sokol J, Markie D, O'Neill RR, van Diggelen OP, Elleder M, Patterson MC, Brady RO, Vanier MT, Pentchev PG, Tagle DA. Niemann-Pick C1 disease gene: homology to mediators of cholesterol homeostasis. Science 1997; 277:228-31. [PMID: 9211849 DOI: 10.1126/science.277.5323.228] [Citation(s) in RCA: 1122] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Niemann-Pick type C (NP-C) disease, a fatal neurovisceral disorder, is characterized by lysosomal accumulation of low density lipoprotein (LDL)-derived cholesterol. By positional cloning methods, a gene (NPC1) with insertion, deletion, and missense mutations has been identified in NP-C patients. Transfection of NP-C fibroblasts with wild-type NPC1 cDNA resulted in correction of their excessive lysosomal storage of LDL cholesterol, thereby defining the critical role of NPC1 in regulation of intracellular cholesterol trafficking. The 1278-amino acid NPC1 protein has sequence similarity to the morphogen receptor PATCHED and the putative sterol-sensing regions of SREBP cleavage-activating protein (SCAP) and 3-hydroxy-3-methyl-glutaryl coenzyme A (HMG-CoA) reductase.
Collapse
|
|
28 |
1122 |
3
|
Zheng S, Fan J, Yu F, Feng B, Lou B, Zou Q, Xie G, Lin S, Wang R, Yang X, Chen W, Wang Q, Zhang D, Liu Y, Gong R, Ma Z, Lu S, Xiao Y, Gu Y, Zhang J, Yao H, Xu K, Lu X, Wei G, Zhou J, Fang Q, Cai H, Qiu Y, Sheng J, Chen Y, Liang T. Viral load dynamics and disease severity in patients infected with SARS-CoV-2 in Zhejiang province, China, January-March 2020: retrospective cohort study. BMJ 2020; 369:m1443. [PMID: 32317267 PMCID: PMC7190077 DOI: 10.1136/bmj.m1443] [Citation(s) in RCA: 1015] [Impact Index Per Article: 203.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/06/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To evaluate viral loads at different stages of disease progression in patients infected with the 2019 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) during the first four months of the epidemic in Zhejiang province, China. DESIGN Retrospective cohort study. SETTING A designated hospital for patients with covid-19 in Zhejiang province, China. PARTICIPANTS 96 consecutively admitted patients with laboratory confirmed SARS-CoV-2 infection: 22 with mild disease and 74 with severe disease. Data were collected from 19 January 2020 to 20 March 2020. MAIN OUTCOME MEASURES Ribonucleic acid (RNA) viral load measured in respiratory, stool, serum, and urine samples. Cycle threshold values, a measure of nucleic acid concentration, were plotted onto the standard curve constructed on the basis of the standard product. Epidemiological, clinical, and laboratory characteristics and treatment and outcomes data were obtained through data collection forms from electronic medical records, and the relation between clinical data and disease severity was analysed. RESULTS 3497 respiratory, stool, serum, and urine samples were collected from patients after admission and evaluated for SARS-CoV-2 RNA viral load. Infection was confirmed in all patients by testing sputum and saliva samples. RNA was detected in the stool of 55 (59%) patients and in the serum of 39 (41%) patients. The urine sample from one patient was positive for SARS-CoV-2. The median duration of virus in stool (22 days, interquartile range 17-31 days) was significantly longer than in respiratory (18 days, 13-29 days; P=0.02) and serum samples (16 days, 11-21 days; P<0.001). The median duration of virus in the respiratory samples of patients with severe disease (21 days, 14-30 days) was significantly longer than in patients with mild disease (14 days, 10-21 days; P=0.04). In the mild group, the viral loads peaked in respiratory samples in the second week from disease onset, whereas viral load continued to be high during the third week in the severe group. Virus duration was longer in patients older than 60 years and in male patients. CONCLUSION The duration of SARS-CoV-2 is significantly longer in stool samples than in respiratory and serum samples, highlighting the need to strengthen the management of stool samples in the prevention and control of the epidemic, and the virus persists longer with higher load and peaks later in the respiratory tissue of patients with severe disease.
