1
|
Pickart RS, Moore GWK, Torres DJ, Fratantoni PS, Goldsmith RA, Yang J. Upwelling on the continental slope of the Alaskan Beaufort Sea: Storms, ice, and oceanographic response. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008jc005009] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
|
16 |
75 |
2
|
Wijffels SE, Hall MM, Joyce T, Torres DJ, Hacker P, Firing E. Multiple deep gyres of the western North Pacific: A WOCE section along 149°E. ACTA ACUST UNITED AC 1998. [DOI: 10.1029/98jc01016] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
|
27 |
64 |
3
|
Seale LA, Torres DJ, Berry MJ, Pitts MW. A role for selenium-dependent GPX1 in SARS-CoV-2 virulence. Am J Clin Nutr 2020; 112:447-448. [PMID: 32592394 PMCID: PMC7337667 DOI: 10.1093/ajcn/nqaa177] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
brief-report |
5 |
52 |
4
|
Lozier MS, Li F, Bacon S, Bahr F, Bower AS, Cunningham SA, de Jong MF, de Steur L, deYoung B, Fischer J, Gary SF, Greenan BJW, Holliday NP, Houk A, Houpert L, Inall ME, Johns WE, Johnson HL, Johnson C, Karstensen J, Koman G, Le Bras IA, Lin X, Mackay N, Marshall DP, Mercier H, Oltmanns M, Pickart RS, Ramsey AL, Rayner D, Straneo F, Thierry V, Torres DJ, Williams RG, Wilson C, Yang J, Yashayaev I, Zhao J. A sea change in our view of overturning in the subpolar North Atlantic. Science 2019; 363:516-521. [PMID: 30705189 DOI: 10.1126/science.aau6592] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 12/18/2018] [Indexed: 11/03/2022]
Abstract
To provide an observational basis for the Intergovernmental Panel on Climate Change projections of a slowing Atlantic meridional overturning circulation (MOC) in the 21st century, the Overturning in the Subpolar North Atlantic Program (OSNAP) observing system was launched in the summer of 2014. The first 21-month record reveals a highly variable overturning circulation responsible for the majority of the heat and freshwater transport across the OSNAP line. In a departure from the prevailing view that changes in deep water formation in the Labrador Sea dominate MOC variability, these results suggest that the conversion of warm, salty, shallow Atlantic waters into colder, fresher, deep waters that move southward in the Irminger and Iceland basins is largely responsible for overturning and its variability in the subpolar basin.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
49 |
5
|
Rueli RHLH, Torres DJ, Dewing AST, Kiyohara AC, Barayuga SM, Bellinger MT, Uyehara-Lock JH, White LR, Moreira PI, Berry MJ, Perry G, Bellinger FP. Selenoprotein S Reduces Endoplasmic Reticulum Stress-Induced Phosphorylation of Tau: Potential Role in Selenate Mitigation of Tau Pathology. J Alzheimers Dis 2018; 55:749-762. [PMID: 27802219 DOI: 10.3233/jad-151208] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Previous studies demonstrated that selenium in the form of sodium selenate reduces neurofibrillary tangle formation in Alzheimer's disease models. Hyperphosphorylation of tau, which leads to formation of neurofibrillary tangles in Alzheimer's disease, is increased by endoplasmic reticulum (ER) stress. Selenoprotein S (SelS) is part of an ER membrane complex that removes misfolded proteins from the ER as a means to reduce ER stress. Selenate, as with other forms of selenium, will increase selenoprotein expression. We therefore proposed that increased SelS expression by selenate would contribute to the beneficial actions of selenate in Alzheimer's disease. SelS expression increased with ER stress and decreased under conditions of elevated glucose concentrations in the SH-SY5Y neuronal cell line. Reducing expression of SelS with siRNA promoted cell death in response to ER stress. Selenate increased SelS expression, which significantly correlated with decreased tau phosphorylation. Restricting SelS expression during ER stress conditions increased tau phosphorylation, and also promoted aggregation of phosphorylated tau in neurites and soma. In human postmortem brain, SelS expression coincided with neurofibrillary tangles, but not with amyloid-β plaques. These results indicate that selenate can alter phosphorylation of tau by increasing expression of SelS in Alzheimer's disease and potentially other neurodegenerative disorders.
