1
|
el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B. WAF1, a potential mediator of p53 tumor suppression. Cell 1993; 75:817-25. [PMID: 8242752 DOI: 10.1016/0092-8674(93)90500-p] [Citation(s) in RCA: 6294] [Impact Index Per Article: 196.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The ability of p53 to activate transcription from specific sequences suggests that genes induced by p53 may mediate its biological role as a tumor suppressor. Using a subtractive hybridization approach, we identified a gene, named WAF1, whose induction was associated with wild-type but not mutant p53 gene expression in a human brain tumor cell line. The WAF1 gene was localized to chromosome 6p21.2, and its sequence, structure, and activation by p53 was conserved in rodents. Introduction of WAF1 cDNA suppressed the growth of human brain, lung, and colon tumor cells in culture. Using a yeast enhancer trap, a p53-binding site was identified 2.4 kb upstream of WAF1 coding sequences. The WAF1 promoter, including this p53-binding site, conferred p53-dependent inducibility upon a heterologous reporter gene. These studies define a gene whose expression is directly induced by p53 and that could be an important mediator of p53-dependent tumor growth suppression.
Collapse
|
|
32 |
6294 |
2
|
Brown MP, Grundy WN, Lin D, Cristianini N, Sugnet CW, Furey TS, Ares M, Haussler D. Knowledge-based analysis of microarray gene expression data by using support vector machines. Proc Natl Acad Sci U S A 2000; 97:262-7. [PMID: 10618406 PMCID: PMC26651 DOI: 10.1073/pnas.97.1.262] [Citation(s) in RCA: 1011] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/1999] [Indexed: 02/01/2023] Open
Abstract
We introduce a method of functionally classifying genes by using gene expression data from DNA microarray hybridization experiments. The method is based on the theory of support vector machines (SVMs). SVMs are considered a supervised computer learning method because they exploit prior knowledge of gene function to identify unknown genes of similar function from expression data. SVMs avoid several problems associated with unsupervised clustering methods, such as hierarchical clustering and self-organizing maps. SVMs have many mathematical features that make them attractive for gene expression analysis, including their flexibility in choosing a similarity function, sparseness of solution when dealing with large data sets, the ability to handle large feature spaces, and the ability to identify outliers. We test several SVMs that use different similarity metrics, as well as some other supervised learning methods, and find that the SVMs best identify sets of genes with a common function using expression data. Finally, we use SVMs to predict functional roles for uncharacterized yeast ORFs based on their expression data.
Collapse
|
research-article |
25 |
1011 |
3
|
Lin D, Sugawara T, Strauss JF, Clark BJ, Stocco DM, Saenger P, Rogol A, Miller WL. Role of steroidogenic acute regulatory protein in adrenal and gonadal steroidogenesis. Science 1995; 267:1828-31. [PMID: 7892608 DOI: 10.1126/science.7892608] [Citation(s) in RCA: 645] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Congenital lipoid adrenal hyperplasia is an autosomal recessive disorder that is characterized by impaired synthesis of all adrenal and gonadal steroid hormones. In three unrelated individuals with this disorder, steroidogenic acute regulatory protein, which enhances the mitochondrial conversion of cholesterol into pregnenolone, was mutated and nonfunctional, providing genetic evidence that this protein is indispensable normal adrenal and gonadal steroidogenesis.
