1
|
Yuste R, Gutnick MJ, Saar D, Delaney KR, Tank DW. Ca2+ accumulations in dendrites of neocortical pyramidal neurons: an apical band and evidence for two functional compartments. Neuron 1994; 13:23-43. [PMID: 8043278 DOI: 10.1016/0896-6273(94)90457-x] [Citation(s) in RCA: 241] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Apical dendrites constitute a prominent feature of the microcircuitry in the neocortex, yet their function is poorly understood. Using fura-2 imaging of layer 5 pyramidal neurons from slices of rat somatosensory cortex, we have investigated the Ca2+ influx into dendrites under intracellular, antidromic, synaptic, and receptor-agonist stimulation. We find three spatial patterns of Ca2+ accumulations: an apical band in the apical dendrite approximately 500 microns from the soma, an accumulation restricted to the basal dendrites, soma, and proximal apical dendrite, and a combination of both of these. We show that the apical band can be activated antidromically and synaptically and that, under blocked Na+ and K+ conductances, it generates Ca2+ spikes. Thus, the apical band may serve as a dendritic trigger zone for regenerative Ca2+ spikes or as a current amplifier for distal synaptic events. Our results suggest that the distal apical dendrite should be considered a separate functional compartment from the rest of the cell.
Collapse
|
|
31 |
241 |
2
|
Saar D, Grossman Y, Barkai E. Reduced after-hyperpolarization in rat piriform cortex pyramidal neurons is associated with increased learning capability during operant conditioning. Eur J Neurosci 1998; 10:1518-23. [PMID: 9749805 DOI: 10.1046/j.1460-9568.1998.00149.x] [Citation(s) in RCA: 169] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Learning-related cellular modifications were studied in the rat piriform cortex. Water-deprived rats were divided to three groups: 'trained' rats were trained in a four-arm maze to discriminate positive cues in pairs of odours, 'control' rats were 'pseudo-trained' by random water rewarding, and 'naive' rats were water-deprived only. In one experimental paradigm, the trained group was exposed to extensive training with rats learning to discriminate between 35 and 50 pairs of odours. Piriform cortex pyramidal neurons from 'trained', 'control' and 'naive' rats did not differ in their passive membrane properties and single spike characteristics. However, the after-hyperpolarizations (AHPs) that follow six-spike trains were reduced after 'extensive training' by 43% and 36% compared with 'control' and 'naive', respectively. This effect was not observed in the piriform cortex of another group of rats, in which hyperexcitability was induced by chemical kindling. In another experimental paradigm rats were trained only until they demonstrated 'rule learning', usually after discriminating between one and two pairs of odours ('mild training'). In this experiment, a smaller, yet significant, reduction (20%) in AHPs was observed. AHP reduction was apparent in most of the sampled neurons. AHP remained reduced up to 3 days after the last training session. 5 days or more after the last training session, AHP amplitude recovered to pre-training value and did not differ between 'trained' rats and the others. Accordingly, training suspension for 5 days or more resulted in slower learning of novel odours. We suggest that increased neuronal excitability, manifested as reduced AHP, is related to the ability of the cortical network to enter a 'learning mode' which creates favourable conditions for enhanced learning capability.
Collapse
|
Comparative Study |
27 |
169 |
3
|
Abstract
This review describes research that combines cellular physiology with behavioral neuroscience, to study the cellular mechanisms underlying learning and memory in the mammalian brain. Rats were trained with an olfactory conditioning paradigm, in which they had to memorize odors in order to be rewarded with drinking water. Such training results in rule learning, which enables enhanced acquisition of odor memory. Training results in the following learning-related physiological modifications in intrinsic and synaptic properties in olfactory (piriform) cortex pyramidal neurons: 1. increased neuronal excitability, indicated by reduced afterhyperpolarization, and 2. increased synaptic transmission, indicated by reduced paired-pulse facilitation. These modifications are correlated to enhanced learning capability rather than to storage of memory for specific odors. In addition, using a different paradigm of odor-training, it is shown that NMDA and betra-adrenergic receptors are involved at different stages of long-term memory consolidation.