Collapse
|
Journal Article |
7 |
28 |
6
|
Pickart RS, Torres DJ, McKee TK, Caruso MJ, Przystup JE. Diagnosing a meander of the shelf break current in the Middle Atlantic Bight. ACTA ACUST UNITED AC 1999. [DOI: 10.1029/1998jc900066] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
|
26 |
21 |
7
|
Klevjer TA, Torres DJ, Kaartvedt S. Distribution and diel vertical movements of mesopelagic scattering layers in the Red Sea. MARINE BIOLOGY 2012; 159:1833-1841. [PMID: 24391275 PMCID: PMC3873044 DOI: 10.1007/s00227-012-1973-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 05/21/2012] [Indexed: 05/27/2023]
Abstract
The mesopelagic zone of the Red Sea represents an extreme environment due to low food concentrations, high temperatures and low oxygen waters. Nevertheless, a 38 kHz echosounder identified at least four distinct scattering layers during the daytime, of which the 2 deepest layers resided entirely within the mesopelagic zone. Two of the acoustic layers were found above a mesopelagic oxygen minimum zone (OMZ), one layer overlapped with the OMZ, and one layer was found below the OMZ. Almost all organisms in the deep layers migrated to the near-surface waters during the night. Backscatter from a 300 kHz lowered Acoustic Doppler Current Profiler indicated a layer of zooplankton within the OMZ. They carried out DVM, yet a portion remained at mesopelagic depths during the night. Our acoustic measurements showed that the bulk of the acoustic backscatter was restricted to waters shallower than 800 m, suggesting that most of the biomass in the Red Sea resides above this depth.
Collapse
|
research-article |
13 |
19 |
8
|
Nicholson JL, Toh P, Alfulaij N, Berry MJ, Torres DJ. New insights on selenoproteins and neuronal function. Free Radic Biol Med 2022; 190:55-61. [PMID: 35948259 DOI: 10.1016/j.freeradbiomed.2022.07.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/17/2022] [Accepted: 07/26/2022] [Indexed: 10/15/2022]
Abstract
Fifty years have passed since the discovery of the first selenoprotein by Rotruck and colleagues. In that time, the essential nature of selenium has come to light including the dependence of the brain on selenium to function properly. Animal models have shown that a lack of certain selenoproteins in the brain is detrimental for neuronal health, sometimes leading to neurodegeneration. There is also potential for selenoprotein-mediated redox balance to impact neuronal activity, including neurotransmission. Important insights on these topics have been gained over the past several years. This review briefly summarizes the known roles of specific selenoproteins in the brain while highlighting recent advancements regarding selenoproteins in neuronal function. Hypothetical models of selenoprotein function and emerging topics in the field are also provided.
Collapse
|
Review |
3 |
17 |
9
|
Abstract
The hypothalamus is the central neural site governing food intake and energy expenditure. During the past 25 years, understanding of the hypothalamic cell types, hormones, and circuitry involved in the regulation of energy metabolism has dramatically increased. It is now well established that the adipocyte-derived hormone, leptin, acts upon two distinct groups of hypothalamic neurons that comprise opposing arms of the central melanocortin system. These two cell populations are anorexigenic neurons expressing proopiomelanocortin (POMC) and orexigenic neurons that express agouti-related peptide (AGRP). Several important studies have demonstrated that reactive oxygen species and endoplasmic reticulum stress significantly impact these hypothalamic neuronal populations that regulate global energy metabolism. Reactive oxygen species and redox homeostasis are influenced by selenoproteins, an essential class of proteins that incorporate selenium co-translationally in the form of the 21st amino acid, selenocysteine. Levels of these proteins are regulated by dietary selenium intake and they are widely expressed in the brain. Of additional relevance, selenium supplementation has been linked to metabolic alterations in both animal and human studies. Recent evidence also indicates that hypothalamic selenoproteins are significant modulators of energy metabolism in both neurons and tanycytes, a population of glial-like cells lining the floor of the 3rd ventricle within the hypothalamus. This review article will summarize current understanding of the regulatory influence of redox status on hypothalamic nutrient sensing and highlight recent work revealing the importance of selenoproteins in the hypothalamus.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
17 |
10
|
Torres DJ, Alfulaij N, Berry MJ. Stress and the Brain: An Emerging Role for Selenium. Front Neurosci 2021; 15:666601. [PMID: 33935643 PMCID: PMC8081839 DOI: 10.3389/fnins.2021.666601] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/25/2021] [Indexed: 12/04/2022] Open
Abstract
The stress response is an important tool in an organism’s ability to properly respond to adverse environmental conditions in order to survive. Intense acute or chronic elevation of glucocorticoids, a class of stress hormone, can have deleterious neurological effects, however, including memory impairments and emotional disturbances. In recent years, the protective role of the antioxidant micronutrient selenium against the negative impact of externally applied stress has begun to come to light. In this review, we will discuss the effects of stress on the brain, with a focus on glucocorticoid action in the hippocampus and cerebral cortex, and emerging evidence of an ability of selenium to normalize neurological function in the context of various stress and glucocorticoid exposure paradigms in rodent models.