Collapse
|
|
30 |
645 |
4
|
Bell GI, Kayano T, Buse JB, Burant CF, Takeda J, Lin D, Fukumoto H, Seino S. Molecular biology of mammalian glucose transporters. Diabetes Care 1990; 13:198-208. [PMID: 2407475 DOI: 10.2337/diacare.13.3.198] [Citation(s) in RCA: 585] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The oxidation of glucose represents a major source of metabolic energy for mammalian cells. However, because the plasma membrane is impermeable to polar molecules such as glucose, the cellular uptake of this important nutrient is accomplished by membrane-associated carrier proteins that bind and transfer it across the lipid bilayer. Two classes of glucose carriers have been described in mammalian cells: the Na(+)-glucose cotransporter and the facilitative glucose transporter. The Na(+)-glucose cotransporter transports glucose against its concentration gradient by coupling its uptake with the uptake of Na+ that is being transported down its concentration gradient. Facilitative glucose carriers accelerate the transport of glucose down its concentration gradient by facilitative diffusion, a form of passive transport. cDNAs have been isolated from human tissues encoding a Na(+)-glucose-cotransporter protein and five functional facilitative glucose-transporter isoforms. The Na(+)-glucose cotransporter is expressed by absorptive epithelial cells of the small intestine and is involved in the dietary uptake of glucose. The same or a related protein may be responsible for the reabsorption of glucose by the kidney. Facilitative glucose carriers are expressed by most if not all cells. The facilitative glucose-transporter isoforms have distinct tissue distributions and biochemical properties and contribute to the precise disposal of glucose under varying physiological conditions. The GLUT1 (erythrocyte) and GLUT3 (brain) facilitative glucose-transporter isoforms may be responsible for basal or constitutive glucose uptake. The GLUT2 (liver) isoform mediates the bidirectional transport of glucose by the hepatocyte and is responsible, at least in part, for the movement of glucose out of absorptive epithelial cells into the circulation in the small intestine and kidney. This isoform may also comprise part of the glucose-sensing mechanism of the insulin-producing beta-cell. The subcellular localization of the GLUT4 (muscle/fat) isoform changes in response to insulin, and this isoform is responsible for most of the insulin-stimulated uptake of glucose that occurs in muscle and adipose tissue. The GLUT5 (small intestine) facilitative glucose-transporter isoform is expressed at highest levels in the small intestine and may be involved in the transcellular transport of glucose by absorptive epithelial cells. The exon-intron organizations of the human GLUT1, GLUT2, and GLUT4 genes have been determined. In addition, the chromosomal locations of the genes encoding the Na(+)-dependent and facilitative glucose carriers have been determined. Restriction-fragment-length polymorphisms have also been identified at several of these loci.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
Comparative Study |
35 |
585 |
5
|
Lin D, Edwards AS, Fawcett JP, Mbamalu G, Scott JD, Pawson T. A mammalian PAR-3-PAR-6 complex implicated in Cdc42/Rac1 and aPKC signalling and cell polarity. Nat Cell Biol 2000; 2:540-7. [PMID: 10934475 DOI: 10.1038/35019582] [Citation(s) in RCA: 497] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cellular asymmetry is critical for the development of multicellular organisms. Here we show that homologues of proteins necessary for asymmetric cell division in Caenorhabditis elegans associate with each other in mammalian cells and tissues. mPAR-3 and mPAR-6 exhibit similar expression patterns and subcellular distributions in the CNS and associate through their PDZ (PSD-95/Dlg/ZO-1) domains. mPAR-6 binds to Cdc42/Rac1 GTPases, and mPAR-3 and mPAR-6 bind independently to atypical protein kinase C (aPKC) isoforms. In vitro, mPAR-3 acts as a substrate and an inhibitor of aPKC. We conclude that mPAR-3 and mPAR-6 have a scaffolding function, coordinating the activities of several signalling proteins that are implicated in mammalian cell polarity.
Collapse
|
|
25 |
497 |
6
|
Sussman JL, Lin D, Jiang J, Manning NO, Prilusky J, Ritter O, Abola EE. Protein Data Bank (PDB): database of three-dimensional structural information of biological macromolecules. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 1998; 54:1078-84. [PMID: 10089483 DOI: 10.1107/s0907444998009378] [Citation(s) in RCA: 479] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The Protein Data Bank (PDB) at Brookhaven National Laboratory, is a database containing experimentally determined three-dimensional structures of proteins, nucleic acids and other biological macromolecules, with approximately 8000 entries. Data are easily submitted via PDB's WWW-based tool AutoDep, in either mmCIF or PDB format, and are most conveniently examined via PDB's WWW-based tool 3DB Browser.
Collapse
|
|
27 |
479 |
7
|
Zamir E, Katz M, Posen Y, Erez N, Yamada KM, Katz BZ, Lin S, Lin DC, Bershadsky A, Kam Z, Geiger B. Dynamics and segregation of cell-matrix adhesions in cultured fibroblasts. Nat Cell Biol 2000; 2:191-6. [PMID: 10783236 DOI: 10.1038/35008607] [Citation(s) in RCA: 453] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Here we use time-lapse microscopy to analyse cell-matrix adhesions in cells expressing one of two different cytoskeletal proteins, paxillin or tensin, tagged with green fluorescent protein (GFP). Use of GFP-paxillin to analyse focal contacts and GFP-tensin to study fibrillar adhesions reveals that both types of major adhesion are highly dynamic. Small focal contacts often translocate, by extending centripetally and contracting peripherally, at a mean rate of 19 micrometers per hour. Fibrillar adhesions arise from the medial ends of stationary focal contacts, contain alpha5beta1 integrin and tensin but not other focal-contact components, and associate with fibronectin fibrils. Fibrillar adhesions translocate centripetally at a mean rate of 18 micrometers per hour in an actomyosin-dependent manner. We propose a dynamic model for the regulation of cell-matrix adhesions and for transitions between focal contacts and fibrillar adhesions, with the ability of the matrix to deform functioning as a mechanical switch.