Collapse
|
Review |
24 |
54 |
4
|
Saar D, Petrucci S. Infrared and ultrasonic spectra of sodium thiocyanate and lithium thiocyanate in tetrahydrofuran. ACTA ACUST UNITED AC 2002. [DOI: 10.1021/j100406a006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
|
23 |
30 |
5
|
Wolf SL, Ariel GB, Saar D, Penny MA, Railey P. The effect of muscle stimulation during resistive training on performance parameters. Am J Sports Med 1986; 14:18-23. [PMID: 3752341 DOI: 10.1177/036354658601400104] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This study compared changes in movement velocity, force, and work from bilateral quadriceps muscle stimulation during resistive squatting exercise to identical exercise without stimulation. Both the group undergoing resistive training over 24 sessions (N = 9) and the group receiving the same treatment in conjunction with stimulation during the last 12 sessions (N = 9) showed significant improvements in measures of movement velocity, force, total work, power, sprint time, and vertical jump distance when compared to a control group receiving no treatment (N = 9). All subjects were baseline tested and tested at 3, 6, and 7 week intervals. Both experimental groups improved significantly for all measures, but the electrical stimulation group did not produce more significant changes overall than those with resistive training alone. However, when compared to control measures, the effect of electrical stimulation-augmented responses among some measures was more pronounced than the effect of resistive training alone.
Collapse
|
Clinical Trial |
39 |
22 |
6
|
Saar D, Brauner J, Farber H, Petrucci S. Microwave dielectric relaxation of some lithium salts in dimethyl carbonate. ACTA ACUST UNITED AC 2002. [DOI: 10.1021/j100494a010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
|
23 |
12 |
7
|
Saar D, Brauner J, Farber H, Petrucci S. Dielectric relaxation of some 1:1 electrolytes in tetrahydrofuran and diethyl carbonate. ACTA ACUST UNITED AC 2002. [DOI: 10.1021/j100506a018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
|
23 |
9 |
8
|
Martinsen JH, Saar D, Fernandes CB, Schuler B, Bugge K, Kragelund BB. Structure, Dynamics and Stability of the Globular Domain of Human Linker Histone H1.0 and the Role of Positive Charges. Protein Sci 2022; 31:918-932. [PMID: 35066947 PMCID: PMC8927875 DOI: 10.1002/pro.4281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/14/2022] [Accepted: 01/20/2022] [Indexed: 11/25/2022]
Abstract
Linker histone H1 (H1) is an abundant chromatin‐binding protein that acts as an epigenetic regulator binding to nucleosomes and altering chromatin structures and dynamics. Nonetheless, the mechanistic details of its function remain poorly understood. Recent work suggest that the number and position of charged side chains on the globular domain (GD) of H1 influence chromatin structure and hence gene repression. Here, we solved the solution structure of the unbound GD of human H1.0, revealing that the structure is almost completely unperturbed by complex formation, except for a loop connecting two antiparallel β‐strands. We further quantified the role of the many positive charges of the GD for its structure and conformational stability through the analysis of 11 charge variants. We find that modulating the number of charges has little effect on the structure, but the stability is affected, resulting in a difference in melting temperature of 26 K between GD of net charge +5 versus +13. This result suggests that the large number of positive charges on H1‐GDs have evolved for function rather than structure and high stability. The stabilization of the GD upon binding to DNA can thus be expected to have a pronounced electrostatic component, a contribution that is amenable to modulation by posttranslational modifications, especially acetylation and phosphorylation. PDB Code(s): 6hq1;
Collapse
|
|
3 |
4 |
9
|
Almeyda CV, Eid SG, Saar D, Samuitiene M, Pappu HR. Comparative analysis of endogenous plant pararetroviruses in cultivated and wild Dahlia spp. Virus Genes 2013; 48:140-52. [PMID: 24353027 DOI: 10.1007/s11262-013-0997-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 10/16/2013] [Indexed: 11/28/2022]
Abstract