Collapse
|
research-article |
5 |
1015 |
4
|
Han X, Zhou Z, Fei L, Sun H, Wang R, Chen Y, Chen H, Wang J, Tang H, Ge W, Zhou Y, Ye F, Jiang M, Wu J, Xiao Y, Jia X, Zhang T, Ma X, Zhang Q, Bai X, Lai S, Yu C, Zhu L, Lin R, Gao Y, Wang M, Wu Y, Zhang J, Zhan R, Zhu S, Hu H, Wang C, Chen M, Huang H, Liang T, Chen J, Wang W, Zhang D, Guo G. Construction of a human cell landscape at single-cell level. Nature 2020; 581:303-309. [PMID: 32214235 DOI: 10.1038/s41586-020-2157-4] [Citation(s) in RCA: 612] [Impact Index Per Article: 122.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/12/2020] [Indexed: 02/08/2023]
Abstract
Single-cell analysis is a valuable tool for dissecting cellular heterogeneity in complex systems1. However, a comprehensive single-cell atlas has not been achieved for humans. Here we use single-cell mRNA sequencing to determine the cell-type composition of all major human organs and construct a scheme for the human cell landscape (HCL). We have uncovered a single-cell hierarchy for many tissues that have not been well characterized. We established a 'single-cell HCL analysis' pipeline that helps to define human cell identity. Finally, we performed a single-cell comparative analysis of landscapes from human and mouse to identify conserved genetic networks. We found that stem and progenitor cells exhibit strong transcriptomic stochasticity, whereas differentiated cells are more distinct. Our results provide a useful resource for the study of human biology.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
612 |
5
|
Sramkoski RM, Pretlow TG, Giaconia JM, Pretlow TP, Schwartz S, Sy MS, Marengo SR, Rhim JS, Zhang D, Jacobberger JW. A new human prostate carcinoma cell line, 22Rv1. In Vitro Cell Dev Biol Anim 1999; 35:403-9. [PMID: 10462204 DOI: 10.1007/s11626-999-0115-4] [Citation(s) in RCA: 429] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A cell line has been derived from a human prostatic carcinoma xenograft, CWR22R. This represents one of very few available cell lines representative of this disease. The cell line is derived from a xenograft that was serially propagated in mice after castration-induced regression and relapse of the parental, androgen-dependent CWR22 xenograft. Flow cytometric and cytogenetic analysis showed that this cell line represents one hyper DNA-diploid stem line with two clonal, evolved cytogenetic sublines. The basic karyotype is close to that of the grandparent xenograft, CWR22, and is relatively simple with 50 chromosomes. In nude mice, the line forms tumors with morphology similar to that of the xenografts, and like the parental CWR22 and CWR22R xenografts, this cell line expresses prostate specific antigen. Growth is weakly stimulated by dihydroxytestosterone and lysates are immunoreactive with androgen receptor antibody by Western blot analysis. Growth is stimulated by epidermal growth factor but is not inhibited by transforming growth factor-beta1.
Collapse
|
|
26 |
429 |
6
|
Xia EH, Zhang HB, Sheng J, Li K, Zhang QJ, Kim C, Zhang Y, Liu Y, Zhu T, Li W, Huang H, Tong Y, Nan H, Shi C, Shi C, Jiang JJ, Mao SY, Jiao JY, Zhang D, Zhao Y, Zhao YJ, Zhang LP, Liu YL, Liu BY, Yu Y, Shao SF, Ni DJ, Eichler EE, Gao LZ. The Tea Tree Genome Provides Insights into Tea Flavor and Independent Evolution of Caffeine Biosynthesis. MOLECULAR PLANT 2017; 10:866-877. [PMID: 28473262 DOI: 10.1016/j.molp.2017.04.002] [Citation(s) in RCA: 388] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 04/05/2017] [Accepted: 04/07/2017] [Indexed: 05/18/2023]
Abstract
Tea is the world's oldest and most popular caffeine-containing beverage with immense economic, medicinal, and cultural importance. Here, we present the first high-quality nucleotide sequence of the repeat-rich (80.9%), 3.02-Gb genome of the cultivated tea tree Camellia sinensis. We show that an extraordinarily large genome size of tea tree is resulted from the slow, steady, and long-term amplification of a few LTR retrotransposon families. In addition to a recent whole-genome duplication event, lineage-specific expansions of genes associated with flavonoid metabolic biosynthesis were discovered, which enhance catechin production, terpene enzyme activation, and stress tolerance, important features for tea flavor and adaptation. We demonstrate an independent and rapid evolution of the tea caffeine synthesis pathway relative to cacao and coffee. A comparative study among 25 Camellia species revealed that higher expression levels of most flavonoid- and caffeine- but not theanine-related genes contribute to the increased production of catechins and caffeine and thus enhance tea-processing suitability and tea quality. These novel findings pave the way for further metabolomic and functional genomic refinement of characteristic biosynthesis pathways and will help develop a more diversified set of tea flavors that would eventually satisfy and attract more tea drinkers worldwide.
