1
|
Wang X, Pandey AK, Mulligan MK, Williams EG, Mozhui K, Li Z, Jovaisaite V, Quarles LD, Xiao Z, Huang J, Capra JA, Chen Z, Taylor WL, Bastarache L, Niu X, Pollard KS, Ciobanu DC, Reznik AO, Tishkov AV, Zhulin IB, Peng J, Nelson SF, Denny JC, Auwerx J, Lu L, Williams RW. Joint mouse-human phenome-wide association to test gene function and disease risk. Nat Commun 2016; 7:10464. [PMID: 26833085 PMCID: PMC4740880 DOI: 10.1038/ncomms10464] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 12/11/2015] [Indexed: 01/22/2023] Open
Abstract
Phenome-wide association is a novel reverse genetic strategy to analyze genome-to-phenome relations in human clinical cohorts. Here we test this approach using a large murine population segregating for ∼5 million sequence variants, and we compare our results to those extracted from a matched analysis of gene variants in a large human cohort. For the mouse cohort, we amassed a deep and broad open-access phenome consisting of ∼4,500 metabolic, physiological, pharmacological and behavioural traits, and more than 90 independent expression quantitative trait locus (QTL), transcriptome, proteome, metagenome and metabolome data sets—by far the largest coherent phenome for any experimental cohort (www.genenetwork.org). We tested downstream effects of subsets of variants and discovered several novel associations, including a missense mutation in fumarate hydratase that controls variation in the mitochondrial unfolded protein response in both mouse and Caenorhabditis elegans, and missense mutations in Col6a5 that underlies variation in bone mineral density in both mouse and human. Phenome-wide association is a novel method that links sequence variants to a spectrum of phenotypes and diseases. Here the authors generate detailed mouse genetic and phenome data which links their phenome-wide association study (PheWAS) of mouse to corresponding PheWAS in human.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
107 |
2
|
Ciobanu DC, Bastiaansen JWM, Lonergan SM, Thomsen H, Dekkers JCM, Plastow GS, Rothschild MF. New alleles in calpastatin gene are associated with meat quality traits in pigs. J Anim Sci 2004; 82:2829-39. [PMID: 15484933 DOI: 10.2527/2004.82102829x] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Suggestive QTL affecting raw firmness scores and average Instron force, tenderness, juiciness, and chewiness on cooked meat were mapped to pig chromosome 2 using a three-generation intercross between Berkshire and Yorkshire pigs. Based on its function and location, the calpastatin (CAST) gene was considered to be a good candidate for the observed effects. Several missense and silent mutations were identified in CAST and haplotypes covering most of the coding region were constructed and used for association analyses with meat quality traits. Results demonstrated that one CAST haplotype was significantly associated with lower Instron force and cooking loss and higher juiciness and, therefore, this haplotype is associated with higher eating quality. Some of the sequence variation identified may be associated with differences in phosphorylation of CAST by adenosine cyclic 3', 5'-monophosphate-dependent protein kinase and may in turn explain the meat quality phenotypic differences. The beneficial haplotype was present in all the commercial breeds tested and may provide significant improvements for the pig industry and consumers because it can be used in marker-assisted selection to produce naturally tender and juicy pork without additional processing steps.
Collapse
|
|
21 |
94 |
3
|
Mozhui K, Ciobanu DC, Schikorski T, Wang X, Lu L, Williams RW. Dissection of a QTL hotspot on mouse distal chromosome 1 that modulates neurobehavioral phenotypes and gene expression. PLoS Genet 2008; 4:e1000260. [PMID: 19008955 PMCID: PMC2577893 DOI: 10.1371/journal.pgen.1000260] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 10/14/2008] [Indexed: 11/18/2022] Open
Abstract
A remarkably diverse set of traits maps to a region on mouse distal chromosome 1 (Chr 1) that corresponds to human Chr 1q21-q23. This region is highly enriched in quantitative trait loci (QTLs) that control neural and behavioral phenotypes, including motor behavior, escape latency, emotionality, seizure susceptibility (Szs1), and responses to ethanol, caffeine, pentobarbital, and haloperidol. This region also controls the expression of a remarkably large number of genes, including genes that are associated with some of the classical traits that map to distal Chr 1 (e.g., seizure susceptibility). Here, we ask whether this QTL-rich region on Chr 1 (Qrr1) consists of a single master locus or a mixture of linked, but functionally unrelated, QTLs. To answer this question and to evaluate candidate genes, we generated and analyzed several gene expression, haplotype, and sequence datasets. We exploited six complementary mouse crosses, and combed through 18 expression datasets to determine class membership of genes modulated by Qrr1. Qrr1 can be broadly divided into a proximal part (Qrr1p) and a distal part (Qrr1d), each associated with the expression of distinct subsets of genes. Qrr1d controls RNA metabolism and protein synthesis, including the expression of approximately 20 aminoacyl-tRNA synthetases. Qrr1d contains a tRNA cluster, and this is a functionally pertinent candidate for the tRNA synthetases. Rgs7 and Fmn2 are other strong candidates in Qrr1d. FMN2 protein has pronounced expression in neurons, including in the dendrites, and deletion of Fmn2 had a strong effect on the expression of few genes modulated by Qrr1d. Our analysis revealed a highly complex gene expression regulatory interval in Qrr1, composed of multiple loci modulating the expression of functionally cognate sets of genes.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