Two distinct caulimoviruses, Dahlia mosaic virus (DMV) and Dahlia common mosaic virus, and an endogenous plant pararetroviral sequence (DvEPRS) were reported in Dahlia spp. DvEPRS, previously referred to as DMV-D10, was originally identified in the US from the cultivated Dahlia variabilis, and has also been found in New Zealand, Lithuania and Egypt, as well as in wild dahlia species growing in their natural habitats in Mexico. Sequence analysis of three new EPRSs from cultivated dahlias from Lithuania [D10-LT; 7,159 nucleotide level (nt)], New Zealand (D10-NZ, 7,156 nt), and the wild species, Dahlia rupicola, from Mexico (D10-DR, 7,133 nt) is reported in this study. The three EPRSs have the structure and organization typical of a caulimovirus species and showed identities among various open reading frames (ORFs) ranging between 71 and 97 % at the nt when compared to those or the known DvEPRS from the US. Examination of a dataset of seven full-length EPRSs obtained to date from cultivated and wild Dahlia spp. provided clues into genetic diversity of these EPRSs from diverse sources of dahlia. Phylogenetic analyses, mutation frequencies, potential recombination events, selection, and fitness were evaluated as evolutionary evidences for genetic variation. Assessment of all ORFs using phylogenomic and population genetics approaches suggests a wide genetic diversity of EPRSs occurring in dahlias. Phylogenetic analyses show that the EPRSs from various sources form one clade indicating a lack of clustering by geographical origin. Grouping of various EPRSs into two host taxa (cultivated vs. wild) shows little divergence with respect to their origin. Population genetic parameters demonstrate negative selection for all ORFs, with the reverse transcriptase region more variable than other ORFs. Recombination events were found which provide evolutionary evidence for genetic diversity among dahlia-associated EPRSs. This study contributes to an increased understanding of molecular population genetics and evolutionary pathways of these reverse transcribing viral elements.
Collapse
|
|
12 |
1 |
10
|
McDowell MA, Heimes M, Enkavi G, Farkas Á, Saar D, Wild K, Schwappach B, Vattulainen I, Sinning I. The GET insertase exhibits conformational plasticity and induces membrane thinning. Nat Commun 2023; 14:7355. [PMID: 37963916 PMCID: PMC10646013 DOI: 10.1038/s41467-023-42867-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023] Open
Abstract
The eukaryotic guided entry of tail-anchored proteins (GET) pathway mediates the biogenesis of tail-anchored (TA) membrane proteins at the endoplasmic reticulum. In the cytosol, the Get3 chaperone captures the TA protein substrate and delivers it to the Get1/Get2 membrane protein complex (GET insertase), which then inserts the substrate via a membrane-embedded hydrophilic groove. Here, we present structures, atomistic simulations and functional data of human and Chaetomium thermophilum Get1/Get2/Get3. The core fold of the GET insertase is conserved throughout eukaryotes, whilst thinning of the lipid bilayer occurs in the vicinity of the hydrophilic groove to presumably lower the energetic barrier of membrane insertion. We show that the gating interaction between Get2 helix α3' and Get3 drives conformational changes in both Get3 and the Get1/Get2 membrane heterotetramer. Thus, we provide a framework to understand the conformational plasticity of the GET insertase and how it remodels its membrane environment to promote substrate insertion.
Collapse
|
research-article |
2 |
1 |
11
|
Saar D, Grossman Y, Barkai E. Reduced synaptic facilitation between pyramidal neurons in the piriform cortex after odor learning. J Neurosci 1999; 19:8616-22. [PMID: 10493761 PMCID: PMC6783041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/1999] [Revised: 07/14/1999] [Accepted: 07/14/1999] [Indexed: 02/14/2023] Open
Abstract
Learning-related cellular modifications were studied in the rat piriform cortex after operand conditioning. Rats were trained to discriminate positive cues in pairs of odors. In one experimental paradigm, rats were trained to memorize 35-50 pairs of odors ("extensive training"). In another paradigm, training was continued only until rats acquired the rule of the task, usually after learning the first two pairs of odors ("short training"). "Pseudotrained" and "naive" rats served as controls. We have previously shown that "rule learning" of this task was accompanied by reduced spike afterhyperpolarization in pyramidal neurons in brain slices of the piriform cortex. In the present study, synaptic inputs to the same cells were examined. Pairs of electrical stimuli applied to the intrinsic fibers that interconnect layer II pyramidal neurons revealed significant reduction in paired-pulse facilitation (PPF) in this pathway even after short training. PPF in shortly trained rats was reduced to the same extent as in extensively trained rats. PPF reduction did not result from modification of membrane properties in the postsynaptic cells, change in postsynaptic inhibition, or impairment of the facilitation mechanism. Extracellular field potential recordings showed enhanced synaptic transmission in these synapses. The reduction in PPF became apparent only 3 d after task acquisition and returned to control value 5 d later. PPF evoked by stimulating the afferent fibers to the same neurons was increased 1 d after training for 2 d. We suggest that the transient enhancement in connectivity in the intrinsic pathway is related to the enhanced learning capability and not to memory for specific odors, which lasts for weeks.