Collapse
|
|
25 |
453 |
8
|
Elder ME, Lin D, Clever J, Chan AC, Hope TJ, Weiss A, Parslow TG. Human severe combined immunodeficiency due to a defect in ZAP-70, a T cell tyrosine kinase. Science 1994; 264:1596-9. [PMID: 8202712 DOI: 10.1126/science.8202712] [Citation(s) in RCA: 431] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A homozygous mutation in the kinase domain of ZAP-70, a T cell receptor-associated protein tyrosine kinase, produced a distinctive form of human severe combined immunodeficiency. Manifestations of this disorder included profound immunodeficiency, absence of peripheral CD8+ T cells, and abundant peripheral CD4+ T cells that were refractory to T cell receptor-mediated activation. These findings demonstrate that ZAP-70 is essential for human T cell function and suggest that CD4+ and CD8+ T cells depend on different intracellular signaling pathways to support their development or survival.
Collapse
|
|
31 |
431 |
9
|
Signoretti S, Waltregny D, Dilks J, Isaac B, Lin D, Garraway L, Yang A, Montironi R, McKeon F, Loda M. p63 is a prostate basal cell marker and is required for prostate development. THE AMERICAN JOURNAL OF PATHOLOGY 2000; 157:1769-75. [PMID: 11106548 PMCID: PMC1885786 DOI: 10.1016/s0002-9440(10)64814-6] [Citation(s) in RCA: 412] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The p53 homologue p63 encodes for different isotypes able to either transactivate p53 reporter genes (TAp63) or act as p53-dominant-negatives (DeltaNp63). p63 is expressed in the basal cells of many epithelial organs and its germline inactivation in the mouse results in agenesis of organs such as skin appendages and the breast. Here, we show that prostate basal cells, but not secretory or neuroendocrine cells, express p63. In addition, prostate basal cells in culture predominantly express the DeltaNp63alpha isotype. In contrast, p63 protein is not detected in human prostate adenocarcinomas. Finally, and most importantly, p63(-/-) mice do not develop the prostate. These results indicate that p63 is required for prostate development and support the hypothesis that basal cells represent and/or include prostate stem cells. Furthermore, our results show that p63 immunohistochemistry may be a valuable tool in the differential diagnosis of benign versus malignant prostatic lesions.
Collapse
|
research-article |
25 |
412 |
10
|
Lin D, Zhao Y. Innovations in the Development and Application of Edible Coatings for Fresh and Minimally Processed Fruits and Vegetables. Compr Rev Food Sci Food Saf 2007. [DOI: 10.1111/j.1541-4337.2007.00018.x] [Citation(s) in RCA: 366] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
|
18 |
366 |
11
|
Abstract
We have identified a DNA site involved in chromosome partitioning in B. subtilis. This site was identified in vivo as the binding site for the chromosome partitioning protein Spo0J, a member of the ParB family of partitioning proteins. Spo0J is a site-specific DNA-binding protein that recognizes a 16 bp sequence found in spo0J. Allowing two mismatches, this sequence occurs ten times in the entire B. subtilis chromosome, all in the origin-proximal approximately 20%. Eight of the ten sequences are bound to Spo0J in vivo. The presence of a site on an otherwise unstable plasmid stabilized the plasmid in a Spo0J-dependent manner, demonstrating that this site, called parS, can function as a partitioning site. This site and Spo0J are conserved in a wide range of bacterial species.
Collapse
|
|
27 |
316 |
12
|
Webb CD, Teleman A, Gordon S, Straight A, Belmont A, Lin DC, Grossman AD, Wright A, Losick R. Bipolar localization of the replication origin regions of chromosomes in vegetative and sporulating cells of B. subtilis. Cell 1997; 88:667-74. [PMID: 9054506 DOI: 10.1016/s0092-8674(00)81909-1] [Citation(s) in RCA: 299] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
To investigate chromosome segregation in B. subtilis, we introduced tandem copies of the lactose operon operator into the chromosome near the replication origin or terminus. We then visualized the position of the operator cassettes with green fluorescent protein fused to the Lac1 repressor. In sporulating bacteria, which undergo asymmetric cell division, origins localized near each pole of the cell whereas termini were restricted to the middle. In growing cells, which undergo binary fission, origins were observed at various positions but preferentially toward the poles early in the cell cycle. In contrast, termini showed little preference for the poles. These results indicate the existence of a mitotic-like apparatus that is responsible for moving the origin regions of newly formed chromosomes toward opposite ends of the cell.