Collapse
|
Review |
4 |
16 |
11
|
Kiyohara ACP, Torres DJ, Hagiwara A, Pak J, Rueli RHLH, Shuttleworth CWR, Bellinger FP. Selenoprotein P Regulates Synaptic Zinc and Reduces Tau Phosphorylation. Front Nutr 2021; 8:683154. [PMID: 34277682 PMCID: PMC8280497 DOI: 10.3389/fnut.2021.683154] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/26/2021] [Indexed: 01/11/2023] Open
Abstract
Selenoprotein P (SELENOP1) is a selenium-rich antioxidant protein involved in extracellular transport of selenium (Se). SELENOP1 also has metal binding properties. The trace element Zinc (Zn2+) is a neuromodulator that can be released from synaptic terminals in the brain, primarily from a subset of glutamatergic terminals. Both Zn2+ and Se are necessary for normal brain function. Although these ions can bind together with high affinity, the biological significance of an interaction of SELENOP1 with Zn2+ has not been investigated. We examined changes in brain Zn2+ in SELENOP1 knockout (KO) animals. Timm-Danscher and N-(6-methoxy-8-quinolyl)-p-toluenesulphonamide (TSQ) staining revealed increased levels of intracellular Zn2+ in the SELENOP1-/- hippocampus compared to wildtype (WT) mice. Mass spectrometry analysis of frozen whole brain samples demonstrated that total Zn2+ was not increased in the SELENOP1-/- mice, suggesting only local changes in Zn2+ distribution. Unexpectedly, live Zn2+ imaging of hippocampal slices with a selective extracellular fluorescent Zn2+ indicator (FluoZin-3) showed that SELENOP1-/- mice have impaired Zn2+ release in response to KCl-induced neuron depolarization. The zinc/metal storage protein metallothionein 3 (MT-3) was increased in SELENOP1-/- hippocampus relative to wildtype, possibly in response to an elevated Zn2+ content. We found that depriving cultured cells of selenium resulted in increased intracellular Zn2+, as did inhibition of selenoprotein GPX4 but not GPX1, suggesting the increased Zn2+ in SELENOP1-/- mice is due to a downregulation of antioxidant selenoproteins and subsequent release of Zn2+ from intracellular stores. Surprisingly, we found increased tau phosphorylation in the hippocampus of SELENOP1-/- mice, possibly resulting from intracellular zinc changes. Our findings reveal important roles for SELENOP1 in the maintenance of synaptic Zn2+ physiology and preventing tau hyperphosphorylation.
Collapse
|
research-article |
4 |
15 |
12
|
Toh P, Nicholson JL, Vetter AM, Berry MJ, Torres DJ. Selenium in Bodily Homeostasis: Hypothalamus, Hormones, and Highways of Communication. Int J Mol Sci 2022; 23:15445. [PMID: 36499772 PMCID: PMC9739294 DOI: 10.3390/ijms232315445] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
The ability of the body to maintain homeostasis requires constant communication between the brain and peripheral tissues. Different organs produce signals, often in the form of hormones, which are detected by the hypothalamus. In response, the hypothalamus alters its regulation of bodily processes, which is achieved through its own pathways of hormonal communication. The generation and transmission of the molecules involved in these bi-directional axes can be affected by redox balance. The essential trace element selenium is known to influence numerous physiological processes, including energy homeostasis, through its various redox functions. Selenium must be obtained through the diet and is used to synthesize selenoproteins, a family of proteins with mainly antioxidant functions. Alterations in selenium status have been correlated with homeostatic disturbances in humans and studies with animal models of selenoprotein dysfunction indicate a strong influence on energy balance. The relationship between selenium and energy metabolism is complicated, however, as selenium has been shown to participate in multiple levels of homeostatic communication. This review discusses the role of selenium in the various pathways of communication between the body and the brain that are essential for maintaining homeostasis.