88 |
4
|
Du ZQ, Ciobanu DC, Onteru SK, Gorbach D, Mileham AJ, Jaramillo G, Rothschild MF. A gene-based SNP linkage map for pacific white shrimp, Litopenaeus vannamei. Anim Genet 2009; 41:286-94. [PMID: 19968647 DOI: 10.1111/j.1365-2052.2009.02002.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pacific white shrimp (Litopenaeus vannamei) are of particular economic importance to the global shrimp aquaculture industry. However, limited genomics information is available for the penaeid species. We utilized the limited public information available, mainly single nucleotide polymorphisms (SNPs) and expressed sequence tags, to discover markers for the construction of the first SNP genetic map for Pacific white shrimp. In total, 1344 putative SNPs were discovered, and out of 825 SNPs genotyped, 418 SNP markers from 347 contigs were mapped onto 45 sex-averaged linkage groups, with approximate coverage of 2071 and 2130 cm for the female and male maps, respectively. The average-squared correlation coefficient (r(2)), a measure of linkage disequilibrium, for markers located more than 50 cm apart on the same linkage group, was 0.15. Levels of r(2) increased with decreasing inter-marker distance from approximately 80 cm, and increased more rapidly from approximately 30 cm. A QTL for shrimp gender was mapped on linkage group 13. Comparative mapping to model organisms, Daphnia pulex and Drosophila melanogaster, revealed extensive rearrangement of genome architecture for L. vannamei, and that L. vannamei was more related to Daphnia pulex. This SNP genetic map lays the foundation for future shrimp genomics studies, especially the identification of genetic markers or regions for economically important traits.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
61 |
5
|
Schmutz SM, Berryere TG, Ciobanu DC, Mileham AJ, Schmidtz BH, Fredholm M. A form of albinism in cattle is caused by a tyrosinase frameshift mutation. Mamm Genome 2004; 15:62-7. [PMID: 14727143 DOI: 10.1007/s00335-002-2249-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2002] [Accepted: 08/18/2003] [Indexed: 10/26/2022]
Abstract
We used PCR amplification of cDNA prepared from skin biopsies to determine the full-length protein-coding sequence of tyrosinase ( TYR) in cattle of several coat colors. An insertion of a cytosine was detected in an albino Braunvieh calf, which resulted in a frameshift which caused a premature stop codon at residue 316. This insertion was found in the homozygous state in this calf and the genomic DNA of two related albino calves. All six parents of these calves were heterozygous for this insertion. However, an albino Holstein calf did not have this insertion, nor was any other mutation detected in the partial TYR sequence obtained from the genomic DNA available. Diagnostic genotyping tests were developed to detect this mutation in Braunvieh cattle.
Collapse
|
|
21 |
52 |
6
|
Howard JT, Kachman SD, Snelling WM, Pollak EJ, Ciobanu DC, Kuehn LA, Spangler ML. Beef cattle body temperature during climatic stress: a genome-wide association study. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2014; 58:1665-1672. [PMID: 24362770 DOI: 10.1007/s00484-013-0773-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 11/26/2013] [Accepted: 11/27/2013] [Indexed: 06/03/2023]
Abstract
Cattle are reared in diverse environments and collecting phenotypic body temperature (BT) measurements to characterize BT variation across diverse environments is difficult and expensive. To better understand the genetic basis of BT regulation, a genome-wide association study was conducted utilizing crossbred steers and heifers totaling 239 animals of unknown pedigree and breed fraction. During predicted extreme heat and cold stress events, hourly tympanic and vaginal BT devices were placed in steers and heifers, respectively. Individuals were genotyped with the BovineSNP50K_v2 assay and data analyzed using Bayesian models for area under the curve (AUC), a measure of BT over time, using hourly BT observations summed across 5-days (AUC summer 5-day (AUCS5D) and AUC winter 5-day (AUCW5D)). Posterior heritability estimates were moderate to high and were estimated to be 0.68 and 0.21 for AUCS5D and AUCW5D, respectively. Moderately positive correlations between direct genomic values for AUCS5D and AUCW5D (0.40) were found, although a small percentage of the top 5% 1-Mb windows were in common. Different sets of genes were associated with BT during winter and summer, thus simultaneous selection for animals tolerant to both heat and cold appears possible.