Collapse
|
|
28 |
299 |
13
|
Wassif CA, Maslen C, Kachilele-Linjewile S, Lin D, Linck LM, Connor WE, Steiner RD, Porter FD. Mutations in the human sterol delta7-reductase gene at 11q12-13 cause Smith-Lemli-Opitz syndrome. Am J Hum Genet 1998; 63:55-62. [PMID: 9634533 PMCID: PMC1377256 DOI: 10.1086/301936] [Citation(s) in RCA: 286] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The Smith-Lemli-Opitz syndrome (SLOS; also known as "RSH syndrome" [MIM 270400]) is an autosomal recessive multiple malformation syndrome due to a defect in cholesterol biosynthesis. Children with SLOS have elevated serum 7-dehydrocholesterol (7-DHC) levels and typically have low serum cholesterol levels. On the basis of this biochemical abnormality, it has been proposed that mutations in the human sterol Delta7-reductase (7-DHC reductase; E.C.1.3.1.21) gene cause SLOS. However, one could also propose a defect in a gene that encodes a protein necessary for either the expression or normal function of sterol Delta7-reductase. We cloned cDNA encoding a human sterol Delta7-reductase (DHCR7) on the basis of its homology with the sterol Delta7-reductase from Arabidopsis thaliana, and we confirmed the enzymatic function of the human gene product by expression in SLOS fibroblasts. SLOS fibroblasts transfected with human sterol Delta7-reductase cDNA showed a significant reduction in 7-DHC levels, compared with those in SLOS fibroblasts transfected with the vector alone. Using radiation-hybrid mapping, we show that the DHCR7 gene is encoded at chromosome 11q12-13. To establish that defects in this gene cause SLOS, we sequenced cDNA clones from SLOS patients. In three unrelated patients we have identified four different mutant alleles. Our results demonstrate both that the cDNA that we have identified encodes the human sterol Delta7-reductase and that mutations in DHCR7 are responsible for at least some cases of SLOS.
Collapse
|
research-article |
27 |
286 |
14
|
Sullivan PF, Lin D, Tzeng JY, van den Oord E, Perkins D, Stroup TS, Wagner M, Lee S, Wright FA, Zou F, Liu W, Downing AM, Lieberman J, Close SL. Genomewide association for schizophrenia in the CATIE study: results of stage 1. Mol Psychiatry 2008; 13:570-84. [PMID: 18347602 PMCID: PMC3910086 DOI: 10.1038/mp.2008.25] [Citation(s) in RCA: 282] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 01/07/2008] [Accepted: 01/11/2008] [Indexed: 02/07/2023]
Abstract
Little is known for certain about the genetics of schizophrenia. The advent of genomewide association has been widely anticipated as a promising means to identify reproducible DNA sequence variation associated with this important and debilitating disorder. A total of 738 cases with DSM-IV schizophrenia (all participants in the CATIE study) and 733 group-matched controls were genotyped for 492,900 single-nucleotide polymorphisms (SNPs) using the Affymetrix 500K two-chip genotyping platform plus a custom 164K fill-in chip. Following multiple quality control steps for both subjects and SNPs, logistic regression analyses were used to assess the evidence for association of all SNPs with schizophrenia. We identified a number of promising SNPs for follow-up studies, although no SNP or multimarker combination of SNPs achieved genomewide statistical significance. Although a few signals coincided with genomic regions previously implicated in schizophrenia, chance could not be excluded. These data do not provide evidence for the involvement of any genomic region with schizophrenia detectable with moderate sample size. However, a planned genomewide association study for response phenotypes and inclusion of individual phenotype and genotype data from this study in meta-analyses hold promise for eventual identification of susceptibility and protective variants.