Collapse
|
|
8 |
388 |
7
|
Zhang D, Song H, Qin Y. Total synthesis of indoline alkaloids: A cyclopropanation strategy. Acc Chem Res 2011; 44:447-57. [PMID: 21491859 DOI: 10.1021/ar200004w] [Citation(s) in RCA: 385] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Indoline alkaloids constitute a large class of natural products; their diverse and complex structures contribute to potent biological activities in a range of molecules. Designing an appropriate strategy for the total synthesis of indoline alkaloids is a difficult task that depends on being able to efficiently assemble the core architectures. The best strategies allow access to a variety of different indoline alkaloid structures in a minimum of steps. The cyclopropanation of simple olefins and the subsequent synthetic transformation of the resulting cyclopropyl intermediates has been intensively studied in recent decades. In contrast, the cyclopropanation of enamines, especially for the construction of complex nitrogen-containing ring systems, remained relatively unexplored. Previous success with the cyclopropanation of simple indoles to form stable indolylcyclopropanocarboxylates encouraged us to explore the assembly of indoline alkaloid skeletons with cyclopropanation as a key reaction. Theoretically, indolylcyclopropanocarboxylates are doubly activated by a vicinally substituted amino group and carboxyl group; that is, they are typical donor-acceptor cyclopropanes. Accordingly, they tend to yield an active iminium intermediate, which can undergo inter- and intramolecular nucleophilic reactions to form the core structure of indoline alkaloids with an expanded ring system. In this Account, we summarize our efforts to develop a cascade or stepwise reaction of cyclopropanation/ring-opening/iminium cyclization (the CRI reaction) on tryptamine derivatives for assembling indoline alkaloid skeletons. With the CRI approach, three types of indoline alkaloid skeletons have been efficiently constructed: (i) hexahydropyrrolo[2,3-b]indoline (type I), (ii) tetrahydro-9a,4a-iminoethano-9H-carbazole (type II), and (iii) tetrahydroquinolino[2,3-b]indoline (type III). The effects of substituents on tryptamine derivatives were carefully investigated for inter- and intramolecular CRI reactions during construction of type I and type II skeletons. These results provided a basis for the further design and synthesis of complex natural products containing nitrogen. The usefulness of the CRI reaction is well demonstrated by our total synthesis of structurally intriguing indoline alkaloids such as N-acetylardeemin, minfiensine, vincorine, and communesin F. In addition, we highlight advances by other groups in construction of the three types of skeletons as well as their total syntheses of these indoline alkaloids. Discussion of the total syntheses of these indoline alkaloids focuses on comparing the individual synthetic strategies for forming the ring systems embedded in the final products. We also describe the total synthesis of perophoramidine, which has the same type III skeleton as communesin F. The observation of a retro Diels-Alder reaction during our synthesis of communesin F inspired the hetero Diels-Alder reaction on which our total synthesis of perophoramidine was based.
Collapse
|
|
14 |
385 |
8
|
Shi Y, Sun Y, Hao C, Zhang H, Wei D, Zhang Y, Zhu Y, Deng X, Qi X, Li H, Ma X, Ren H, Wang Y, Zhang D, Wang B, Liu F, Wu Q, Wang Z, Bai H, Li Y, Zhou Y, Sun M, Liu H, Li J, Zhang L, Chen X, Zhang S, Sun X, Legro RS, Chen ZJ. Transfer of Fresh versus Frozen Embryos in Ovulatory Women. N Engl J Med 2018; 378:126-136. [PMID: 29320646 DOI: 10.1056/nejmoa1705334] [Citation(s) in RCA: 362] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Elective frozen-embryo transfer has been shown to result in a higher live-birth rate than fresh-embryo transfer among anovulatory women with the polycystic ovary syndrome. It is uncertain whether frozen-embryo transfer increases live-birth rates among ovulatory women with infertility. METHODS In this multicenter, randomized trial, we randomly assigned 2157 women who were undergoing their first in vitro fertilization cycle to undergo either fresh-embryo transfer or embryo cryopreservation followed by frozen-embryo transfer. Up to two cleavage-stage embryos were transferred in each participant. The primary outcome was a live birth after the first embryo transfer. RESULTS The live-birth rate did not differ significantly between the frozen-embryo group and the fresh-embryo group (48.7% and 50.2%, respectively; relative risk, 0.97; 95% confidence interval [CI], 0.89 to 1.06; P=0.50). There were also no significant between-group differences in the rates of implantation, clinical pregnancy, overall pregnancy loss, and ongoing pregnancy. Frozen-embryo transfer resulted in a significantly lower risk of the ovarian hyperstimulation syndrome than fresh-embryo transfer (0.6% vs. 2.0%; relative risk, 0.32; 95% CI, 0.14 to 0.74; P=0.005). The risks of obstetrical and neonatal complications and other adverse outcomes did not differ significantly between the two groups. CONCLUSIONS The live-birth rate did not differ significantly between fresh-embryo transfer and frozen-embryo transfer among ovulatory women with infertility, but frozen-embryo transfer resulted in a lower risk of the ovarian hyperstimulation syndrome. (Funded by the National Key Research and Development Program of China and the National Natural Science Foundation of China; Chinese Clinical Trial Registry number, ChiCTR-IOR-14005406 .).
Collapse
|
Comparative Study |
7 |
362 |
9
|
Zhang R, Suh I, Zhao J, Zhang D, Fortner EC, Tie X, Molina LT, Molina MJ. Atmospheric new particle formation enhanced by organic acids. Science 2004; 304:1487-90. [PMID: 15178797 DOI: 10.1126/science.1095139] [Citation(s) in RCA: 360] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Atmospheric aerosols often contain a substantial fraction of organic matter, but the role of organic compounds in new nanometer-sized particle formation is highly uncertain. Laboratory experiments show that nucleation of sulfuric acid is considerably enhanced in the presence of aromatic acids. Theoretical calculations identify the formation of an unusually stable aromatic acid-sulfuric acid complex, which likely leads to a reduced nucleation barrier. The results imply that the interaction between organic and sulfuric acids promotes efficient formation of organic and sulfate aerosols in the polluted atmosphere because of emissions from burning of fossil fuels, which strongly affect human health and global climate.