Collapse
|
|
11 |
48 |
7
|
Whitney IE, Raven MA, Ciobanu DC, Williams RW, Reese BE. Multiple genes on chromosome 7 regulate dopaminergic amacrine cell number in the mouse retina. Invest Ophthalmol Vis Sci 2009; 50:1996-2003. [PMID: 19168892 DOI: 10.1167/iovs.08-2556] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The size of neuronal populations is modulated by gene variants that influence cell production and survival, in turn influencing neuronal connectivity, function, and disease risk. The size of the dopaminergic amacrine (DA) cell population is a highly heritable trait exhibiting sixfold variation among inbred strains of mice and is used here to identify genes that modulate the number of DA cells. METHODS The entire population was counted in retinal wholemounts from 37 genetically defined lines of mice, including six standard inbred strains, 25 recombinant inbred strains (AXB/BXA), reciprocal F1 hybrids, a chromosome (Chr) 7 consomic line, and three additional genetically modified lines. RESULTS Much of this variation was mapped to a broad locus on Chr 7 (Dopaminergic amacrine cell number control, Chr 7 [Dacnc7]). The Dacnc7 locus is flanked by two candidate genes known to modulate the number of other types of retinal neuron-the proapoptotic gene, Bax, and tyrosinase. The Tyr mutation was shown to modulate DA cell number modestly, though in the direction opposite that predicted. In contrast, Bax deficiency increased the population fourfold. Bax expression was significantly greater in the A/J than in the C57BL/6J strain, an effect that may be attributed to an SNP in a p53 consensus binding site known to modulate transcription. Finally, we note a strong candidate situated at the peak of the Dacnc7 locus, Lrrk1, a Parkinson's disease gene exhibiting missense mutations segregating within the AXB/BXA cross. CONCLUSIONS Multiple polymorphic genes on Chr 7 modulate the size of the population of DA cells.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
37 |
8
|
Ciobanu DC, Bastiaansen JWM, Magrin J, Rocha JL, Jiang DH, Yu N, Geiger B, Deeb N, Rocha D, Gong H, Kinghorn BP, Plastow GS, van der Steen HAM, Mileham AJ. A major SNP resource for dissection of phenotypic and genetic variation in Pacific white shrimp (Litopenaeus vannamei). Anim Genet 2009; 41:39-47. [PMID: 19799596 DOI: 10.1111/j.1365-2052.2009.01961.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bioinformatics and re-sequencing approaches were used for the discovery of sequence polymorphisms in Litopenaeus vannamei. A total of 1221 putative single nucleotide polymorphisms (SNPs) were identified in a pool of individuals from various commercial populations. A set of 211 SNPs were selected for further molecular validation and 88% showed variation in 637 samples representing three commercial breeding lines. An association analysis was performed between these markers and several traits of economic importance for shrimp producers including resistance to three major viral diseases. A small number of SNPs showed associations with test weekly gain, grow-out survival and resistance to Taura Syndrome Virus. Very low levels of linkage disequilibrium were revealed between most SNP pairs, with only 11% of SNPs showing an r(2)-value above 0.10 with at least one other SNP. Comparison of allele frequencies showed small changes over three generations of the breeding programme in one of the commercial breeding populations. This unique SNP resource has the potential to catalyse future studies of genetic dissection of complex traits, tracing relationships in breeding programmes, and monitoring genetic diversity in commercial and wild populations of L. vannamei.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
34 |
9
|
Tart JK, Johnson RK, Bundy JW, Ferdinand NN, McKnite AM, Wood JR, Miller PS, Rothschild MF, Spangler ML, Garrick DJ, Kachman SD, Ciobanu DC. Genome-wide prediction of age at puberty and reproductive longevity in sows. Anim Genet 2013; 44:387-97. [PMID: 23437861 DOI: 10.1111/age.12028] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2013] [Indexed: 11/27/2022]
Abstract
Traditional selection for sow reproductive longevity is ineffective due to low heritability and late expression of the trait. Incorporation of DNA markers into selection programs is potentially a more practical approach for improving sow lifetime productivity. Using a resource population of crossbred gilts, we explored pleiotropic sources of variation that influence age at puberty and reproductive longevity. Of the traits recorded before breeding, only age at puberty significantly affected the probability that females would produce a first parity litter. The genetic variance explained by 1-Mb windows of the sow genome, compared across traits, uncovered regions that influence both age at puberty and lifetime number of parities. Allelic variants of SNPs located on SSC5 (27-28 Mb), SSC8 (36-37 Mb) and SSC12 (1.2-2 Mb) exhibited additive effects and were associated with both early expression of puberty and a greater than average number of lifetime parities. Combined analysis of these SNPs showed that an increase in the number of favorable alleles had positive impact on reproductive longevity, increasing number of parities by up to 1.36. The region located on SSC5 harbors non-synonymous alleles in the arginine vasopressin receptor 1A (AVPR1A) gene, a G-protein-coupled receptor associated with social and reproductive behaviors in voles and humans and a candidate for the observed effects. This region is characterized by high levels of linkage disequilibrium in different lines and could be exploited in marker-assisted selection programs across populations to increase sow reproductive longevity.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