Collapse
|
Randomized Controlled Trial |
17 |
282 |
15
|
Cihlar T, Lin DC, Pritchard JB, Fuller MD, Mendel DB, Sweet DH. The antiviral nucleotide analogs cidofovir and adefovir are novel substrates for human and rat renal organic anion transporter 1. Mol Pharmacol 1999; 56:570-80. [PMID: 10462545 DOI: 10.1124/mol.56.3.570] [Citation(s) in RCA: 278] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Nephrotoxicity is the dose-limiting clinical adverse effect of cidofovir and adefovir, two potent antiviral therapeutics. Because renal uptake likely plays a role in the etiology of cidofovir- and adefovir-associated nephrotoxicity, we attempted to identify a renal transporter capable of interacting with these therapeutics. A cDNA clone was isolated from a human renal library and designated human organic anion transporter 1 (hOAT1). Northern analysis detected a specific 2.5-kilobase pair hOAT1 transcript only in human kidney. However, reverse transcription-polymerase chain reaction revealed hOAT1 expression in human brain and skeletal muscle, as well. Immunoblot analysis of human kidney cortex demonstrated that hOAT1 is an 80- to 90-kilodalton heterogeneous protein modified by abundant N-glycosylation. Xenopus laevis oocytes expressing hOAT1 supported probenecid-sensitive uptake of [(3)H]p-aminohippurate (K(m) = 4 microM), which was trans-stimulated in oocytes preloaded with glutarate. Importantly, both hOAT1 and rat renal organic anion transporter 1 (rROAT1) mediated saturable, probenecid-sensitive uptake of cidofovir, adefovir, and other nucleoside phosphonate antivirals. The affinity of hOAT1 toward cidofovir and adefovir (K(m) = 46 and 30 microM, respectively) was 5- to 9-fold higher compared with rROAT1 (K(m) = 238 and 270 microM, respectively). These data indicate that hOAT1 may significantly contribute to the accumulation of cidofovir and adefovir in renal proximal tubules and, thus, play an active role in the mechanism of nephrotoxicity associated with these antiviral therapeutics.
Collapse
|
|
26 |
278 |
16
|
Burley SK, Almo SC, Bonanno JB, Capel M, Chance MR, Gaasterland T, Lin D, Sali A, Studier FW, Swaminathan S. Structural genomics: beyond the human genome project. Nat Genet 1999; 23:151-7. [PMID: 10508510 DOI: 10.1038/13783] [Citation(s) in RCA: 275] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
With access to whole genome sequences for various organisms and imminent completion of the Human Genome Project, the entire process of discovery in molecular and cellular biology is poised to change. Massively parallel measurement strategies promise to revolutionize how we study and ultimately understand the complex biochemical circuitry responsible for controlling normal development, physiologic homeostasis and disease processes. This information explosion is also providing the foundation for an important new initiative in structural biology. We are about to embark on a program of high-throughput X-ray crystallography aimed at developing a comprehensive mechanistic understanding of normal and abnormal human and microbial physiology at the molecular level. We present the rationale for creation of a structural genomics initiative, recount the efforts of ongoing structural genomics pilot studies, and detail the lofty goals, technical challenges and pitfalls facing structural biologists.
Collapse
|
Review |
26 |
275 |
17
|
Horne-Badovinac S, Lin D, Waldron S, Schwarz M, Mbamalu G, Pawson T, Jan Y, Stainier DY, Abdelilah-Seyfried S. Positional cloning of heart and soul reveals multiple roles for PKC lambda in zebrafish organogenesis. Curr Biol 2001; 11:1492-502. [PMID: 11591316 DOI: 10.1016/s0960-9822(01)00458-4] [Citation(s) in RCA: 244] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The Par-3/Par-6/aPKC complex is a key regulator of cell polarity in a number of systems. In Drosophila, this complex acts at the zonula adherens (adherens junctions) to establish epithelial polarity and helps to orient the mitotic spindle during asymmetric neuroblast divisions. In MDCKII cells, this complex localizes to the zonula occludens (tight junctions) and appears to regulate epithelial polarity. However, the in vivo role of this complex during vertebrate embryogenesis is not known, due to the lack of relevant mutations. RESULTS We have positionally cloned the zebrafish heart and soul (has) mutation, which affects the morphogenesis of several embryonic tissues, and show that it encodes atypical protein kinase C lambda (aPKC lambda). We find that loss of aPKC lambda affects the formation and maintenance of the zonula adherens in the polarized epithelia of the retina, neural tube, and digestive tract, leading to novel phenotypes, such as the formation of multiple lumens in the developing intestine. In addition, has mutants display defects in gut looping and endodermal organ morphogenesis that appear to be independent of the defects in epithelial polarity. Finally, we show that loss of aPKC lambda leads to defects in spindle orientation during progenitor cell divisions in the neural retina. CONCLUSIONS Our results show that aPKC lambda is required for the formation and maintenance of the zonula adherens during early epithelial development in vertebrates and demonstrate a previously undescribed yet critical role for this protein in organ morphogenesis. Furthermore, our studies identify the first genetic locus regulating the orientation of cell division in vertebrates.