Collapse
|
Journal Article |
21 |
360 |
10
|
Wu Y, Zhang C, Liu H, Duan C, Li C, Fan J, Li H, Chen L, Xu H, Li X, Guo Y, Wang Y, Li X, Li J, Zhang T, You Y, Li H, Yang S, Tao X, Xu Y, Lao H, Wen M, Zhou Y, Wang J, Chen Y, Meng D, Zhai J, Ye Y, Zhong Q, Yang X, Zhang D, Zhang J, Wu X, Chen W, Dennis CL, Huang HF. Perinatal depressive and anxiety symptoms of pregnant women during the coronavirus disease 2019 outbreak in China. Am J Obstet Gynecol 2020; 223:240.e1-240.e9. [PMID: 32437665 PMCID: PMC7211756 DOI: 10.1016/j.ajog.2020.05.009] [Citation(s) in RCA: 354] [Impact Index Per Article: 70.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/06/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND On January 20, 2020, a new coronavirus epidemic with human-to-human transmission was officially declared by the Chinese government, which caused significant public panic in China. In light of the coronavirus disease 2019 outbreak, pregnant women may be particularly vulnerable and in special need for preventive mental health strategies. Thus far, no reports exist to investigate the mental health response of pregnant women to the coronavirus disease 2019 outbreak. OBJECTIVE This study aimed to examine the impact of coronavirus disease 2019 outbreak on the prevalence of depressive and anxiety symptoms and the corresponding risk factors among pregnant women across China. STUDY DESIGN A multicenter, cross-sectional study was initiated in early December 2019 to identify mental health concerns in pregnancy using the Edinburgh Postnatal Depression Scale. This study provided a unique opportunity to compare the mental status of pregnant women before and after the declaration of the coronavirus disease 2019 epidemic. A total of 4124 pregnant women during their third trimester from 25 hospitals in 10 provinces across China were examined in this cross-sectional study from January 1, 2020, to February 9, 2020. Of these women, 1285 were assessed after January 20, 2020, when the coronavirus epidemic was publicly declared and 2839 were assessed before this pivotal time point. The internationally recommended Edinburgh Postnatal Depression Scale was used to assess maternal depression and anxiety symptoms. Prevalence rates and risk factors were compared between the pre- and poststudy groups. RESULTS Pregnant women assessed after the declaration of coronavirus disease 2019 epidemic had significantly higher rates of depressive symptoms (26.0% vs 29.6%, P=.02) than women assessed before the epidemic declaration. These women were also more likely to have thoughts of self-harm (P=.005). The depressive rates were positively associated with the number of newly confirmed cases of coronavirus disease 2019 (P=.003), suspected infections (P=.004), and deaths per day (P=.001). Pregnant women who were underweight before pregnancy, primiparous, younger than 35 years, employed full time, in middle income category, and had appropriate living space were at increased risk for developing depressive and anxiety symptoms during the outbreak. CONCLUSION Major life-threatening public health events such as the coronavirus disease 2019 outbreak may increase the risk for mental illness among pregnant women, including thoughts of self-harm. Strategies targeting maternal stress and isolation such as effective risk communication and the provision of psychological first aid may be particularly useful to prevent negative outcomes for women and their fetuses.
Collapse
|
Multicenter Study |
5 |
354 |
11
|
Ren Y, Yu G, Shi C, Liu L, Guo Q, Han C, Zhang D, Zhang L, Liu B, Gao H, Zeng J, Zhou Y, Qiu Y, Wei J, Luo Y, Zhu F, Li X, Wu Q, Li B, Fu W, Tong Y, Meng J, Fang Y, Dong J, Feng Y, Xie S, Yang Q, Yang H, Wang Y, Zhang J, Gu H, Xuan H, Zou G, Luo C, Huang L, Yang B, Dong Y, Zhao J, Han J, Zhang X, Huang H. Majorbio Cloud: A one-stop, comprehensive bioinformatic platform for multiomics analyses. IMETA 2022; 1:e12. [PMID: 38868573 PMCID: PMC10989754 DOI: 10.1002/imt2.12] [Citation(s) in RCA: 346] [Impact Index Per Article: 115.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2024]
Abstract
The platform consists of three modules, which are pre-configured bioinformatic pipelines, cloud toolsets, and online omics' courses. The pre-configured bioinformatic pipelines not only combine analytic tools for metagenomics, genomes, transcriptome, proteomics and metabolomics, but also provide users with powerful and convenient interactive analysis reports, which allow them to analyze and mine data independently. As a useful supplement to the bioinformatics pipelines, a wide range of cloud toolsets can further meet the needs of users for daily biological data processing, statistics, and visualization. The rich online courses of multi-omics also provide a state-of-art platform to researchers in interactive communication and knowledge sharing.
Collapse
|
article-commentary |
3 |
346 |
12
|
Tan S, Wu T, Zhang D, Zhang Z. Cell or cell membrane-based drug delivery systems. Theranostics 2015; 5:863-81. [PMID: 26000058 PMCID: PMC4440443 DOI: 10.7150/thno.11852] [Citation(s) in RCA: 335] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 02/18/2015] [Indexed: 01/14/2023] Open
Abstract
Natural cells have been explored as drug carriers for a long period. They have received growing interest as a promising drug delivery system (DDS) until recently along with the development of biology and medical science. The synthetic materials, either organic or inorganic, are found to be with more or less immunogenicity and/or toxicity. The cells and extracellular vesicles (EVs), are endogenous and thought to be much safer and friendlier. Furthermore, in view of their host attributes, they may achieve different biological effects and/or targeting specificity, which can meet the needs of personalized medicine as the next generation of DDS. In this review, we summarized the recent progress in cell or cell membrane-based DDS and their fabrication processes, unique properties and applications, including the whole cells, EVs and cell membrane coated nanoparticles. We expect the continuing development of this cell or cell membrane-based DDS will promote their clinic applications.