33 |
10
|
Morota G, Peñagaricano F, Petersen JL, Ciobanu DC, Tsuyuzaki K, Nikaido I. An application of MeSH enrichment analysis in livestock. Anim Genet 2015; 46:381-7. [PMID: 26036323 PMCID: PMC5032990 DOI: 10.1111/age.12307] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2015] [Indexed: 01/01/2023]
Abstract
An integral part of functional genomics studies is to assess the enrichment of specific biological terms in lists of genes found to be playing an important role in biological phenomena. Contrasting the observed frequency of annotated terms with those of the background is at the core of overrepresentation analysis (ORA). Gene Ontology (GO) is a means to consistently classify and annotate gene products and has become a mainstay in ORA. Alternatively, Medical Subject Headings (MeSH) offers a comprehensive life science vocabulary including additional categories that are not covered by GO. Although MeSH is applied predominantly in human and model organism research, its full potential in livestock genetics is yet to be explored. In this study, MeSH ORA was evaluated to discern biological properties of identified genes and contrast them with the results obtained from GO enrichment analysis. Three published datasets were employed for this purpose, representing a gene expression study in dairy cattle, the use of SNPs for genome‐wide prediction in swine and the identification of genomic regions targeted by selection in horses. We found that several overrepresented MeSH annotations linked to these gene sets share similar concepts with those of GO terms. Moreover, MeSH yielded unique annotations, which are not directly provided by GO terms, suggesting that MeSH has the potential to refine and enrich the representation of biological knowledge. We demonstrated that MeSH can be regarded as another choice of annotation to draw biological inferences from genes identified via experimental analyses. When used in combination with GO terms, our results indicate that MeSH can enhance our functional interpretations for specific biological conditions or the genetic basis of complex traits in livestock species.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
22 |
11
|
Ciobanu DC, Day AE, Nagy A, Wales R, Rothschild MF, Plastow GS. Genetic variation in two conserved local Romanian pig breeds using type 1 DNA markers. Genet Sel Evol 2001; 33:417-32. [PMID: 11559484 PMCID: PMC2705414 DOI: 10.1186/1297-9686-33-4-417] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Analysis of the genetic variation of an endangered population is an important component for the success of conservation. Animals from two local Romanian pig breeds, the Mangalitsa and Bazna, were analysed for variation at a number of genetic loci using PCR-based DNA tests. Polymorphism was assessed at loci which 1) are known to cause phenotypic variation, 2) are potentially involved in trait differences or 3) are putative candidate genes. The traits considered are disease resistance, growth, coat colour, meat quality and prolificacy. Even though the populations are small and the markers are limited to specific genes, we found significant differences in five of the ten characterised loci. In some cases the observed allele frequencies were interesting in relation to gene function and the phenotype of the breed. These breeds are part of a conservation programme in Romania and marker information may be useful in preserving a representative gene pool in the populations. The use of polymorphisms in type 1 (gene) markers may be a useful complement to analysis based on anonymous markers.
Collapse
|
research-article |
24 |
19 |
12
|
Olsen CM, Huang Y, Goodwin S, Ciobanu DC, Lu L, Sutter TR, Winder DG. Microarray analysis reveals distinctive signaling between the bed nucleus of the stria terminalis, nucleus accumbens, and dorsal striatum. Physiol Genomics 2008; 32:283-98. [PMID: 17911379 DOI: 10.1152/physiolgenomics.00224.2006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To identify distinct transcriptional patterns between the major subcortical dopamine targets commonly studied in addiction we studied differences in gene expression between the bed nucleus of the stria terminalis (BNST), nucleus accumbens (NAc), and dorsal striatum (dStr) using microarray analysis. We first tested for differences in expression of genes encoding transcripts for common neurotransmitter systems as well as calcium binding proteins routinely used in neuroanatomical delineation of brain regions. This a priori method revealed differential expression of corticotropin releasing hormone ( Crh), the GABA transporter ( Slc6a1), and prodynorphin ( Pdyn) mRNAs as well as several others. Using a gene ontology tool, functional scoring analysis, and Ingenuity Pathway Analysis, we further identified several physiological pathways that were distinct among these brain regions. These two different analyses both identified calcium signaling, G-coupled protein receptor signaling, and adenylate cyclase-related signaling as significantly different among the BNST, NAc, and dStr. These types of signaling pathways play important roles in, amongst other things, synaptic plasticity. Investigation of differential gene expression revealed several instances that may provide insight into reported differences in synaptic plasticity between these brain regions. The results support other studies suggesting that crucial pathways involved in neurotransmission are distinct among the BNST, NAc, and dStr and provide insight into the potential use of pharmacological agents that may target region-specific signaling pathways. Furthermore, these studies provide a framework for future mouse-mouse comparisons of transcriptional profiles after behavioral/pharmacological manipulation.