Collapse
|
Review |
3 |
12 |
13
|
Watanabe LM, Hashimoto AC, Torres DJ, Berry MJ, Seale LA. Effects of selenium supplementation on diet-induced obesity in mice with a disruption of the selenocysteine lyase gene. J Trace Elem Med Biol 2020; 62:126596. [PMID: 32683228 PMCID: PMC7655518 DOI: 10.1016/j.jtemb.2020.126596] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 06/11/2020] [Accepted: 06/19/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND The amino acid selenocysteine (Sec) is an integral part of selenoproteins, a class of proteins mostly involved in strong redox reactions. The enzyme Sec lyase (SCLY) decomposes Sec into selenide allowing for the recycling of the selenium (Se) atom via the selenoprotein synthesis machinery. We previously demonstrated that disruption of the Scly gene (Scly KO) in mice leads to the development of obesity and metabolic syndrome, with effects on glucose homeostasis, worsened by Se deficiency or a high-fat diet, and exacerbated in male mice. Our objective was to determine whether Se supplementation could ameliorate obesity and restore glucose homeostasis in the Scly KO mice. METHODS Three-weeks old male and female Scly KO mice were fed in separate experiments a diet containing 45 % kcal fat and either sodium selenite or a mixture of sodium selenite and selenomethionine (selenite/SeMet) at moderate (0.25 ppm) or high (0.5-1 ppm) levels for 9 weeks, and assessed for metabolic parameters, oxidative stress and expression of selenoproteins. RESULTS Se supplementation was unable to prevent obesity and elevated epididymal white adipose tissue weights in male Scly KO mice. Serum glutathione peroxidase activity in Scly KO mice was unchanged regardless of sex or dietary Se intake; however, supplementation with a mixture of selenite/SeMet improved oxidative stress biomarkers in the male Scly KO mice. CONCLUSION These results unveil sex- and selenocompound-specific regulation of energy metabolism after the loss of Scly, pointing to a role of this enzyme in the control of whole-body energy metabolism regardless of Se levels.
Collapse
|
research-article |
5 |
9 |
14
|
Torres DJ, Yorgason JT, Mitchell CC, Hagiwara A, Andres MA, Kurokawa S, Steffensen SC, Bellinger FP. Selenoprotein P Modulates Methamphetamine Enhancement of Vesicular Dopamine Release in Mouse Nucleus Accumbens Via Dopamine D2 Receptors. Front Neurosci 2021; 15:631825. [PMID: 33927588 PMCID: PMC8076559 DOI: 10.3389/fnins.2021.631825] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 03/19/2021] [Indexed: 12/25/2022] Open
Abstract
Dopamine (DA) transmission plays a critical role in processing rewarding and pleasurable stimuli. Increased synaptic DA release in the nucleus accumbens (NAc) is a central component of the physiological effects of drugs of abuse. The essential trace element selenium mitigates methamphetamine-induced neurotoxicity. Selenium can also alter DA production and turnover. However, studies have not directly addressed the role of selenium in DA neurotransmission. Selenoprotein P (SELENOP1) requires selenium for synthesis and transports selenium to the brain, in addition to performing other functions. We investigated whether SELENOP1 directly impacts (1) DA signaling and (2) the dopaminergic response to methamphetamine. We used fast-scan cyclic voltammetry to investigate DA transmission and the response to methamphetamine in NAc slices from C57/BL6J SELENOP1 KO mice. Recordings from SELENOP1 KO mouse slices revealed reduced levels of evoked DA release and slower DA uptake rates. Methamphetamine caused a dramatic increase in vesicular DA release in SELENOP1 KO mice not observed in wild-type controls. This elevated response was attenuated by SELENOP1 application through a selenium-independent mechanism involving SELENOP1-apolipoprotein E receptor 2 (ApoER2) interaction to promote dopamine D2 receptor (D2R) function. In wild-type mice, increased vesicular DA release in response to methamphetamine was revealed by blocking D2R activation, indicating that the receptor suppresses the methamphetamine-induced vesicular increase. Our data provide evidence of a direct physiological role for SELENOP1 in the dopaminergic response to methamphetamine and suggest a signaling role for the protein in DA transmission.
