1
|
Summerer D, Chen S, Wu N, Deiters A, Chin JW, Schultz PG. A genetically encoded fluorescent amino acid. Proc Natl Acad Sci U S A 2006; 103:9785-9. [PMID: 16785423 PMCID: PMC1502531 DOI: 10.1073/pnas.0603965103] [Citation(s) in RCA: 216] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ability to introduce fluorophores selectively into proteins provides a powerful tool to study protein structure, dynamics, localization, and biomolecular interactions both in vitro and in vivo. Here, we report a strategy for the selective and efficient biosynthetic incorporation of a low-molecular-weight fluorophore into proteins at defined sites. The fluorescent amino acid 2-amino-3-(5-(dimethylamino)naphthalene-1-sulfonamide)propanoic acid (dansylalanine) was genetically encoded in Saccharomyces cerevisiae by using an amber nonsense codon and corresponding orthogonal tRNA/aminoacyl-tRNA synthetase pair. This environmentally sensitive fluorophore was selectively introduced into human superoxide dismutase and used to monitor unfolding of the protein in the presence of guanidinium chloride. The strategy described here should be applicable to a number of different fluorophores in both prokaryotic and eukaryotic organisms, and it should facilitate both biochemical and cellular studies of protein structure and function.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
216 |
2
|
Lemke EA, Summerer D, Geierstanger BH, Brittain SM, Schultz PG. Control of protein phosphorylation with a genetically encoded photocaged amino acid. Nat Chem Biol 2007; 3:769-72. [PMID: 17965709 DOI: 10.1038/nchembio.2007.44] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Accepted: 09/20/2007] [Indexed: 01/15/2023]
Abstract
We genetically encoded the photocaged amino acid 4,5-dimethoxy-2-nitrobenzylserine (DMNB-Ser) in Saccharomyces cerevisiae in response to the amber nonsense codon TAG. This amino acid was converted to serine in living cells by irradiation with relatively low-energy blue light and was used to noninvasively photoactivate phosphorylation of the transcription factor Pho4, which controls the cellular response to inorganic phosphate. When substituted at phosphoserine sites that control nuclear export of Pho4, blocks phosphorylation and subsequent export by the receptor Msn5 (ref. 2). We triggered phosphorylation of individual serine residues with a visible laser pulse and monitored nuclear export of Pho4-GFP fusion constructs in real time. We observed distinct export kinetics for differentially phosphorylated Pho4 mutants, which demonstrates dynamic regulation of Pho4 function. This methodology should also facilitate the analysis of other cellular processes involving free serine residues, including catalysis, biomolecular recognition and ion transport.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
210 |
3
|
Deiters A, Cropp TA, Summerer D, Mukherji M, Schultz PG. Site-specific PEGylation of proteins containing unnatural amino acids. Bioorg Med Chem Lett 2004; 14:5743-5. [PMID: 15501033 DOI: 10.1016/j.bmcl.2004.09.059] [Citation(s) in RCA: 196] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Accepted: 09/17/2004] [Indexed: 10/26/2022]
Abstract
Here, we report a generally applicable PEGylation methodology based on the site-specific incorporation of para-azidophenylalanine into proteins in yeast. The azido group was used in a mild [3+2] cycloaddition reaction with an alkyne derivatized PEG reagent to afford selectively PEGylated protein. This strategy should be useful for the generation of selectively PEGylated proteins for therapeutic applications.
Collapse
|
|
21 |
196 |
4
|
Schmidt MJ, Borbas J, Drescher M, Summerer D. A Genetically Encoded Spin Label for Electron Paramagnetic Resonance Distance Measurements. J Am Chem Soc 2014; 136:1238-41. [DOI: 10.1021/ja411535q] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
|
11 |
120 |
5
|
Tippmann EM, Liu W, Summerer D, Mack AV, Schultz PG. A genetically encoded diazirine photocrosslinker in Escherichia coli. Chembiochem 2008; 8:2210-4. [PMID: 18000916 DOI: 10.1002/cbic.200700460] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
Research Support, U.S. Gov't, Non-P.H.S. |
17 |
79 |
6
|
Jones DH, Cellitti SE, Hao X, Zhang Q, Jahnz M, Summerer D, Schultz PG, Uno T, Geierstanger BH. Site-specific labeling of proteins with NMR-active unnatural amino acids. JOURNAL OF BIOMOLECULAR NMR 2010; 46:89-100. [PMID: 19669620 DOI: 10.1007/s10858-009-9365-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 07/17/2009] [Indexed: 05/19/2023]
Abstract
A large number of amino acids other than the canonical amino acids can now be easily incorporated in vivo into proteins at genetically encoded positions. The technology requires an orthogonal tRNA/aminoacyl-tRNA synthetase pair specific for the unnatural amino acid that is added to the media while a TAG amber or frame shift codon specifies the incorporation site in the protein to be studied. These unnatural amino acids can be isotopically labeled and provide unique opportunities for site-specific labeling of proteins for NMR studies. In this perspective, we discuss these opportunities including new photocaged unnatural amino acids, outline usage of metal chelating and spin-labeled unnatural amino acids and expand the approach to in-cell NMR experiments.