Collapse
|
|
17 |
19 |
13
|
Wang X, Agarwala R, Capra JA, Chen Z, Church DM, Ciobanu DC, Li Z, Lu L, Mozhui K, Mulligan MK, Nelson SF, Pollard KS, Taylor WL, Thomason DB, Williams RW. High-throughput sequencing of the DBA/2J mouse genome. BMC Bioinformatics 2010. [PMCID: PMC3290061 DOI: 10.1186/1471-2105-11-s4-o7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
|
15 |
17 |
14
|
Walker LR, Engle TB, Vu H, Tosky ER, Nonneman DJ, Smith TPL, Borza T, Burkey TE, Plastow GS, Kachman SD, Ciobanu DC. Synaptogyrin-2 influences replication of Porcine circovirus 2. PLoS Genet 2018; 14:e1007750. [PMID: 30379811 PMCID: PMC6245838 DOI: 10.1371/journal.pgen.1007750] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 11/20/2018] [Accepted: 10/09/2018] [Indexed: 11/19/2022] Open
Abstract
Porcine circovirus 2 (PCV2) is a circular single-stranded DNA virus responsible for a group of diseases collectively known as PCV2 Associated Diseases (PCVAD). Variation in the incidence and severity of PCVAD exists between pigs suggesting a host genetic component involved in pathogenesis. A large-scale genome-wide association study of experimentally infected pigs (n = 974), provided evidence of a host genetic role in PCV2 viremia, immune response and growth during challenge. Host genotype explained 64% of the phenotypic variation for overall viral load, with two major Quantitative Trait Loci (QTL) identified on chromosome 7 (SSC7) near the swine leukocyte antigen complex class II locus and on the proximal end of chromosome 12 (SSC12). The SNP having the strongest association, ALGA0110477 (SSC12), explained 9.3% of the genetic and 6.2% of the phenotypic variance for viral load. Dissection of the SSC12 QTL based on gene annotation, genomic and RNA-sequencing, suggested that a missense mutation in the SYNGR2 (SYNGR2 p.Arg63Cys) gene is potentially responsible for the variation in viremia. This polymorphism, located within a protein domain conserved across mammals, results in an amino acid variant SYNGR2 p.63Cys only observed in swine. PCV2 titer in PK15 cells decreased when the expression of SYNGR2 was silenced by specific-siRNA, indicating a role of SYNGR2 in viral replication. Additionally, a PK15 edited clone generated by CRISPR-Cas9, carrying a partial deletion of the second exon that harbors a key domain and the SYNGR2 p.Arg63Cys, was associated with a lower viral titer compared to wildtype PK15 cells (>24 hpi) and supernatant (>48hpi)(P < 0.05). Identification of a non-conservative substitution in this key domain of SYNGR2 suggests that the SYNGR2 p.Arg63Cys variant may underlie the observed genetic effect on viral load.
Collapse
|
research-article |
7 |
16 |
15
|
Engle TB, Jobman EE, Moural TW, McKnite AM, Bundy JW, Barnes SY, Davis EH, Galeota JA, Burkey TE, Plastow GS, Kachman SD, Ciobanu DC. Variation in time and magnitude of immune response and viremia in experimental challenges with Porcine circovirus 2b. BMC Vet Res 2014; 10:286. [PMID: 25472653 PMCID: PMC4264338 DOI: 10.1186/s12917-014-0286-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 11/19/2014] [Indexed: 12/01/2022] Open
Abstract
Background Porcine circovirus 2 is the primary agent responsible for inducing a group of associated diseases known as Porcine Circovirus Associated Diseases (PCVAD), which can have detrimental effects on production efficiency as well as causing significant mortality. The objective of this study was to evaluate variation in viral replication, immune response and growth across pigs (n = 974) from different crossbred lines. The approach used in this study was experimental infection with a PCV2b strain of pigs at an average of 43 days of age. Results The sequence of the PCV2b isolate used in the challenge was similar with a cluster of PCV2b isolates known to induce PCVAD and increased mortality rates. The swine leukocyte antigen class II (SLAII) profile of the population was diverse, with nine DQB1 haplotypes being present. Individual viremia and antibody profiles during challenge demonstrate variation in magnitude and time of viral surge and immune response. The correlations between PCV2 specific antibodies and average daily gain (ADG) were relatively low and varied between - 0.14 to 0.08 for IgM and −0.02 and 0.11 for IgG. In contrast, PCV2 viremia was an important driver of ADG decline following infection; a moderate negative correlation was observed between viral load and overall ADG (r = − 0.35, P < 0.001). The pigs with the lowest 10% level of viral load maintained a steady increase in weekly ADG (P < 0.0001) compared to the pigs that had the 10% greatest viral load (P < 0.55). In addition, the highly viremic group expressed higher IgM and IgG starting with d 14 and d 21 respectively, and higher tumor necrosis factor – alpha (TNF-α) at d 21 (P < 0.005), compared to low viremic group. Conclusions Molecular sources of the observed differences in viremia and immune response could provide a better understanding of the host factors that influence the development of PCVAD and lead to improved knowledge of swine immunity. Electronic supplementary material The online version of this article (doi:10.1186/s12917-014-0286-4) contains supplementary material, which is available to authorized users.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
11 |
16
|
Kreikemeier CA, Engle TB, Lucot KL, Kachman SD, Burkey TE, Ciobanu DC. Genome-wide analysis of TNF-alpha response in pigs challenged with porcine circovirus 2b. Anim Genet 2015; 46:205-8. [PMID: 25643812 DOI: 10.1111/age.12262] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2014] [Indexed: 11/30/2022]