Collapse
|
Journal Article |
4 |
8 |
15
|
Torres DJ, Pitts MW, Hashimoto AC, Berry MJ. Agrp-Specific Ablation of Scly Protects against Diet-Induced Obesity and Leptin Resistance. Nutrients 2019; 11:nu11071693. [PMID: 31340540 PMCID: PMC6682868 DOI: 10.3390/nu11071693] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/18/2019] [Accepted: 07/20/2019] [Indexed: 01/25/2023] Open
Abstract
Selenium, an essential trace element known mainly for its antioxidant properties, is critical for proper brain function and regulation of energy metabolism. Whole-body knockout of the selenium recycling enzyme, selenocysteine lyase (Scly), increases susceptibility to metabolic syndrome and diet-induced obesity in mice. Scly knockout mice also have decreased selenoprotein expression levels in the hypothalamus, a key regulator of energy homeostasis. This study investigated the role of selenium in whole-body metabolism regulation using a mouse model with hypothalamic knockout of Scly. Agouti-related peptide (Agrp) promoter-driven Scly knockout resulted in reduced weight gain and adiposity while on a high-fat diet (HFD). Scly-Agrp knockout mice had reduced Agrp expression in the hypothalamus, as measured by Western blot and immunohistochemistry (IHC). IHC also revealed that while control mice developed HFD-induced leptin resistance in the arcuate nucleus, Scly-Agrp knockout mice maintained leptin sensitivity. Brown adipose tissue from Scly-Agrp knockout mice had reduced lipid deposition and increased expression of the thermogenic marker uncoupled protein-1. This study sheds light on the important role of selenium utilization in energy homeostasis, provides new information on the interplay between the central nervous system and whole-body metabolism, and may help identify key targets of interest for therapeutic treatment of metabolic disorders.
Collapse
|
Journal Article |
6 |
7 |
16
|
Kremer PM, Torres DJ, Hashimoto AC, Berry MJ. Sex-Specific Metabolic Impairments in a Mouse Model of Disrupted Selenium Utilization. Front Nutr 2021; 8:682700. [PMID: 34041261 PMCID: PMC8141863 DOI: 10.3389/fnut.2021.682700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/07/2021] [Indexed: 12/14/2022] Open
Abstract
The essential micronutrient selenium (Se) provides antioxidant defense and supports numerous biological functions. Obtained through dietary intake, Se is incorporated into selenoproteins via the amino acid, selenocysteine (Sec). Mice with genetic deletion of the Se carrier, selenoprotein P (SELENOP), and the Se recycling enzyme selenocysteine lyase (SCLY), suffer from sexually dimorphic neurological deficits and require Se supplementation for viability. These impairments are more pronounced in males and are exacerbated by dietary Se restriction. We report here that, by 10 weeks of age, female Selenop/Scly double knockout (DKO) mice supplemented with 1 mg/ml sodium selenite in drinking water develop signs of hyper-adiposity not seen in male DKO mice. Unexpectedly, this metabolic phenotype can be reversed by removing Se from the drinking water at post-natal day 22, just prior to puberty. Restricting access to Se at this age prevents excess body weight gain and restriction from either post-natal day 22 or 37 reduces gonadal fat deposits. These results provide new insight into the sex-dependent relationship between Se and metabolic homeostasis.