Collapse
|
|
24 |
244 |
18
|
Psaty BM, Koepsell TD, Lin D, Weiss NS, Siscovick DS, Rosendaal FR, Pahor M, Furberg CD. Assessment and control for confounding by indication in observational studies. J Am Geriatr Soc 1999; 47:749-54. [PMID: 10366179 DOI: 10.1111/j.1532-5415.1999.tb01603.x] [Citation(s) in RCA: 238] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the evaluation of pharmacologic therapies, the controlled clinical trial is the preferred design. When clinical trial results are not available, the alternative designs are observational epidemiologic studies. A traditional concern about the validity of findings from epidemiologic studies is the possibility of bias from uncontrolled confounding. In studies of pharmacologic therapies, confounding by indication may arise when a drug treatment serves as a marker for a clinical characteristic or medical condition that triggers the use of the treatment and that, at the same time, increases the risk of the outcome under study. Confounding by indication is not conceptually different from confounding by other factors, and the approaches to detect and control for confounding--matching, stratification, restriction, and multivariate adjustment--are the same. Even after adjustment for known risk factors, residual confounding may occur because of measurement error or unmeasured or unknown risk factors. Although residual confounding is difficult to exclude in observational studies, there are limits to what this "unknown" confounding can explain. The degree of confounding depends on the prevalence of the putative confounding factor, the level of its association with the disease, and the level of its association with the exposure. For example, a confounding factor with a prevalence of 20% would have to increase the relative odds of both outcome and exposure by factors of 4 to 5 before the relative risk of 1.57 would be reduced to 1.00. Observational studies have provided important scientific evidence about the risks associated with several risk factors, including drug therapies, and they are often the only option for assessing safety. Understanding the methods to detect and control for confounding makes it possible to assess the plausibility of claims that confounding is an alternative explanation for the findings of particular studies.
Collapse
|
|
26 |
238 |
19
|
Sugawara T, Holt JA, Driscoll D, Strauss JF, Lin D, Miller WL, Patterson D, Clancy KP, Hart IM, Clark BJ. Human steroidogenic acute regulatory protein: functional activity in COS-1 cells, tissue-specific expression, and mapping of the structural gene to 8p11.2 and a pseudogene to chromosome 13. Proc Natl Acad Sci U S A 1995; 92:4778-82. [PMID: 7761400 PMCID: PMC41790 DOI: 10.1073/pnas.92.11.4778] [Citation(s) in RCA: 236] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Steroidogenic acute regulatory protein (StAR) appears to mediate the rapid increase in pregnenolone synthesis stimulated by tropic hormones. cDNAs encoding StAR were isolated from a human adrenal cortex library. Human StAR, coexpressed in COS-1 cells with cytochrome P450scc and adrenodoxin, increased pregnenolone synthesis > 4-fold. A major StAR transcript of 1.6 kb and less abundant transcripts of 4.4 and 7.5 kb were detected in ovary and testis. Kidney had a lower amount of the 1.6-kb message. StAR mRNA was not detected in other tissues including placenta. Treatment of granulosa cells with 8-bromo-adenosine 3',5'-cyclic monophosphate for 24 hr increased StAR mRNA 3-fold or more. The structural gene encoding StAR was mapped using somatic cell hybrid mapping panels to chromosome 8p. Fluorescence in situ hybridization placed the StAR locus in the region 8p11.2. A StAR pseudogene was mapped to chromosome 13. We conclude that StAR expression is restricted to tissues that carry out mitochondrial sterol oxidations subject to acute regulation by cAMP and that StAR mRNA levels are regulated by cAMP.
Collapse
|
research-article |
30 |
236 |
20
|
Britton RA, Lin DC, Grossman AD. Characterization of a prokaryotic SMC protein involved in chromosome partitioning. Genes Dev 1998; 12:1254-9. [PMID: 9573042 PMCID: PMC316777 DOI: 10.1101/gad.12.9.1254] [Citation(s) in RCA: 229] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/1998] [Accepted: 03/06/1998] [Indexed: 02/07/2023]
Abstract
smc of Bacillus subtilis encodes a homolog of eukaryotic SMC proteins involved in chromosome condensation, pairing, and partitioning. A null mutation in B. subtilis smc caused a temperature-sensitive-lethal phenotype in rich medium. Under permissive conditions, the mutant had abnormal nucleoids, approximately 10% of the cells were anucleate, and assembly of foci of the chromosome partitioning protein Spo0J was altered. In combination with a null mutation in spo0J, the smc mutation caused a synthetic phenotype; cell growth was slower and approximately 25% of the cells were anucleate. Our results demonstrate that the B. subtilis Smc protein, like its eukaryotic counterpart, plays an important role in chromosome structure and partitioning.