Collapse
|
Review |
10 |
335 |
13
|
Brown K, Xie S, Qiu X, Mohrin M, Shin J, Liu Y, Zhang D, Scadden DT, Chen D. SIRT3 reverses aging-associated degeneration. Cell Rep 2013; 3:319-27. [PMID: 23375372 DOI: 10.1016/j.celrep.2013.01.005] [Citation(s) in RCA: 318] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 09/08/2012] [Accepted: 01/03/2013] [Indexed: 12/15/2022] Open
Abstract
Despite recent controversy about their function in some organisms, sirtuins are thought to play evolutionarily conserved roles in lifespan extension. Whether sirtuins can reverse aging-associated degeneration is unknown. Tissue-specific stem cells persist throughout the entire lifespan to repair and maintain tissues, but their self-renewal and differentiation potential become dysregulated with aging. We show that SIRT3, a mammalian sirtuin that regulates the global acetylation landscape of mitochondrial proteins and reduces oxidative stress, is highly enriched in hematopoietic stem cells (HSCs) where it regulates a stress response. SIRT3 is dispensable for HSC maintenance and tissue homeostasis at a young age under homeostatic conditions but is essential under stress or at an old age. Importantly, SIRT3 is suppressed with aging, and SIRT3 upregulation in aged HSCs improves their regenerative capacity. Our study illuminates the plasticity of mitochondrial homeostasis controlling stem cell and tissue maintenance during the aging process and shows that aging-associated degeneration can be reversed by a sirtuin.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
12 |
318 |
14
|
Abstract
Bone morphogenetic proteins (BMPs) are a rapidly expanding subclass of the transforming growth factor superfamily. BMP ligands and receptor subunits are present throughout neural development within discrete regions of the embryonic brain and within neural crest-derived pre- and post-migratory zones. BMPs initially inhibit the formation of neuroectoderm during gastrulation while, within the neural tube, they act as gradient morphogens to promote the differentiation of dorsal cell types and intermediate cell types throughout co-operative signaling. In the peripheral nervous system, BMPs act as instructive signals for neuronal lineage commitment and promote graded stages of neuronal differentiation. By contrast, within the CNS, these same factors promote astroglial lineage elaboration from embryonic subventricular zone progenitor cells, with concurrent suppression of the neuronal or oligodendroglial lineages, or both. In addition, BMPs act on more lineage-restricted embryonic CNS progenitor cells to promote regional neuronal survival and cellular differentiation. Furthermore, these versatile cytokines induce selective apoptosis of discrete rhombencephalic neural crest-associated cellular populations. These observations suggest that the BMPs exhibit a broad range of cellular and context-specific effects during multiple stages of neural development.
Collapse
|
Review |
28 |
316 |
15
|
Cui M, Wang H, Yao X, Zhang D, Xie Y, Cui R, Zhang X. Circulating MicroRNAs in Cancer: Potential and Challenge. Front Genet 2019; 10:626. [PMID: 31379918 PMCID: PMC6656856 DOI: 10.3389/fgene.2019.00626] [Citation(s) in RCA: 311] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 06/17/2019] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are endogenous non-coding small RNA molecules that can be secreted into the circulation and exist in remarkably stable forms. Like intercellular miRNAs, circulating miRNAs participate in numerous regulations of biological process and expressed aberrantly under abnormal or pathological status. The quality and quantity changes of circulating miRNAs are associated with the initiation and progression of cancer and can be easily detected by basic molecular biology techniques. Consequently, considerable effort has been devoted to identify suitable extracellular miRNAs for noninvasive biomarkers in cancer. However, several challenges need to be overcome before the practical application. In this review, we discuss several issues of circulating miRNAs: biological function and basic transport carriers; extracellular cell communication process; roles as reliable cancer biomarkers and usage in targeted cancer therapy; and challenges for clinical application.
Collapse
|
Review |
6 |
311 |
16
|
Ma J, Li Y, Ye Q, Li J, Hua Y, Ju D, Zhang D, Cooper R, Chang M. Constituents of red yeast rice, a traditional Chinese food and medicine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2000; 48:5220-5225. [PMID: 11087463 DOI: 10.1021/jf000338c] [Citation(s) in RCA: 293] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Detailed analyses were undertaken of the natural constituents of red yeast rice, a traditional Chinese medicine and food known for centuries to improve blood circulation. Preparation of red yeast rice following ancient methods by fermenting the fungal strain Monascus purpureus Went on moist and sterile rice indicated the presence of a group of metabolites belonging to the monacolin family of polyketides, together with fatty acids, and trace elements. The presence of these compounds may explain in part the cholesterol-lowering ability associated with this traditional Chinese food.