Collapse
|
Journal Article |
4 |
3 |
17
|
Kucukosmanoglu M, Colosi JA, Worcester PF, Dzieciuch MA, Torres DJ. Observations of sound-speed fluctuations in the Beaufort Sea from summer 2016 to summer 2017. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 149:1536. [PMID: 33765810 DOI: 10.1121/10.0003601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Due to seasonal ice cover, acoustics can provide a unique means for Arctic undersea communication, navigation, and remote sensing. This study seeks to quantify the annual cycle of the thermohaline structure in the Beaufort Sea and characterize acoustically relevant oceanographic processes such as eddies, internal waves, near-inertial waves (NIWs), and spice. The observations are from a seven-mooring, 150-km radius acoustic transceiver array equipped with oceanographic sensors that collected data in the Beaufort Sea from 2016 to 2017. Depth and time variations of the sound speed are analyzed using isopycnal displacements, allowing a separation of baroclinic processes and spice. Compared to lower latitudes, the overall sound speed variability is small with a maximum root mean square of 0.6 m/s. The largest source of variability is spice, most significant in the upper 100 m, followed by eddies and internal waves. The displacement spectrum in the internal wave band is time dependent and different from the Garret-Munk (GM) spectrum. The internal wave energy varied with time averaging 5% of the GM spectrum. The spice sound-speed frequency spectrum has a form very different from the displacement spectrum, a result not seen at lower latitudes. Because sound speed variations are weak, observations of episodic energetic NIWs with horizontal currents up to 20 cm/s have potential acoustical consequences.
Collapse
|
|
4 |
3 |
18
|
Torres DJ, Pitts MW, Seale LA, Hashimoto AC, An KJ, Hanato AN, Hui KW, Remigio SMA, Carlson BA, Hatfield DL, Berry MJ. Female Mice with Selenocysteine tRNA Deletion in Agrp Neurons Maintain Leptin Sensitivity and Resist Weight Gain While on a High-Fat Diet. Int J Mol Sci 2021; 22:ijms222011010. [PMID: 34681674 PMCID: PMC8539086 DOI: 10.3390/ijms222011010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 11/16/2022] Open
Abstract
The role of the essential trace element selenium in hypothalamic physiology has begun to come to light over recent years. Selenium is used to synthesize a family of proteins participating in redox reactions called selenoproteins, which contain a selenocysteine residue in place of a cysteine. Past studies have shown that disrupted selenoprotein expression in the hypothalamus can adversely impact energy homeostasis. There is also evidence that selenium supports leptin signaling in the hypothalamus by maintaining proper redox balance. In this study, we generated mice with conditional knockout of the selenocysteine tRNA[Ser]Sec gene (Trsp) in an orexigenic cell population called agouti-related peptide (Agrp)-positive neurons. We found that female TrspAgrpKO mice gain less weight while on a high-fat diet, which occurs due to changes in adipose tissue activity. Female TrspAgrpKO mice also retained hypothalamic sensitivity to leptin administration. Male mice were unaffected, however, highlighting the sexually dimorphic influence of selenium on neurobiology and energy homeostasis. These findings provide novel insight into the role of selenoproteins within a small yet heavily influential population of hypothalamic neurons.
Collapse
|
|
4 |
3 |
19
|
Seale LA, Ogawa-Wong AN, Watanabe LM, Khadka VS, Menor M, Torres DJ, Carlson BA, Hatfield DL, Berry MJ. Adaptive Thermogenesis in a Mouse Model Lacking Selenoprotein Biosynthesis in Brown Adipocytes. Int J Mol Sci 2021; 22:E611. [PMID: 33435397 PMCID: PMC7827413 DOI: 10.3390/ijms22020611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/06/2021] [Accepted: 01/06/2021] [Indexed: 12/02/2022] Open
Abstract
Selenoproteins are a class of proteins with the selenium-containing amino acid selenocysteine (Sec) in their primary structure. Sec is incorporated into selenoproteins via recoding of the stop codon UGA, with specific cis and trans factors required during translation to avoid UGA recognition as a stop codon, including a Sec-specific tRNA, tRNA[Ser]Sec, encoded in mice by the gene Trsp. Whole-body deletion of Trsp in mouse is embryonically lethal, while targeted deletion of Trsp in mice has been used to understand the role of selenoproteins in the health and physiology of various tissues. We developed a mouse model with the targeted deletion of Trsp in brown adipocytes (Trspf/f-Ucp1-Cre+/-), a cell type predominant in brown adipose tissue (BAT) controlling energy expenditure via activation of adaptive thermogenesis, mostly using uncoupling protein 1 (Ucp1). At room temperature, Trspf/f-Ucp1-Cre+/- mice maintain oxygen consumption and Ucp1 expression, with male Trspf/f-Ucp1-Cre+/- mice accumulating more triglycerides in BAT than both female Trspf/f-Ucp1-Cre+/- mice or Trspf/f controls. Acute cold exposure neither reduced core body temperature nor changed the expression of selenoprotein iodothyronine deiodinase type II (Dio2), a marker of adaptive thermogenesis, in Trspf/f-Ucp1-Cre+/- mice. Microarray analysis of BAT from Trspf/f-Ucp1-Cre+/- mice revealed glutathione S-transferase alpha 3 (Gsta3) and ELMO domain containing 2 (Elmod2) as the transcripts most affected by the loss of Trsp. Male Trspf/f-Ucp1-Cre+/- mice showed mild hypothyroidism while downregulating thyroid hormone-responsive genes Thrsp and Tshr in their BATs. In summary, modest changes in the BAT of Trspf/f-Ucp1-Cre +/- mice implicate a mild thyroid hormone dysfunction in brown adipocytes.