Collapse
|
research-article |
26 |
|
12
|
Ardenkjær-Skinnerup J, Saar D, Petersen PSS, Pedersen M, Svingen T, Kragelund BB, Hadrup N, Ravn-Haren G, Emanuelli B, Brown KA, Vogel U. PPARγ antagonists induce aromatase transcription in adipose tissue cultures. Biochem Pharmacol 2024; 222:116095. [PMID: 38423186 DOI: 10.1016/j.bcp.2024.116095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/11/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Aromatase is the rate-limiting enzyme in the biosynthesis of estrogens and a key risk factor for hormone receptor-positive breast cancer. In postmenopausal women, estrogens synthesized in adipose tissue promotes the growth of estrogen receptor positive breast cancers. Activation of peroxisome proliferator-activated receptor gamma (PPARγ) in adipose stromal cells (ASCs) leads to decreased expression of aromatase and differentiation of ASCs into adipocytes. Environmental chemicals can act as antagonists of PPARγ and disrupt its function. This study aimed to test the hypothesis that PPARγ antagonists can promote breast cancer by stimulating aromatase expression in human adipose tissue. Primary cells and explants from human adipose tissue as well as A41hWAT, C3H10T1/2, and H295R cell lines were used to investigate PPARγ antagonist-stimulated effects on adipogenesis, aromatase expression, and estrogen biosynthesis. Selected antagonists inhibited adipocyte differentiation, preventing the adipogenesis-associated downregulation of aromatase. NMR spectroscopy confirmed direct interaction between the potent antagonist DEHPA and PPARγ, inhibiting agonist binding. Short-term exposure of ASCs to PPARγ antagonists upregulated aromatase only in differentiated cells, and a similar effect could be observed in human breast adipose tissue explants. Overexpression of PPARG with or without agonist treatment reduced aromatase expression in ASCs. The data suggest that environmental PPARγ antagonists regulate aromatase expression in adipose tissue through two mechanisms. The first is indirect and involves inhibition of adipogenesis, while the second occurs more acutely.
Collapse
|
|
1 |
|
13
|
Chang YC, Hsieh ML, Lee HL, Hee SW, Chang CF, Yen HY, Chen YA, Chen YR, Chou YW, Li FA, Ke YY, Chen SY, Hung MS, Hung AFH, Huang JY, Chiu CH, Lin SY, Shih SF, Hsu CN, Hwang JJ, Yeh TK, Cheng TJR, Liao KCW, Laio D, Lin SW, Chen TY, Hu CM, Vogel U, Saar D, Kragelund BB, Tsou LK, Tseng YH, Chuang LM. Identification of PTGR2 inhibitors as a new therapeutic strategy for diabetes and obesity. EMBO Mol Med 2025:10.1038/s44321-025-00216-4. [PMID: 40119175 DOI: 10.1038/s44321-025-00216-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 03/24/2025] Open
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is a master transcriptional regulator of systemic insulin sensitivity and energy balance. The anti-diabetic drug thiazolidinediones (TZDs) are potent synthetic PPARγ ligands with undesirable side effects, including obesity, fluid retention, and osteoporosis. 15-keto prostaglandin E2 (15-keto-PGE2) is an endogenous PPARγ ligand metabolized by prostaglandin reductase 2 (PTGR2). Here, we confirmed that 15-keto-PGE2 binds to and activates PPARγ via covalent binding. In patients with type 2 diabetes and obese mice, serum 15-keto-PGE2 levels were decreased. Administration of 15-keto-PGE2 improves glucose homeostasis and prevented diet-induced obesity in mice. Either genetic inhibition of PTGR2 or PTGR2 inhibitor BPRPT0245 protected mice from diet-induced obesity, insulin resistance, and hepatic steatosis without causing fluid retention and osteoporosis. In conclusion, inhibition of PTGR2 is a new therapeutic approach to treat diabetes and obesity through increasing endogenous PPARγ ligands while avoiding side effects including increased adiposity, fluid retention, and osteoporosis.