Collapse
|
|
25 |
293 |
17
|
Zhao Z, Ning J, Bao XQ, Shang M, Ma J, Li G, Zhang D. Fecal microbiota transplantation protects rotenone-induced Parkinson's disease mice via suppressing inflammation mediated by the lipopolysaccharide-TLR4 signaling pathway through the microbiota-gut-brain axis. MICROBIOME 2021; 9:226. [PMID: 34784980 PMCID: PMC8597301 DOI: 10.1186/s40168-021-01107-9] [Citation(s) in RCA: 292] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/02/2021] [Indexed: 05/10/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is a prevalent neurodegenerative disorder, displaying not only well-known motor deficits but also gastrointestinal dysfunctions. Consistently, it has been increasingly evident that gut microbiota affects the communication between the gut and the brain in PD pathogenesis, known as the microbiota-gut-brain axis. As an approach to re-establishing a normal microbiota community, fecal microbiota transplantation (FMT) has exerted beneficial effects on PD in recent studies. Here, in this study, we established a chronic rotenone-induced PD mouse model to evaluate the protective effects of FMT treatment on PD and to explore the underlying mechanisms, which also proves the involvement of gut microbiota dysbiosis in PD pathogenesis via the microbiota-gut-brain axis. RESULTS We demonstrated that gut microbiota dysbiosis induced by rotenone administration caused gastrointestinal function impairment and poor behavioral performances in the PD mice. Moreover, 16S RNA sequencing identified the increase of bacterial genera Akkermansia and Desulfovibrio in fecal samples of rotenone-induced mice. By contrast, FMT treatment remarkably restored the gut microbial community, thus ameliorating the gastrointestinal dysfunctions and the motor deficits of the PD mice. Further experiments revealed that FMT administration alleviated intestinal inflammation and barrier destruction, thus reducing the levels of systemic inflammation. Subsequently, FMT treatment attenuated blood-brain barrier (BBB) impairment and suppressed neuroinflammation in the substantia nigra (SN), which further decreased the damage of dopaminergic neurons. Additional mechanistic investigation discovered that FMT treatment reduced lipopolysaccharide (LPS) levels in the colon, the serum, and the SN, thereafter suppressing the TLR4/MyD88/NF-κB signaling pathway and its downstream pro-inflammatory products both in the SN and the colon. CONCLUSIONS Our current study demonstrates that FMT treatment can correct the gut microbiota dysbiosis and ameliorate the rotenone-induced PD mouse model, in which suppression of the inflammation mediated by the LPS-TLR4 signaling pathway both in the gut and the brain possibly plays a significant role. Further, we prove that rotenone-induced microbiota dysbiosis is involved in the genesis of PD via the microbiota-gut-brain axis. Video abstract.
Collapse
|
Video-Audio Media |
4 |
292 |
18
|
Zhang D, Sliwkowski MX, Mark M, Frantz G, Akita R, Sun Y, Hillan K, Crowley C, Brush J, Godowski PJ. Neuregulin-3 (NRG3): a novel neural tissue-enriched protein that binds and activates ErbB4. Proc Natl Acad Sci U S A 1997; 94:9562-7. [PMID: 9275162 PMCID: PMC23218 DOI: 10.1073/pnas.94.18.9562] [Citation(s) in RCA: 278] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We describe the identification of Neuregulin-3 (NRG3), a novel protein that is structurally related to the neuregulins (NRG1). The NRG1/neuregulins are a diverse family of proteins that arise by alternative splicing from a single gene. These proteins play an important role in controlling the growth and differentiation of glial, epithelial, and muscle cells. The biological effects of NRG1 are mediated by receptor tyrosine kinases ErbB2, ErbB3, and ErbB4. However, genetic studies have suggested that the activity of ErbB4 may also be regulated in the central nervous system by a ligand distinct from NRG1. NRG3 is predicted to contain an extracellular domain with an epidermal growth factor (EGF) motif, a transmembrane domain, and a large cytoplasmic domain. We show that the EGF-like domain of NRG3 binds to the extracellular domain of ErbB4 in vitro. Moreover, NRG3 binds to ErbB4 expressed on cells and stimulates tyrosine phosphorylation of this receptor. The expression of NRG3 is highly restricted to the developing and adult nervous system. These data suggest that NRG3 is a novel, neural-enriched ligand for ErbB4.
Collapse
|
research-article |
28 |
278 |
19
|
Münz C, Bickham KL, Subklewe M, Tsang ML, Chahroudi A, Kurilla MG, Zhang D, O'Donnell M, Steinman RM. Human CD4(+) T lymphocytes consistently respond to the latent Epstein-Barr virus nuclear antigen EBNA1. J Exp Med 2000; 191:1649-60. [PMID: 10811859 PMCID: PMC2193162 DOI: 10.1084/jem.191.10.1649] [Citation(s) in RCA: 262] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/1999] [Accepted: 03/09/2000] [Indexed: 11/20/2022] Open
Abstract
The Epstein-Barr virus (EBV)-encoded nuclear antigen EBNA1 is critical for the persistence of the viral episome in replicating EBV-transformed human B cells. Therefore, all EBV-induced tumors express this foreign antigen. However, EBNA1 is invisible to CD8(+) cytotoxic T lymphocytes because its Gly/Ala repeat domain prevents proteasome-dependent processing for presentation on major histocompatibility complex (MHC) class I. We now describe that CD4(+) T cells from healthy adults are primed to EBNA1. In fact, among latent EBV antigens that stimulate CD4(+) T cells, EBNA1 is preferentially recognized. We present evidence that the CD4(+) response may provide a protective role, including interferon gamma secretion and direct cytolysis after encounter of transformed B lymphocyte cell lines (B-LCLs). Dendritic cells (DCs) process EBNA1 from purified protein and from MHC class II-mismatched, EBNA1-expressing cells including B-LCLs. In contrast, B-LCLs and Burkitt's lymphoma lines likely present EBNA1 after endogenous processing, as their capacity to cross-present from exogenous sources is weak or undetectable. By limiting dilution, there is a tight correlation between the capacity of CD4(+) T cell lines to recognize autologous B-LCL-expressing EBNA1 and DCs that have captured EBNA1. Therefore, CD4(+) T cells can respond to the EBNA1 protein that is crucial for EBV persistence. We suggest that this immune response is initiated in vivo by DCs that present EBV-infected B cells, and that EBNA1-specific CD4(+) T cell immunity be enhanced to prevent and treat EBV-associated malignancies.