Collapse
|
research-article |
27 |
229 |
21
|
Lin DC, Tobin KD, Grumet M, Lin S. Cytochalasins inhibit nuclei-induced actin polymerization by blocking filament elongation. J Biophys Biochem Cytol 1980; 84:455-60. [PMID: 6892916 PMCID: PMC2110542 DOI: 10.1083/jcb.84.2.455] [Citation(s) in RCA: 222] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Polylysine was found to induce polymerization of muscle actin in a low ionic strength buffer containing 0.4 mM MgCl2. The rate of induced polymerization was dependent on the amount and on the molecular size of the polylysine added. A similar effect was obtained by adding actin nuclei (containing about 2-4 actin subunits) cross-linked by p-N,N'-phenylenebismaleimide to G-actin under the same conditions, suggesting that the effect of polylysine is due to promotion of the formation of actin nuclei. Polymerization induced by polylysine and by cross-linked actin nuclei was inhibited by low concentrations (10(-8)-10(-6)M) of cytochalasins. Binding experiments showed that actin filaments, but not actin monomers, contained high-affinity binding sites for [3H]cytochalasin B (one site per 600 actin monomers). The relative affinity of several cytochalasins for these sites (determined by competitive displacement of [3H]dihydrocytochalasin B) was: cytochalasin D greater than cytochalasin E approximately equal to dihydrocytochalasin B. The results of this study suggest that cytochalasins inhibit nuclei-induced actin polymerization by binding to highly specific sites at the point of monomer addition, i.e., the elongation site, in actin nuclei and filaments.
Collapse
|
research-article |
45 |
222 |
22
|
Zhang X, Lin D, Pforsich H, Lin VW. Physician workforce in the United States of America: forecasting nationwide shortages. HUMAN RESOURCES FOR HEALTH 2020; 18:8. [PMID: 32029001 PMCID: PMC7006215 DOI: 10.1186/s12960-020-0448-3] [Citation(s) in RCA: 220] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 01/20/2020] [Indexed: 05/14/2023]
Abstract
BACKGROUND Physicians play a critical role in healthcare delivery. With an aging US population, population growth, and a greater insured population following the Affordable Care Act (ACA), healthcare demand is growing at an unprecedented pace. This study is to examine current and future physician job surplus/shortage trends across the United States of America from 2017 to 2030. METHODS Using projected changes in population size and age, the authors developed demand and supply models to forecast the physician shortage (difference between demand and supply) in each of the 50 states. Letter grades were then assigned based on projected physician shortage ratios (physician shortage per 100 000 people) to evaluate physician shortages and describe the changing physician workforce in each state. RESULTS On the basis of current trends, the number of states receiving a grade of "D" or "F" for their physician shortage ratio will increase from 4 in 2017 to 23 by 2030, with a total national deficit of 139 160 physician jobs. By 2030, the West is forecasted to have the greatest physician shortage ratio (69 physician jobs per 100 000 people), while the Northeast will have a surplus of 50 jobs per 100 000 people. CONCLUSION There will be physician workforce shortages throughout the country in 2030. Outcomes of this study provide a foundation to discuss effective and efficient ways to curb the worsening shortage over the coming decades and meet current and future population demands. Increased efforts to understand shortage dynamics are warranted.