Collapse
|
Review |
15 |
69 |
7
|
Roser P, Schmidt MJ, Drescher M, Summerer D. Site-directed spin labeling of proteins for distance measurements in vitro and in cells. Org Biomol Chem 2016; 14:5468-76. [DOI: 10.1039/c6ob00473c] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We here review strategies for site-directed spin labeling (SDSL) of proteins and discuss their potential for EPR distance measurements to study protein function in vitro and in cells.
Collapse
|
|
9 |
66 |
8
|
Summerer D. Enabling technologies of genomic-scale sequence enrichment for targeted high-throughput sequencing. Genomics 2009; 94:363-8. [PMID: 19720138 DOI: 10.1016/j.ygeno.2009.08.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 08/12/2009] [Accepted: 08/22/2009] [Indexed: 10/20/2022]
Abstract
Next-generation sequencing has still not reached its full potential due to the technical inability of effectively targeting desired genomic regions of interest. Once available, methods adressing this bottleneck will dramatically reduce cost and enable the efficient analysis of complex samples. Recently, a number of possible approaches for genomic-scale sequence enrichment have been reported using different strategies. All methods basically rely on sequence-specific nucleic acid hybridization, however, they differ in several aspects such as the use of solid phase versus solution phase hybridization, probe design and overall workflows with implications for automation. Overall, several key challenges of genome-wide sequence enrichment have become clear after these studies that remain to be overcome. We summarize the different technologies and highlight individual characteristics related to general potential and different suitabilities for specific applications.
Collapse
|
Review |
16 |
64 |
9
|
Pott M, Schmidt MJ, Summerer D. Evolved sequence contexts for highly efficient amber suppression with noncanonical amino acids. ACS Chem Biol 2014; 9:2815-22. [PMID: 25299570 DOI: 10.1021/cb5006273] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The expansion of the genetic code with noncanonical amino acids (ncAA) enables the function of proteins to be tailored with high molecular precision. In this approach, the ncAA is charged to an orthogonal nonsense suppressor tRNA by an aminoacyl-tRNA-synthetase (aaRS) and incorporated into the target protein in vivo by suppression of nonsense codons in the mRNA during ribosomal translation. Compared to sense codon translation, this process occurs with reduced efficiency. However, it is still poorly understood, how the local sequence context of the nonsense codon affects suppression efficiency. Here, we report sequence contexts for highly efficient suppression of the widely used amber codon in E. coli for the orthogonal Methanocaldococcus jannaschii tRNA(Tyr)/TyrRS and Methanosarcina mazei tRNA(Pyl)/PylRS pairs. In vivo selections of sequence context libraries consisting of each two random codons directly up- and downstream of an amber codon afforded contexts with strong preferences for particular mRNA nucleotides and/or amino acids that markedly differed from preferences of contexts obtained in control selections with sense codons. The contexts provided high amber suppression efficiencies with little ncAA-dependence that were transferrable between proteins and resulted in protein expression levels of 70-110% compared to levels of control proteins without amber codon. These sequence contexts represent stable tags for robust and highly efficient incorporation of ncAA into proteins in standard E. coli strains and provide general design rules for the engineering of amber codons into target genes.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
63 |
10
|
Summerer D, Rudinger NZ, Detmer I, Marx A. Enhanced fidelity in mismatch extension by DNA polymerase through directed combinatorial enzyme design. Angew Chem Int Ed Engl 2006; 44:4712-5. [PMID: 15995989 DOI: 10.1002/anie.200500047] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
Research Support, Non-U.S. Gov't |
19 |
54 |
11
|
|
|
23 |
45 |
12
|
|
|
23 |
44 |
13
|
Summerer D, Marx A. DNA Polymerase Selectivity: Sugar Interactions Monitored with High-Fidelity Nucleotides This work was supported by a grant from the Deutsche Forschungsgemeinschaft. We thank Professor Dr. Michael Famulok for his continuing support. Angew Chem Int Ed Engl 2001; 40:3693-3695. [PMID: 11592225 DOI: 10.1002/1521-3773(20011001)40:19<3693::aid-anie3693>3.0.co;2-o] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