Collapse
|
research-article |
25 |
262 |
20
|
Zhang D, Gaussin V, Taffet GE, Belaguli NS, Yamada M, Schwartz RJ, Michael LH, Overbeek PA, Schneider MD. TAK1 is activated in the myocardium after pressure overload and is sufficient to provoke heart failure in transgenic mice. Nat Med 2000; 6:556-63. [PMID: 10802712 DOI: 10.1038/75037] [Citation(s) in RCA: 256] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The transforming-growth-factor-beta-activated kinase TAK1 is a member of the mitogen-activated protein kinase kinase kinase family, which couples extracellular stimuli to gene transcription. The in vivo function of TAK1 is not understood. Here, we investigated the potential involvement of TAK1 in cardiac hypertrophy. In adult mouse myocardium, TAK1 kinase activity was upregulated 7 days after aortic banding, a mechanical load that induces hypertrophy and expression of transforming growth factor beta. An activating mutation of TAK1 expressed in myocardium of transgenic mice was sufficient to produce p38 mitogen-activated protein kinase phosphorylation in vivo, cardiac hypertrophy, interstitial fibrosis, severe myocardial dysfunction, 'fetal' gene induction, apoptosis and early lethality. Thus, TAK1 activity is induced as a delayed response to mechanical stress, and can suffice to elicit myocardial hypertrophy and fulminant heart failure.
Collapse
|
|
25 |
256 |
21
|
Sparrow CP, Burton CA, Hernandez M, Mundt S, Hassing H, Patel S, Rosa R, Hermanowski-Vosatka A, Wang PR, Zhang D, Peterson L, Detmers PA, Chao YS, Wright SD. Simvastatin has anti-inflammatory and antiatherosclerotic activities independent of plasma cholesterol lowering. Arterioscler Thromb Vasc Biol 2001; 21:115-21. [PMID: 11145942 DOI: 10.1161/01.atv.21.1.115] [Citation(s) in RCA: 255] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Inhibitors of 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase, such as simvastatin, lower circulating cholesterol levels and prevent myocardial infarction. Several studies have shown an unexpected effect of HMG-CoA reductase inhibitors on inflammation. Here, we confirm that simvastatin is anti-inflammatory by using a classic model of inflammation: carrageenan-induced foot pad edema. Simvastatin administered orally to mice 1 hour before carrageenan injection significantly reduced the extent of edema. Simvastatin was comparable to indomethacin in this model. To determine whether the anti-inflammatory activity of simvastatin might affect atherogenesis, simvastatin was tested in mice deficient in apoE. Mice were dosed daily for 6 weeks with simvastatin (100 mg/kg body wt). Simvastatin did not alter plasma lipids. Atherosclerosis was quantified through the measurement of aortic cholesterol content. Aortas from control mice (n=20) contained 56+/-4 nmol total cholesterol/mg wet wt tissue, 38+/-2 nmol free cholesterol/mg, and 17+/-2 nmol cholesteryl ester/mg. Simvastatin (n=22) significantly (P<0.02) decreased these 3 parameters by 23%, 19%, and 34%, respectively. Histology of the atherosclerotic lesions showed that simvastatin did not dramatically alter lesion morphology. These data support the hypothesis that simvastatin has antiatherosclerotic activity beyond its plasma cholesterol-lowering activity.
