1
|
Guadalupe T, Mathias SR, vanErp TGM, Whelan CD, Zwiers MP, Abe Y, Abramovic L, Agartz I, Andreassen OA, Arias-Vásquez A, Aribisala BS, Armstrong NJ, Arolt V, Artiges E, Ayesa-Arriola R, Baboyan VG, Banaschewski T, Barker G, Bastin ME, Baune BT, Blangero J, Bokde ALW, Boedhoe PSW, Bose A, Brem S, Brodaty H, Bromberg U, Brooks S, Büchel C, Buitelaar J, Calhoun VD, Cannon DM, Cattrell A, Cheng Y, Conrod PJ, Conzelmann A, Corvin A, Crespo-Facorro B, Crivello F, Dannlowski U, de Zubicaray GI, de Zwarte SMC, Deary IJ, Desrivières S, Doan NT, Donohoe G, Dørum ES, Ehrlich S, Espeseth T, Fernández G, Flor H, Fouche JP, Frouin V, Fukunaga M, Gallinat J, Garavan H, Gill M, Suarez AG, Gowland P, Grabe HJ, Grotegerd D, Gruber O, Hagenaars S, Hashimoto R, Hauser TU, Heinz A, Hibar DP, Hoekstra PJ, Hoogman M, Howells FM, Hu H, Hulshoff Pol HE, Huyser C, Ittermann B, Jahanshad N, Jönsson EG, Jurk S, Kahn RS, Kelly S, Kraemer B, Kugel H, Kwon JS, Lemaitre H, Lesch KP, Lochner C, Luciano M, Marquand AF, Martin NG, Martínez-Zalacaín I, Martinot JL, Mataix-Cols D, Mather K, McDonald C, McMahon KL, Medland SE, Menchón JM, Morris DW, Mothersill O, Maniega SM, Mwangi B, et alGuadalupe T, Mathias SR, vanErp TGM, Whelan CD, Zwiers MP, Abe Y, Abramovic L, Agartz I, Andreassen OA, Arias-Vásquez A, Aribisala BS, Armstrong NJ, Arolt V, Artiges E, Ayesa-Arriola R, Baboyan VG, Banaschewski T, Barker G, Bastin ME, Baune BT, Blangero J, Bokde ALW, Boedhoe PSW, Bose A, Brem S, Brodaty H, Bromberg U, Brooks S, Büchel C, Buitelaar J, Calhoun VD, Cannon DM, Cattrell A, Cheng Y, Conrod PJ, Conzelmann A, Corvin A, Crespo-Facorro B, Crivello F, Dannlowski U, de Zubicaray GI, de Zwarte SMC, Deary IJ, Desrivières S, Doan NT, Donohoe G, Dørum ES, Ehrlich S, Espeseth T, Fernández G, Flor H, Fouche JP, Frouin V, Fukunaga M, Gallinat J, Garavan H, Gill M, Suarez AG, Gowland P, Grabe HJ, Grotegerd D, Gruber O, Hagenaars S, Hashimoto R, Hauser TU, Heinz A, Hibar DP, Hoekstra PJ, Hoogman M, Howells FM, Hu H, Hulshoff Pol HE, Huyser C, Ittermann B, Jahanshad N, Jönsson EG, Jurk S, Kahn RS, Kelly S, Kraemer B, Kugel H, Kwon JS, Lemaitre H, Lesch KP, Lochner C, Luciano M, Marquand AF, Martin NG, Martínez-Zalacaín I, Martinot JL, Mataix-Cols D, Mather K, McDonald C, McMahon KL, Medland SE, Menchón JM, Morris DW, Mothersill O, Maniega SM, Mwangi B, Nakamae T, Nakao T, Narayanaswaamy JC, Nees F, Nordvik JE, Onnink AMH, Opel N, Ophoff R, Paillère Martinot ML, Papadopoulos Orfanos D, Pauli P, Paus T, Poustka L, Reddy JY, Renteria ME, Roiz-Santiáñez R, Roos A, Royle NA, Sachdev P, Sánchez-Juan P, Schmaal L, Schumann G, Shumskaya E, Smolka MN, Soares JC, Soriano-Mas C, Stein DJ, Strike LT, Toro R, Turner JA, Tzourio-Mazoyer N, Uhlmann A, Hernández MV, van den Heuvel OA, van der Meer D, van Haren NEM, Veltman DJ, Venkatasubramanian G, Vetter NC, Vuletic D, Walitza S, Walter H, Walton E, Wang Z, Wardlaw J, Wen W, Westlye LT, Whelan R, Wittfeld K, Wolfers T, Wright MJ, Xu J, Xu X, Yun JY, Zhao J, Franke B, Thompson PM, Glahn DC, Mazoyer B, Fisher SE, Francks C. Human subcortical brain asymmetries in 15,847 people worldwide reveal effects of age and sex. Brain Imaging Behav 2017; 11:1497-1514. [PMID: 27738994 PMCID: PMC5540813 DOI: 10.1007/s11682-016-9629-z] [Show More