Collapse
|
research-article |
5 |
220 |
23
|
Beltran H, Hruszkewycz A, Scher HI, Hildesheim J, Isaacs J, Yu EY, Kelly K, Lin D, Dicker A, Arnold J, Hecht T, Wicha M, Sears R, Rowley D, White R, Gulley JL, Lee J, Diaz Meco M, Small EJ, Shen M, Knudsen K, Goodrich DW, Lotan T, Zoubeidi A, Sawyers CL, Rudin CM, Loda M, Thompson T, Rubin MA, Tawab-Amiri A, Dahut W, Nelson PS. The Role of Lineage Plasticity in Prostate Cancer Therapy Resistance. Clin Cancer Res 2019; 25:6916-6924. [PMID: 31363002 PMCID: PMC6891154 DOI: 10.1158/1078-0432.ccr-19-1423] [Citation(s) in RCA: 220] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/07/2019] [Accepted: 07/25/2019] [Indexed: 12/23/2022]
Abstract
Lineage plasticity has emerged as an important mechanism of treatment resistance in prostate cancer. Treatment-refractory prostate cancers are increasingly associated with loss of luminal prostate markers, and in many cases induction of developmental programs, stem cell-like phenotypes, and neuroendocrine/neuronal features. Clinically, lineage plasticity may manifest as low PSA progression, resistance to androgen receptor (AR) pathway inhibitors, and sometimes small cell/neuroendocrine pathologic features observed on metastatic biopsy. This mechanism is not restricted to prostate cancer as other malignancies also demonstrate lineage plasticity during resistance to targeted therapies. At present, there is no established therapeutic approach for patients with advanced prostate cancer developing lineage plasticity or small cell neuroendocrine prostate cancer (NEPC) due to knowledge gaps in the underlying biology. Few clinical trials address questions in this space, and the outlook for patients remains poor. To move forward, urgently needed are: (i) a fundamental understanding of how lineage plasticity occurs and how it can best be defined; (ii) the temporal contribution and cooperation of emerging drivers; (iii) preclinical models that recapitulate biology of the disease and the recognized phenotypes; (iv) identification of therapeutic targets; and (v) novel trial designs dedicated to the entity as it is defined. This Perspective represents a consensus arising from the NCI Workshop on Lineage Plasticity and Androgen Receptor-Independent Prostate Cancer. We focus on the critical questions underlying lineage plasticity and AR-independent prostate cancer, outline knowledge and resource gaps, and identify strategies to facilitate future collaborative clinical translational and basic studies in this space.
Collapse
|
research-article |
6 |
220 |
24
|
Lin DC, Levin PA, Grossman AD. Bipolar localization of a chromosome partition protein in Bacillus subtilis. Proc Natl Acad Sci U S A 1997; 94:4721-6. [PMID: 9114058 PMCID: PMC20791 DOI: 10.1073/pnas.94.9.4721] [Citation(s) in RCA: 203] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We have determined the subcellular localization of the chromosome partition protein Spo0J of Bacillus subtilis by immunofluorescence microscopy and visualizing fluorescence of a Spo0J-GFP fusion protein. Spo0J was associated with a region of the nucleoid proximal to the cell pole, both in growing cells dividing symmetrically and in sporulating cells dividing asymmetrically. Additional experiments indicated that Spo0J was bound to sites in the origin-proximal third of the chromosome. These results show that the replicating chromosomes are oriented in a specific manner during the division cycle, with the Spo0J binding region positioned toward the cell poles. Experiments characterizing cells at different stages of the cell cycle showed that chromosome orientation is established prior to the initiation of cell division. Our results indicate that there is a mechanism for orienting the chromosomes and that the chromosome partition protein Spo0J might be part of a bacterial mitotic-like apparatus.
Collapse
|
research-article |
28 |
203 |
25
|
Lin D, Gish GD, Songyang Z, Pawson T. The carboxyl terminus of B class ephrins constitutes a PDZ domain binding motif. J Biol Chem 1999; 274:3726-33. [PMID: 9920925 DOI: 10.1074/jbc.274.6.3726] [Citation(s) in RCA: 201] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ephrin B proteins function as ligands for B class Eph receptor tyrosine kinases and are postulated to possess an intrinsic signaling function. The sequence at the carboxyl terminus of B-type ephrins contains a putative PDZ binding site, providing a possible mechanism through which transmembrane ephrins might interact with cytoplasmic proteins. To test this notion, a day 10.5 mouse embryonic expression library was screened with a biotinylated peptide corresponding to the carboxyl terminus of ephrin B3. Three of the positive cDNAs encoded polypeptides with multiple PDZ domains, representing fragments of the molecule GRIP, the protein syntenin, and PHIP, a novel PDZ domain-containing protein related to Caenorhabditis elegans PAR-3. In addition, the binding specificities of PDZ domains previously predicted by an oriented library approach (Songyang, Z., Fanning, A. S., Fu, C., Xu, J., Marfatia, S. M., Chishti, A. H., Crompton, A., Chan, A. C., Anderson, J. M., and Cantley, L. C. (1997) Science 275, 73-77) identified the tyrosine phosphatase FAP-1 as a potential binding partner for B ephrins. In vitro studies demonstrated that the fifth PDZ domain of FAP-1 and full-length syntenin bound ephrin B1 via the carboxyl-terminal motif. Lastly, syntenin and ephrin B1 could be co-immunoprecipitated from transfected COS-1 cells, suggesting that PDZ domain binding of B ephrins can occur in cells. These results indicate that the carboxyl-terminal motif of B ephrins provides a binding site for specific PDZ domain-containing proteins, which might localize the transmembrane ligands for interactions with Eph receptors or participate in signaling within ephrin B-expressing cells.
Collapse
|
|
26 |
201 |