|
24 |
42 |
14
|
Tsao ML, Summerer D, Ryu Y, Schultz PG. The genetic incorporation of a distance probe into proteins in Escherichia coli. J Am Chem Soc 2007; 128:4572-3. [PMID: 16594684 DOI: 10.1021/ja058262u] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The unnatural amino acid p-nitrophenylalanine (pNO2-Phe) was genetically introduced into proteins in Escherichia coli in response to the amber nonsense codon with high fidelity and efficiency by means of an evolved tRNA/aminoacyl-tRNA synthetase pair from Methanocuccus jannaschii. It was shown that pNO2-Phe efficiently quenches the intrinsic fluorescence of Trp in a distance-dependent manner in a model GCN4 basic region leucine zipper (bZIP) protein. Thus, the pNO2-Phe/Trp pair should be a useful biophysical probe of protein structure and function.
Collapse
|
Journal Article |
18 |
40 |
15
|
Summerer D, Wu H, Haase B, Cheng Y, Schracke N, Stähler CF, Chee MS, Stähler PF, Beier M. Microarray-based multicycle-enrichment of genomic subsets for targeted next-generation sequencing. Genome Res 2009; 19:1616-21. [PMID: 19638418 DOI: 10.1101/gr.091942.109] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The lack of efficient high-throughput methods for enrichment of specific sequences from genomic DNA represents a key bottleneck in exploiting the enormous potential of next-generation sequencers. Such methods would allow for a systematic and targeted analysis of relevant genomic regions. Recent studies reported sequence enrichment using a hybridization step to specific DNA capture probes as a possible solution to the problem. However, so far no method has provided sufficient depths of coverage for reliable base calling over the entire target regions. We report a strategy to multiply the enrichment performance and consequently improve depth and breadth of coverage for desired target sequences by applying two iterative cycles of hybridization with microfluidic Geniom biochips. Using this strategy, we enriched and then sequenced the cancer-related genes BRCA1 and TP53 and a set of 1000 individual dbSNP regions of 500 bp using Illumina technology. We achieved overall enrichment factors of up to 1062-fold and average coverage depths of 470-fold. Combined with high coverage uniformity, this resulted in nearly complete consensus coverages with >86% of target region covered at 20-fold or higher. Analysis of SNP calling accuracies after enrichment revealed excellent concordance, with the reference sequence closely mirroring the previously reported performance of Illumina sequencing conducted without sequence enrichment.
Collapse
|
Journal Article |
16 |
37 |
16
|
Schmidt MJ, Fedoseev A, Bücker D, Borbas J, Peter C, Drescher M, Summerer D. EPR Distance Measurements in Native Proteins with Genetically Encoded Spin Labels. ACS Chem Biol 2015; 10:2764-71. [PMID: 26421438 DOI: 10.1021/acschembio.5b00512] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The genetic encoding of nitroxide amino acids in combination with electron paramagnetic resonance (EPR) distance measurements enables precise structural studies of native proteins, i.e. without the need for mutations to create unique reactive sites for chemical labeling and thus with minimal structural perturbation. We here report on in vitro DEER measurements in native E. coli thioredoxin (TRX) that establish the nitroxide amino acid SLK-1 as a spectroscopic probe that reports distances and conformational flexibilities in the enzyme with nonmutated catalytic centers that are not accessible by the use of the traditional methanethiosulfonate spin label (MTSSL). We generated a rotamer library for SLK-1 that in combination with molecular dynamics (MD) simulation enables predictions of distance distributions between two SLK-1 labels incorporated into a target protein. Toward a routine use of SLK-1 for EPR distance measurements in proteins and the advancement of the approach to intracellular environments, we study the stability of SLK-1 in E. coli cultures and lysates and establish guidelines for protein expression and purification that offer maximal nitroxide stability. These advancements and insights provide new perspectives for facile structural studies of native, endogenous proteins by EPR distance measurements.