Collapse
|
|
1 |
|
14
|
Saar D, Lebel D, Grossman Y, Barkai E. Transient synaptic modifications in piriform cortex pyramidal cells associated with odor learning. Neurosci Lett 1997. [DOI: 10.1016/s0304-3940(97)90176-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
|
28 |
|
15
|
Weidner P, Saar D, Söhn M, Schroeder T, Yu Y, Zöllner FG, Ponelies N, Zhou X, Zwicky A, Rohrbacher FN, Pattabiraman VR, Tanriver M, Bauer A, Ahmed H, Ametamey SM, Riffel P, Seger R, Bode JW, Wade RC, Ebert MPA, Kragelund BB, Burgermeister E. Myotubularin-related-protein-7 inhibits mutant (G12V) K-RAS by direct interaction. Cancer Lett 2024; 588:216783. [PMID: 38462034 DOI: 10.1016/j.canlet.2024.216783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/19/2024] [Accepted: 03/03/2024] [Indexed: 03/12/2024]
Abstract
Inhibition of K-RAS effectors like B-RAF or MEK1/2 is accompanied by treatment resistance in cancer patients via re-activation of PI3K and Wnt signaling. We hypothesized that myotubularin-related-protein-7 (MTMR7), which inhibits PI3K and ERK1/2 signaling downstream of RAS, directly targets RAS and thereby prevents resistance. Using cell and structural biology combined with animal studies, we show that MTMR7 binds and inhibits RAS at cellular membranes. Overexpression of MTMR7 reduced RAS GTPase activities and protein levels, ERK1/2 phosphorylation, c-FOS transcription and cancer cell proliferation in vitro. We located the RAS-inhibitory activity of MTMR7 to its charged coiled coil (CC) region and demonstrate direct interaction with the gastrointestinal cancer-relevant K-RASG12V mutant, favouring its GDP-bound state. In mouse models of gastric and intestinal cancer, a cell-permeable MTMR7-CC mimicry peptide decreased tumour growth, Ki67 proliferation index and ERK1/2 nuclear positivity. Thus, MTMR7 mimicry peptide(s) could provide a novel strategy for targeting mutant K-RAS in cancers.
Collapse
|
|
1 |
|
16
|
Saar D, Grossman Y, Barkai E. Odor discrimination learning is correlated with reduced after-hyperpolarization in piriform cortex pyramidal cells. Neurosci Lett 1997. [DOI: 10.1016/s0304-3940(97)90175-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
|
28 |
|
17
|
Saar D, Lennartsson CLE, Weidner P, Burgermeister E, Kragelund BB. The Myotubularin Related Proteins and the Untapped Interaction Potential of Their Disordered C-Terminal Regions. Proteins 2025; 93:831-854. [PMID: 39614773 DOI: 10.1002/prot.26774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 03/05/2025]
Abstract
Intrinsically disordered regions (IDRs) of proteins remain understudied with enigmatic sequence features relevant to their functions. Members of the myotubularin-related protein (MTMR) family contain uncharacterized IDRs. After decades of research on their phosphatase activity, recent work on the C-terminal IDRs of MTMR7 revealed new interactions and important new functions beyond the phosphatase function. Here we take a broader look at the C-terminal domains (CTDs) of 14 human MTMRs and use bioinformatic tools and biophysical methods to ask which other functions may be probable in this protein family. The predictions show that the CTDs are disordered and carry short linear motifs (SLiMs) important for targeting of MTMRs to defined subcellular compartments and implicating them in signaling, phase separation, interaction with diverse proteins, including transcription factors and are of relevance for cancer research and neuroscience. We also present experimental methods to study the CTDs and use them to characterize the coiled coil (CC) domains of MTMR7 and MTMR9. We show homo- and hetero-oligomerization with preference for MTMR7-CC to form dimers, while MTMR9-CC forms trimers. We relate the results to sequence features and make predictions for the structural landscape of other MTMRs. Our work gives a broad insight into the so far unrecognized features and SLiMs in MTMR-CTDs, and provides the basis for more in-depth experimental research on this diverse protein family and understudied IDRs in proteins in general.