Collapse
|
research-article |
4 |
2 |
20
|
Watanabe LM, Hashimoto AC, Torres DJ, Alfulaij N, Peres R, Sultana R, Maunakea AK, Berry MJ, Seale LA. Effect of statin treatment in obese selenium-supplemented mice lacking selenocysteine lyase. Mol Cell Endocrinol 2021; 533:111335. [PMID: 34052303 PMCID: PMC8263501 DOI: 10.1016/j.mce.2021.111335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/14/2021] [Accepted: 05/24/2021] [Indexed: 12/17/2022]
Abstract
People with obesity are often dyslipidemic and prescribed statins to prevent cardiovascular events. A common side effect of statin use is myopathy. This could potentially be caused by the reduction of selenoproteins that curb oxidative stress, in turn, affecting creatine metabolism. We determined if statins regulate hepatic and muscular selenoprotein expression, oxidative stress and creatine metabolism. Mice lacking selenocysteine lyase (Scly KO), a selenium-provider enzyme for selenoprotein synthesis, were fed a high-fat, Se-supplemented diet and treated with simvastatin. Statin improved creatine metabolism in females and oxidative responses in both sexes. Male Scly KO mice were heavier than females after statin treatment. Hepatic selenoproteins were unaffected by statin and genotype in females. Statin upregulated muscular Gpx1 in females but not males, while Scly loss downregulated muscular Gpx1 in males and Selenon in females. Osgin1 was reduced in statin-treated Scly KO males after AmpliSeq analysis. These results refine our understanding of the sex-dependent role of selenium in statin responses.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
2 |
21
|
Kilonzo VW, Sasuclark AR, Torres DJ, Coyle C, Pilat JM, Williams CS, Pitts MW. Juvenile Selenium Deficiency Impairs Cognition, Sensorimotor Gating, and Energy Homeostasis in Mice. Front Nutr 2021; 8:667587. [PMID: 34026810 PMCID: PMC8138326 DOI: 10.3389/fnut.2021.667587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 04/09/2021] [Indexed: 02/03/2023] Open
Abstract
Selenium (Se) is an essential micronutrient of critical importance to mammalian life. Its biological effects are primarily mediated via co-translational incorporation into selenoproteins, as the unique amino acid, selenocysteine. These proteins play fundamental roles in redox signaling and includes the glutathione peroxidases and thioredoxin reductases. Environmental distribution of Se varies considerably worldwide, with concomitant effects on Se status in humans and animals. Dietary Se intake within a narrow range optimizes the activity of Se-dependent antioxidant enzymes, whereas both Se-deficiency and Se-excess can adversely impact health. Se-deficiency affects a significant proportion of the world's population, with hypothyroidism, cardiomyopathy, reduced immunity, and impaired cognition being common symptoms. Although relatively less prevalent, Se-excess can also have detrimental consequences and has been implicated in promoting both metabolic and neurodegenerative disease in humans. Herein, we sought to comprehensively assess the developmental effects of both Se-deficiency and Se-excess on a battery of neurobehavioral and metabolic tests in mice. Se-deficiency elicited deficits in cognition, altered sensorimotor gating, and increased adiposity, while Se-excess was surprisingly beneficial.