Collapse
|
|
10 |
35 |
17
|
Kubik G, Schmidt MJ, Penner JE, Summerer D. Programmable and highly resolved in vitro detection of 5-methylcytosine by TALEs. Angew Chem Int Ed Engl 2014; 53:6002-6. [PMID: 24801054 DOI: 10.1002/anie.201400436] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 03/25/2014] [Indexed: 01/20/2023]
Abstract
Gene expression is extensively regulated by specific patterns of genomic 5-methylcytosine (mC), but the ability to directly detect this modification at user-defined genomic loci is limited. One reason is the lack of molecules that discriminate between mC and cytosine (C) and at the same time provide inherent, programmable sequence-selectivity. Programmable transcription-activator-like effectors (TALEs) have been observed to exhibit mC-sensitivity in vivo, but to only a limited extent in vitro. We report an mC-detection assay based on TALE control of DNA replication that displays unexpectedly strong mC-discrimination ability in vitro. The status and level of mC modification at single positions in oligonucleotides can be determined unambiguously by this assay, independently of the overall target sequence. Moreover, discrimination is reliably observed for positions bound by N-terminal and central regions of TALEs. This indicates the wide scope and robustness of the approach for highly resolved mC detection and enabled the detection of a single mC in a large, eukaryotic genome.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
34 |
18
|
Abstract
5-Hydroxymethylcytosine (hmC), the sixth base of the mammalian genome, is increasingly recognized as an epigenetic mark with important biological functions. We report engineered, programmable transcription-activator-like effectors (TALEs) as the first DNA-binding receptor molecules that provide direct, individual selectivities for cytosine (C), 5-methylcytosine (mC), and hmC at user-defined DNA sequences. Given the wide applicability of TALEs for programmable targeting of DNA sequences in vitro and in vivo, this provides broad perspectives for epigenetic research.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
33 |
19
|
Braun T, Drescher M, Summerer D. Expanding the Genetic Code for Site-Directed Spin-Labeling. Int J Mol Sci 2019; 20:ijms20020373. [PMID: 30654584 PMCID: PMC6359334 DOI: 10.3390/ijms20020373] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/10/2019] [Accepted: 01/15/2019] [Indexed: 02/04/2023] Open
Abstract
Site-directed spin labeling (SDSL) in combination with electron paramagnetic resonance (EPR) spectroscopy enables studies of the structure, dynamics, and interactions of proteins in the noncrystalline state. The scope and analytical value of SDSL⁻EPR experiments crucially depends on the employed labeling strategy, with key aspects being labeling chemoselectivity and biocompatibility, as well as stability and spectroscopic properties of the resulting label. The use of genetically encoded noncanonical amino acids (ncAA) is an emerging strategy for SDSL that holds great promise for providing excellent chemoselectivity and potential for experiments in complex biological environments such as living cells. We here give a focused overview of recent advancements in this field and discuss their potentials and challenges for advancing SDSL⁻EPR studies.
Collapse
|
Review |
6 |
31 |
20
|
Widder P, Berner F, Summerer D, Drescher M. Double Nitroxide Labeling by Copper-Catalyzed Azide-Alkyne Cycloadditions with Noncanonical Amino Acids for Electron Paramagnetic Resonance Spectroscopy. ACS Chem Biol 2019; 14:839-844. [PMID: 30998314 PMCID: PMC6534342 DOI: 10.1021/acschembio.8b01111] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/18/2019] [Indexed: 01/17/2023]
Abstract
Electron paramagnetic resonance spectroscopy in combination with site-directed spin labeling (SDSL) is an important tool to obtain long-range distance restraints for protein structural research. We here study a variety of azide- and alkyne-bearing noncanonical amino acids (ncAA) in terms of protein single- and double-incorporation efficiency via nonsense suppression, metabolic stability, yields of nitroxide labeling via copper-catalyzed [3 + 2] azide-alkyne cycloadditions (CuAAC), and spectroscopic properties in continuous-wave and double electron-electron resonance measurements. We identify para-ethynyl-l-phenylalanine and para-propargyloxy-l-phenylalanine as suitable ncAA for CuAAC-based SDSL that will complement current SDSL approaches, particularly in cases in which essential cysteines of a target protein prevent the use of sulfhydryl-reactive spin labels.