Abstract
Tumor necrosis factor alpha (TNF-α) is a pro-inflammatory cytokine with a role in activating adaptive immunity to viral infections. By inhibiting the capacity of plasmacytoid dendritic cells to produce interferon-α and TNF-α, porcine circovirus 2 (PCV2) limits the maturation of myeloid dendritic cells and impairs their ability to recognize viral and bacterial antigens. Previously, we reported QTL for viremia and immune response in PCV2-infected pigs. In this study, we analyzed phenotypic and genetic relationships between TNF-α protein levels, a potential indicator of predisposition to PCV2 co-infection, and PCV2 susceptibility. Following experimental challenge with PCV2b, TNF-α reached the peak at 21 days post-infection (dpi), at which time a difference was observed between pigs that expressed extreme variation in viremia and growth (P < 0.10). A genome-wide association study (n = 297) revealed that genotypes of 56,433 SNPs explained 73.9% of the variation in TNF-α at 21 dpi. Major SNPs were identified on SSC8, SSC10 and SSC14. Haplotypes based on SNPs from a SSC8 (9 Mb) 1-Mb window were associated with variation in TNF-α (P < 0.02), IgG (P = 0.05) and IgM (P < 0.13) levels at 21 dpi. Potential overlap of regulatory mechanisms was supported by the correlations between genomic prediction values of TNF-α and PCV2 antibodies (21 dpi, r > 0.22), viremia (14-21 dpi, P > 0.29) and viral load (r = 0.31, P < 0.0001). Characterization of the QTL regions uncovered genes that could influence variation in TNF-α levels as well as T- and B-cell development, which can affect disease susceptibility.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
11 |
17
|
Sutton KM, Lahmers KK, Harris SP, Wijesena HR, Mote BE, Kachman SD, Borza T, Ciobanu DC. Detection of atypical porcine pestivirus genome in newborn piglets affected by congenital tremor and high preweaning mortality1. J Anim Sci 2019; 97:4093-4100. [PMID: 31396615 DOI: 10.1093/jas/skz267] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/06/2019] [Indexed: 01/23/2023] Open
Abstract
Recently, piglets from a high-health status farm began exhibiting congenital tremors, high preweaning mortality and incidence of splayed legs. Postmortem histological examination identified a small number of scattered white matter vacuoles in the cerebellum and underlying brainstem of affected piglets. Presence of potential viral sources associated with this neurologic condition was initially infirmed using quantitative PCR for atypical porcine pestivirus (APPV), porcine teschovirus, and porcine sapelovirus. Using metagenomic analysis, APPV was identified as the main microbial species in serum obtained from piglets affected by congenital tremor. These piglets had higher preweaning mortality rates (46.4% vs. 15.3%) and incidence of splayed legs (33.0% vs. 0.8 %) compared to unaffected piglets. Piglets affected by congenital tremor had higher viral titer (P < 0.15) and larger birth weights (P < 0.05) compared to normal litter mates. Whole-genome sequencing and genome assembly of the novel APPV strain (MK728876) was carried out using Oxford Nanopore and related bioinformatics pipelines. Phylogenic analysis demonstrated that this strain along with other completely sequenced APPV strains were grouped into 2 clades, both including strains-inducing congenital tremor. Strains appear to cluster based on region but there were still significant differences within regions. Future research needs to address potential underdiagnosis due to genetic diversity but also to understand mode of transmission, variation in virulence, and the role of host genetics in APPV susceptibility.
Collapse
|
Journal Article |
6 |
8 |
18
|
Walker LR, Jobman EE, Sutton KM, Wittler J, Johnson RK, Ciobanu DC. Genome-wide association analysis for porcine reproductive and respiratory syndrome virus susceptibility traits in two genetic populations of pigs1. J Anim Sci 2019; 97:3253-3261. [PMID: 31150538 DOI: 10.1093/jas/skz184] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 05/30/2019] [Indexed: 11/14/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is an economically important pathogen that continues to threaten swine industry sustainability. The complexity and high genetic diversity of PRRSV has prevented vaccines from conferring adequate protection against disease outbreaks. Genome-wide association analyses of PRRSV experimentally infected pigs representing two genetic lines (n = 174 to 176) revealed two major genomic regions accounting for ~1.2% of the genetic variation in PRRSV-specific antibody level in serum or lung. The major region for serum antibody was mapped to SSC7 near the SLAII complex, which has also been implicated in susceptibility to other swine viral pathogens. Haplotype substitution analysis uncovered potential DQB1 haplotypes associated with divergent effects. A novel major region for lung antibody was mapped to the proximal end of SSC17 with the top SNP overlapping two genes, PRAG1 and LONRF1. Sequencing LONRF1 uncovered polymorphisms within the coding region that may play a role in regulating PRRSV-specific antibody production in lung tissue following PRRSV infection. These data implicate novel host genomic regions (SSC17) that influence PRRSV-specific immune response as well as a common region (SSC7) potentially involved in susceptibility to multiple viral pathogens.