Collapse
|
|
1 |
|
18
|
Ariel GB, Saar D, Selinger A, Penny MA, Saar I. COMPUTERIZED FORMATION ANALYSIS FOR TEAM EVENTS. Med Sci Sports Exerc 1983. [DOI: 10.1249/00005768-198315020-00118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
|
42 |
|
19
|
Ardenkjær-Skinnerup J, Saar D, Christiansen S, Svingen T, Hadrup N, Brown KA, Emanuelli B, Kragelund BB, Ravn-Haren G, Vogel U. Effects of ethanol or ethylene glycol exposure on PPARγ and aromatase expression in adipose tissue. Biochem Biophys Rep 2024; 38:101742. [PMID: 38873224 PMCID: PMC11170351 DOI: 10.1016/j.bbrep.2024.101742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/15/2024] Open
Abstract
The estrogen-synthesizing enzyme aromatase is expressed in adipose tissue where it controls the local concentration of estrogen. It has been suggested that the organic solvents ethanol and ethylene glycol can induce estrogen synthesis by inhibiting PPARγ activity. Since elevated estrogen synthesis in adipose tissue is a risk factor for breast cancer development, it is of interest to further characterize the mechanisms regulating aromatase expression. Here, we explored the mechanisms by which ethanol and ethylene glycol modulate aromatase mRNA expression and the ultimate conversion of androgens into estrogens. NMR spectroscopy revealed that ethanol and ethylene glycol influence the active state of PPARγ. An inhibitory effect on PPARγ was confirmed by adipogenesis assays and PPARγ target gene expression analysis in adipocytes. However, only ethanol increased aromatase mRNA in differentiated human adipocytes. In contrast, ethylene glycol downregulated aromatase in a PPARγ-independent manner. An animal study using female Wistar rats was conducted to assess the acute effects of ethanol and ethylene glycol on aromatase expression in adipose tissue within a physiological context. No changes in aromatase or PPARγ target gene (Adipoq and Fabp4) levels were observed in adipose tissue or ovary in response to the chemical exposures, suggesting an absence of acute PPARγ-mediated effects in these organs. The results suggest that ethanol and ethylene glycol are weak PPARγ antagonists in mouse and human adipocytes as well as in cell-free NMR spectroscopy. Both compounds seem to affect adipocyte aromatase expression in vitro, where ethanol increased aromatase expression PPARγ-dependently and ethylene glycol decreased aromatase expression independently of PPARγ. No acute effects on aromatase expression or PPARγ activity were observed in adipose tissue or ovary in rats in this study design.
Collapse
|
research-article |
1 |
|
20
|
Saar D, Grossman Y, Barkai E. Long-lasting cholinergic modulation underlies rule learning in rats. J Neurosci 2001; 21:1385-92. [PMID: 11160410 PMCID: PMC6762243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
We studied the role of acetylcholine (ACh) in creating learning-related long-lasting modifications in the rat cortex. Rats were trained to discriminate positive and negative cues in pairs of odors, until they demonstrated rule learning and entered a mode of high capability for learning of additional odors. We have previously reported that pyramidal neurons in olfactory (piriform) cortex from trained rats had reduced spike afterhyperpolarization (AHP) for 3 d after rule learning. In the present study we examined the mechanism underlying this long-lasting modification. The cholinergic agonist carbachol reduced both slow AHP and firing adaptation in neurons from pseudotrained rats, but had no effect on neurons from trained rats, suggesting pre-existing cholinergic effect. Intracellular application of the calcium chelator BAPTA abolished the difference in slow AHP and in adaptation between groups, suggesting that the difference resulted from reduction in the ACh-sensitive, Ca(2+)-dependent potassium current, I(AHP). At the behavioral level, application of the muscarinic blocker scopolamine before each training session delayed rule learning but had no effect on further acquisition of odor memory. We suggest that intense ACh activity during rule learning enhances neuronal excitability in the piriform cortex by reducing I(AHP) and that the effect outlasts the stage of rule learning, so that ACh activity is not crucial for further odor learning.
Collapse
|
research-article |
24 |
|