Collapse
|
brief-report |
6 |
30 |
21
|
Widder P, Schuck J, Summerer D, Drescher M. Combining site-directed spin labeling in vivo and in-cell EPR distance determination. Phys Chem Chem Phys 2020; 22:4875-4879. [DOI: 10.1039/c9cp05584c] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Non-canonical amino acid incorporation via amber stop codon suppression and in vivo site-directed spin labeling allow in-cell EPR distance determination in E. coli.
Collapse
|
|
5 |
27 |
22
|
Summerer D, Marx A. Differential minor groove interactions between DNA polymerase and sugar backbone of primer and template strands. J Am Chem Soc 2002; 124:910-1. [PMID: 11829591 DOI: 10.1021/ja017244j] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
DNA polymerases are the key enzymes for DNA synthesis involved in DNA replication, recombination, and repair. These enzymes undergo manifold contacts with the primer-template-substrates reaching up to several nucleotide pairs beyond the catalytic centre. To evaluate these enzyme contacts with the DNA substrates we applied novel synthetic steric probes in functional studies. We found that through application of the these probes valuable insights into DNA polymerase function can be gained, which might be useful for the design of new DNA polymerase-based nucleotide variation detection strategies.
Collapse
|
|
23 |
26 |
23
|
Rathi P, Maurer S, Summerer D. Selective recognition of N4-methylcytosine in DNA by engineered transcription-activator-like effectors. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0078. [PMID: 29685980 DOI: 10.1098/rstb.2017.0078] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2017] [Indexed: 01/03/2023] Open
Abstract
The epigenetic DNA nucleobases 5-methylcytosine (5mC) and N4-methylcytosine (4mC) coexist in bacterial genomes and have important functions in host defence and transcription regulation. To better understand the individual biological roles of both methylated nucleobases, analytical strategies for distinguishing unmodified cytosine (C) from 4mC and 5mC are required. Transcription-activator-like effectors (TALEs) are programmable DNA-binding repeat proteins, which can be re-engineered for the direct detection of epigenetic nucleobases in user-defined DNA sequences. We here report the natural, cytosine-binding TALE repeat to not strongly differentiate between 5mC and 4mC. To engineer repeats with selectivity in the context of C, 5mC and 4mC, we developed a homogeneous fluorescence assay and screened a library of size-reduced TALE repeats for binding to all three nucleobases. This provided insights into the requirements of size-reduced TALE repeats for 4mC binding and revealed a single mutant repeat as a selective binder of 4mC. Employment of a TALE with this repeat in affinity enrichment enabled the isolation of a user-defined DNA sequence containing a single 4mC but not C or 5mC from the background of a bacterial genome. Comparative enrichments with TALEs bearing this or the natural C-binding repeat provides an approach for the complete, programmable decoding of all cytosine nucleobases found in bacterial genomes.This article is part of a discussion meeting issue 'Frontiers in epigenetic chemical biology'.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
26 |
24
|
Kubik G, Summerer D. Achieving single-nucleotide resolution of 5-methylcytosine detection with TALEs. Chembiochem 2014; 16:228-31. [PMID: 25522353 DOI: 10.1002/cbic.201402408] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Indexed: 12/30/2022]
Abstract
We report engineered transcription-activator-like effectors (TALEs) as the first DNA-binding molecules that detect 5-methylcytosine (mC) at single-nucleotide resolution with fully programmable sequence selectivity. This is achieved by a design strategy such that a single cytosine (C) in a DNA sequence is selectively interrogated for its mC-modification level by targeting with a discriminatory TALE repeat; other Cs are ignored by targeting with universal-binding TALE repeats.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
24 |
25
|
Lee YJ, Schmidt MJ, Tharp JM, Weber A, Koenig AL, Zheng H, Gao J, Waters ML, Summerer D, Liu WR. Genetically encoded fluorophenylalanines enable insights into the recognition of lysine trimethylation by an epigenetic reader. Chem Commun (Camb) 2018; 52:12606-12609. [PMID: 27711380 DOI: 10.1039/c6cc05959g] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Fluorophenylalanines bearing 2-5 fluorine atoms at the phenyl ring have been genetically encoded by amber codon. Replacement of F59, a phenylalanine residue that is directly involved in interactions with trimethylated K9 of histone H3, in the Mpp8 chromodomain recombinantly with fluorophenylalanines significantly impairs the binding to a K9-trimethylated H3 peptide.
Collapse
|
Journal Article |
7 |
22 |