Collapse
|
Journal Article |
6 |
5 |
19
|
Wijesena HR, Lents CA, Riethoven JJ, Trenhaile-Grannemann MD, Thorson JF, Keel BN, Miller PS, Spangler ML, Kachman SD, Ciobanu DC. GENOMICS SYMPOSIUM: Using genomic approaches to uncover sources of variation in age at puberty and reproductive longevity in sows. J Anim Sci 2018; 95:4196-4205. [PMID: 28992028 DOI: 10.2527/jas2016.1334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Genetic variants associated with traits such as age at puberty and litter size could provide insight into the underlying genetic sources of variation impacting sow reproductive longevity and productivity. Genomewide characterization and gene expression profiling were used using gilts from the University of Nebraska-Lincoln swine resource population ( = 1,644) to identify genetic variants associated with age at puberty and litter size traits. From all reproductive traits studied, the largest fraction of phenotypic variation explained by the Porcine SNP60 BeadArray was for age at puberty (27.3%). In an evaluation data set, the predictive ability of all SNP from high-ranked 1-Mb windows (1 to 50%), based on genetic variance explained in training, was greater (12.3 to 36.8%) compared with the most informative SNP from these windows (6.5 to 23.7%). In the integrated data set ( = 1,644), the top 1% of the 1-Mb windows explained 6.7% of the genetic variation of age at puberty. One of the high-ranked windows detected (SSC2, 12-12.9 Mb) showed pleiotropic features, affecting both age at puberty and litter size traits. The RNA sequencing of the hypothalami arcuate nucleus uncovered 17 differentially expressed genes (adjusted < 0.05) between gilts that became pubertal early (<155 d of age) and late (>180 d of age). Twelve of the differentially expressed genes are upregulated in the late pubertal gilts. One of these genes is involved in energy homeostasis (), a function in which the arcuate nucleus plays an important contribution, linking nutrition with reproductive development. Energy restriction during the gilt development period delayed age at puberty by 7 d but increased the probability of a sow to produce up to 3 parities ( < 0.05). Identification of pleotropic functional polymorphisms may improve accuracy of genomic prediction while facilitating a reduction in sow replacement rates and addressing welfare concerns.
Collapse
|
Journal Article |
7 |
4 |
20
|
Ribeiro AMF, Sanglard LP, Wijesena HR, Ciobanu DC, Horvath S, Spangler ML. DNA methylation profile in beef cattle is influenced by additive genetics and age. Sci Rep 2022; 12:12016. [PMID: 35835812 PMCID: PMC9283455 DOI: 10.1038/s41598-022-16350-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/08/2022] [Indexed: 11/15/2022] Open
Abstract
DNA methylation (DNAm) has been considered a promising indicator of biological age in mammals and could be useful to increase the accuracy of phenotypic prediction in livestock. The objectives of this study were to estimate the heritability and age effects of site-specific DNAm (DNAm level) and cumulative DNAm across all sites (DNAm load) in beef cattle. Blood samples were collected from cows ranging from 217 to 3,192 days (0.6 to 8.7 years) of age (n = 136). All animals were genotyped, and DNAm was obtained using the Infinium array HorvathMammalMethylChip40. Genetic parameters for DNAm were obtained from an animal model based on the genomic relationship matrix, including the fixed effects of age and breed composition. Heritability estimates of DNAm levels ranged from 0.18 to 0.72, with a similar average across all regions and chromosomes. Heritability estimate of DNAm load was 0.45. The average age effect on DNAm level varied among genomic regions. The DNAm level across the genome increased with age in the promoter and 5′ UTR and decreased in the exonic, intronic, 3′ UTR, and intergenic regions. In addition, DNAm level increased with age in regions enriched in CpG and decreased in regions deficient in CpG. Results suggest DNAm profiles are influenced by both genetics and the environmental effect of age in beef cattle.
Collapse
|
|
3 |
4 |
21
|
Ciobanu DC, Zhang Y, Rothschild MF. Rapid communication: mapping of the Ca2+ ATPase of fast twitch 1 skeletal muscle sarcoplasmic reticulum (ATP2A1) gene to porcine chromosome 3. J Anim Sci 2002; 80:1386-7. [PMID: 12019633 DOI: 10.2527/2002.8051386x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
|
23 |
4 |
22
|
See GM, Trenhaile-Grannemann MD, Spangler ML, Ciobanu DC, Mote BE. A genome-wide association study for gestation length in swine. Anim Genet 2019; 50:539-542. [PMID: 31297858 DOI: 10.1111/age.12822] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2019] [Indexed: 11/26/2022]
Abstract
Selection for increased litter size in swine has potentially resulted in a correlated increase in preweaning mortality. Additional selection criteria should be considered when selecting for increased litter size to account for associated decreases in piglet quality, specifically piglet survival, initial weight and growth. Traits such as gestation length (GL), which have been associated with piglet performance, could be utilized to improve piglet development and survivability. The objective of this study was to conduct a genome-wide association study to identify genomic regions associated with GL in differing parities in swine (n = 831) from the University of Nebraska-Lincoln reproductive longevity project. Gestation length was calculated as the number of days between last insemination administered and farrowing. Sows were genotyped with the Illumina SNP60 BeadArray, and the data were analyzed using Bayesian mixture models for GL at parity 1, 2, 3 and 4 (GL1, GL2, GL3 and GL4 respectively). Means (SD) for GL1-GL4 were 113 (1.4), 114 (1.2), 114 (1.3) and 115 (1.2) respectively. Posterior mean heritability estimates (PSD) for GL1, GL2, GL3 and GL4 were 0.33 (0.06), 0.34 (0.07), 0.32 (0.08) and 0.20 (0.08) respectively. Rank correlations between genomic estimated breeding values between GL1 and GL2, GL3 and GL4 respectively were moderate: 0.67, 0.65 and 0.60. The top SNP (ASGA0017859, SSC4, 7.8 Mb), located in the top common genomic region associated with GL1, GL2 and GL3, was associated with a difference of 1.1 days in GL1 between homozygote genotypes (P < 0.0001). The results of this study suggest that GL is a largely polygenic trait with relatively minor contributions from multiple genomic regions.