Collapse
|
|
24 |
255 |
22
|
Dai J, Peng L, Fan K, Wang H, Wei R, Ji G, Cai J, Lu B, Li B, Zhang D, Kang Y, Tan M, Qian W, Guo Y. Osteopontin induces angiogenesis through activation of PI3K/AKT and ERK1/2 in endothelial cells. Oncogene 2009; 28:3412-22. [PMID: 19597469 DOI: 10.1038/onc.2009.189] [Citation(s) in RCA: 250] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Angiogenesis is a key step in tumor growth and metastasis. The mechanism by which osteopontin (OPN) induces the angiogenesis of endothelial cells remains unclear. Here, we show that OPN confers cytoprotection through the activation of the PI3K/Akt pathway with subsequent upregulation of Bcl-xL and activation of nuclear factor-kappaB. OPN enhances the expression of vascular endothelial growth factor (VEGF) through the phosphorylation of AKT and extracellular signal-regulated kinase (ERK). In turn, OPN-induced VEGF activates PI3K/AKT and the ERK1/2 pathway as a positive feedback signal. Blocking the feedback signal by anti-VEGF antibody, PI3-kinase inhibitor or ERK inhibitor can partially inhibit the OPN-induced human umbilical vein endothelial cell (HUVEC) motility, proliferation and tube formation, while blocking the signal by anti-OPN or anti-alphavbeta3 antibody completely abrogates the biological effects of OPN on HUVECs. In addition, blood vessel formation is also investigated in vivo. The antiangiogenesis efficacy of anti-OPN antibody in vivo is more effective than that of anti-VEGF antibody, which only blocks the feedback signals. These data show that OPN enhances angiogenesis directly through PI3K/AKT- and ERK-mediated pathways with VEGF acting as a positive feedback signal. The results suggest that OPN might be a valuable target for developing novel antiangiogenesis therapy for treatment of cancer.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
250 |
23
|
Crosas B, Hanna J, Kirkpatrick DS, Zhang DP, Tone Y, Hathaway NA, Buecker C, Leggett DS, Schmidt M, King RW, Gygi SP, Finley D. Ubiquitin chains are remodeled at the proteasome by opposing ubiquitin ligase and deubiquitinating activities. Cell 2007; 127:1401-13. [PMID: 17190603 DOI: 10.1016/j.cell.2006.09.051] [Citation(s) in RCA: 247] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Revised: 08/25/2006] [Accepted: 09/29/2006] [Indexed: 11/21/2022]
Abstract
The ubiquitin ligase Hul5 was recently identified as a component of the proteasome, a multisubunit protease that degrades ubiquitin-protein conjugates. We report here a proteasome-dependent conjugating activity of Hul5 that endows proteasomes with the capacity to extend ubiquitin chains. hul5 mutants show reduced degradation of multiple proteasome substrates in vivo, suggesting that the polyubiquitin signal that targets substrates to the proteasome can be productively amplified at the proteasome. However, the products of Hul5 conjugation are subject to disassembly by a proteasome-bound deubiquitinating enzyme, Ubp6. A hul5 null mutation suppresses a ubp6 null mutation, suggesting that a balance of chain-extending and chain-trimming activities is required for proper proteasome function. As the association of Hul5 with proteasomes was found to be strongly stabilized by Ubp6, these enzymes may be situated in proximity to one another. We propose that through dynamic remodeling of ubiquitin chains, proteasomes actively regulate substrate commitment to degradation.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
247 |
24
|
Gelbard HA, Nottet HS, Swindells S, Jett M, Dzenko KA, Genis P, White R, Wang L, Choi YB, Zhang D. Platelet-activating factor: a candidate human immunodeficiency virus type 1-induced neurotoxin. J Virol 1994; 68:4628-35. [PMID: 8207837 PMCID: PMC236390 DOI: 10.1128/jvi.68.7.4628-4635.1994] [Citation(s) in RCA: 246] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The pathogenesis of central nervous system disease during human immunodeficiency virus type 1 (HIV-1) infection revolves around productive viral infection of brain macrophages and microglia. Neuronal losses in the cortex and subcortical gray matter accompany macrophage infection. The question of how viral infection of brain macrophages ultimately leads to central nervous system (CNS) pathology remains unanswered. Our previous work demonstrated high-level production of tumor necrosis factor alpha, interleukin 1 beta, arachidonic acid metabolites, and platelet-activating factor (PAF) from HIV-infected monocytes and astroglia (H. E. Gendelman, P. Genis, M. Jett, and H. S. L. M. Nottet, in E. Major, ed., Technical Advances in AIDS Research in the Nervous System, in press; P. Genis, M. Jett, E. W. Bernton, H. A. Gelbard, K. Dzenko, R. Keane, L. Resnick, D. J. Volsky, L. G. Epstein, and H. E. Gendelman, J. Exp. Med. 176:1703-1718, 1992). These factors, together, were neurotoxic. The relative role(s) of each of these candidate neurotoxins in HIV-1-related CNS dysfunction was not unraveled by these initial experiments. We now report that PAF is produced during HIV-1-infected monocyte-astroglia interactions. PAF was detected at high levels in CSF of HIV-1-infected patients with immunosuppression and signs of CNS dysfunction. The biologic significance of the results for neurological disease was determined by addition of PAF to cultures of primary human fetal cortical or rat postnatal retinal ganglion neurons. Here, PAF at concentrations of > or = 300 pg/ml produced neuronal death. The N-methyl-D-aspartate receptor antagonist MK-801 or memantine partially blocked the neurotoxic effects of PAF. The identification of PAF as an HIV-1-induced neurotoxin provides new insights into how HIV-1 causes neurological impairment and how it may ultimately be ameliorated.
Collapse
|
research-article |
31 |
246 |
25
|
Deng M, Zhang D, Zhou Y, Zhou X. Highly Effective Colorimetric and Visual Detection of Nucleic Acids Using an Asymmetrically Split Peroxidase DNAzyme. J Am Chem Soc 2008; 130:13095-102. [DOI: 10.1021/ja803507d] [Citation(s) in RCA: 240] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
|
17 |
240 |