Collapse
|
brief-report |
4 |
2 |
22
|
Torres DJ, Yorgason JT, Andres MA, Bellinger FP. Methamphetamine Exposure During Development Causes Lasting Changes to Mesolimbic Dopamine Signaling in Mice. Cell Mol Neurobiol 2022; 42:2433-2438. [PMID: 34138411 PMCID: PMC8678368 DOI: 10.1007/s10571-021-01120-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 06/11/2021] [Indexed: 10/21/2022]
Abstract
Methamphetamine (MA) abuse remains a public health issue. Prenatal MA exposure (PME) poses a significant health problem, as we know very little about the drug's long-term physiological impact on the developing human brain. We investigated the long-term consequences of early MA exposure using a mouse model that targets the brain growth spurt, which occurs during human third-trimester. Adult mice previously subjected to acute MA during post-natal days 4-9 exhibited hyperactivity during the Open-Field Test, while exhibiting no motor coordination changes during the Rotarod Test. Neonatal MA exposure reduced basal dopamine (DA) uptake rates in adult nucleus accumbens slices compared with saline-injected controls. Although slices from neonatal MA-exposed mice showed no change in evoked DA signals in the presence of MA, they exhibited potentiated non-evoked DA release through DA efflux in response to MA. These data suggest that developmental MA exposure alters brain development to produce long-lasting physiological changes to the adult mesolimbic DA system, as well as altering responses to acute MA exposure in adulthood. This study provides new insights into an important, under-investigated area in drugs of abuse research.
Collapse
|
brief-report |
3 |
1 |
23
|
Abstract
A new mechanism of leptin extravasation from the bloodstream into the brain may have been discovered. According to recent findings by Butiaeva et al., pericytes within the blood-brain barrier (BBB) express the leptin receptor and, upon activation, facilitate the movement of the appetite-suppressing hormone into deeper regions of the hypothalamus.
Collapse
|
article-commentary |
4 |
1 |
24
|
Toh P, Seale LA, Berry MJ, Torres DJ. Prolonged maternal exposure to glucocorticoids alters selenoprotein expression in the developing brain. Front Mol Neurosci 2023; 16:1115993. [PMID: 37033382 PMCID: PMC10080067 DOI: 10.3389/fnmol.2023.1115993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 03/09/2023] [Indexed: 04/11/2023] Open
Abstract
Aberrant activation of the stress-response system in early life can alter neurodevelopment and cause long-term neurological changes. Activation of the hypothalamic-pituitary-adrenal axis releases glucocorticoids into the bloodstream, to help the organism adapt to the stressful stimulus. Elevated glucocorticoid levels can promote the accumulation of reactive oxygen species, and the brain is highly susceptible to oxidative stress. The essential trace element selenium is obtained through diet, is used to synthesize antioxidant selenoproteins, and can mitigate glucocorticoid-mediated oxidative damage. Glucocorticoids can impair antioxidant enzymes in the brain, and could potentially influence selenoprotein expression. We hypothesized that exposure to high levels of glucocorticoids would disrupt selenoprotein expression in the developing brain. C57 wild-type dams of recently birthed litters were fed either a moderate (0.25 ppm) or high (1 ppm) selenium diet and administered corticosterone (75 μg/ml) via drinking water during postnatal days 1 to 15, after which the brains of the offspring were collected for western blot analysis. Glutathione peroxidase 1 and 4 levels were increased by maternal corticosterone exposure within the prefrontal cortex, hippocampus, and hypothalamus of offspring. Additionally, levels of the glucocorticoid receptor were decreased in the hippocampus and selenoprotein W was elevated in the hypothalamus by corticosterone. Maternal consumption of a high selenium diet independently decreased glucocorticoid receptor levels in the hippocampus of offspring of both sexes, as well as in the prefrontal cortex of female offspring. This study demonstrates that early life exposure to excess glucocorticoid levels can alter selenoprotein levels in the developing brain.
Collapse
|
brief-report |
2 |
|
25
|
Torres DJ, Nyman K, Glinka T, Borysov SI. Identification of a Novel Amino Acid Motif Responsible for Peptide Aggregation
in vitro.. FASEB J 2022. [DOI: 10.1096/fasebj.2022.36.s1.r4226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
|
3 |
|