Collapse
|
|
6 |
4 |
23
|
Wijesena HR, Rohrer GA, Nonneman DJ, Keel BN, Petersen JL, Kachman SD, Ciobanu DC. Evaluation of genotype quality parameters for SowPro90, a new genotyping array for swine1. J Anim Sci 2019; 97:3262-3273. [PMID: 31150541 DOI: 10.1093/jas/skz185] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/30/2019] [Indexed: 12/30/2022] Open
Abstract
Understanding early predictors of sow fertility has the potential to improve genomic predictions. A custom SNP array (SowPro90 produced by Affymetrix) was developed to include genetic variants overlapping quantitative trait loci for age at puberty, one of the earliest indicators of sow fertility, as well as variants related to innate and adaptive immunity. The polymorphisms included in the custom genotyping array were identified using multiple genomic approaches including deep genomic and transcriptomic sequencing and genome-wide associations. Animals from research and commercial populations (n = 2,586) were genotyped for 103,476 SNPs included in SowPro90. To assess the quality of data generated, genotype concordance was evaluated between the SowPro90 and Porcine SNP60 BeadArray using a subset of common SNP (n = 44,708) and animals (n = 277). The mean genotype concordance rate per SNP was 98.4%. Differences in distribution of data quality were observed between the platforms indicating the need for platform specific thresholds for quality parameters. The optimal thresholds for SowPro90 (≥97% SNP and ≥93% sample call rate) were obtained by analyzing the data quality distribution and genotype concordance per SNP across platforms. At ≥97% SNP call rate, there were 42,151 SNPs (94.3%) retained with a mean genotype concordance of 98.6% across platforms. Similarly, ≥94% SNPs and ≥85% sample call rates were established as thresholds for Porcine SNP60 BeadArray. At ≥94% SNPs call rate, there were 41,043 SNPs (91.8%) retained with a mean genotype concordance of 98.6% across platforms. Final evaluation of SowPro90 array content (n = 103,476) at ≥97% SNPs and ≥93% sample call rates allowed retention of 89,040 SNPs (86%) for downstream analysis. The findings and strategy for quality control could be helpful in identifying consistent, high-quality genotypes for genomic evaluations, especially when integrating genotype data from different platforms.
Collapse
|
Journal Article |
6 |
4 |
24
|
Wijesena HR, Kachman SD, Lents CA, Riethoven JJ, Trenhaile-Grannemann MD, Safranski TJ, Spangler ML, Ciobanu DC. Fine mapping genetic variants associated with age at puberty and sow fertility using SowPro90 genotyping array. J Anim Sci 2021; 98:5901653. [PMID: 32888012 DOI: 10.1093/jas/skaa293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/01/2020] [Indexed: 12/30/2022] Open
Abstract
Sow fertility traits, such as litter size and the number of lifetime parities produced (reproductive longevity), are economically important. Selection for these traits is difficult because they are lowly heritable and expressed late in life. Age at puberty (AP) is an early indicator of reproductive longevity. Here, we utilized a custom Affymetrix single-nucleotide polymorphisms (SNPs) array (SowPro90) enriched with positional candidate genetic variants for AP and a haplotype-based genome-wide association study to fine map the genetic sources associated with AP and other fertility traits in research (University of Nebraska-Lincoln [UNL]) and commercial sow populations. Five major quantitative trait loci (QTL) located on four Sus scrofa chromosomes (SSC2, SSC7, SSC14, and SSC18) were discovered for AP in the UNL population. Negative correlations (r = -0.96 to -0.10; P < 0.0001) were observed at each QTL between genomic estimated breeding values for AP and reproductive longevity measured as lifetime number of parities (LTNP). Some of the SNPs discovered in the major QTL regions for AP were located in candidate genes with fertility-associated gene ontologies (e.g., P2RX3, NR2F2, OAS1, and PTPN11). These SNPs showed significant (P < 0.05) or suggestive (P < 0.15) associations with AP, reproductive longevity, and litter size traits in the UNL population and litter size traits in the commercial sows. For example, in the UNL population, when the number of favorable alleles of an SNP located in the 3' untranslated region of PTPN11 (SSC14) increased, AP decreased (P < 0.0001), while LTNP increased (P < 0.10). Additionally, a suggestive difference in the observed NR2F2 isoforms usage was hypothesized to be the source of the QTL for puberty onset mapped on SSC7. It will be beneficial to further characterize these candidate SNPs and genes to understand their impact on protein sequence and function, gene expression, splicing process, and how these changes affect the phenotypic variation of fertility traits.
Collapse
|
Journal Article |
4 |
2 |
25
|
Ciobanu DC, Gill RK, Rothschild MF, Bell NH. Rapid communication: Porcine vitamin D-25-hydroxylase maps to chromosome 5. J Anim Sci 2000; 78:3193-4. [PMID: 11132836 DOI: 10.2527/2000.78123193x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
|
25 |
2 |