Authors] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The two hemispheres of the human brain differ functionally and structurally. Despite over a century of research, the extent to which brain asymmetry is influenced by sex, handedness, age, and genetic factors is still controversial. Here we present the largest ever analysis of subcortical brain asymmetries, in a harmonized multi-site study using meta-analysis methods. Volumetric asymmetry of seven subcortical structures was assessed in 15,847 MRI scans from 52 datasets worldwide. There were sex differences in the asymmetry of the globus pallidus and putamen. Heritability estimates, derived from 1170 subjects belonging to 71 extended pedigrees, revealed that additive genetic factors influenced the asymmetry of these two structures and that of the hippocampus and thalamus. Handedness had no detectable effect on subcortical asymmetries, even in this unprecedented sample size, but the asymmetry of the putamen varied with age. Genetic drivers of asymmetry in the hippocampus, thalamus and basal ganglia may affect variability in human cognition, including susceptibility to psychiatric disorders.
Collapse
|
Multicenter Study |
8 |
117 |
3
|
Frodl T, Janowitz D, Schmaal L, Tozzi L, Dobrowolny H, Stein DJ, Veltman DJ, Wittfeld K, van Erp TG, Jahanshad N, Block A, Hegenscheid K, Völzke H, Lagopoulos J, Hatton SN, Hickie IB, Frey EM, Carballedo A, Brooks SJ, Vuletic D, Uhlmann A, Veer IM, Walter H, Schnell K, Grotegerd D, Arolt V, Kugel H, Schramm E, Konrad C, Zurowski B, Baune BT, van der Wee NJ, van Tol MJ, Penninx BW, Thompson PM, Hibar DP, Dannlowski U, Grabe HJ. Childhood adversity impacts on brain subcortical structures relevant to depression. J Psychiatr Res 2017; 86:58-65. [PMID: 27918926 PMCID: PMC5564511 DOI: 10.1016/j.jpsychires.2016.11.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 11/14/2016] [Accepted: 11/18/2016] [Indexed: 01/25/2023]
Abstract
Childhood adversity plays an important role for development of major depressive disorder (MDD). There are differences in subcortical brain structures between patients with MDD and healthy controls, but the specific impact of childhood adversity on such structures in MDD remains unclear. Thus, aim of the present study was to investigate whether childhood adversity is associated with subcortical volumes and how it interacts with a diagnosis of MDD and sex. Within the ENIGMA-MDD network, nine university partner sites, which assessed childhood adversity and magnetic resonance imaging in patients with MDD and controls, took part in the current joint mega-analysis. In this largest effort world-wide to identify subcortical brain structure differences related to childhood adversity, 3036 participants were analyzed for subcortical brain volumes using FreeSurfer. A significant interaction was evident between childhood adversity, MDD diagnosis, sex, and region. Increased exposure to childhood adversity was associated with smaller caudate volumes in females independent of MDD. All subcategories of childhood adversity were negatively associated with caudate volumes in females - in particular emotional neglect and physical neglect (independently from age, ICV, imaging site and MDD diagnosis). There was no interaction effect between childhood adversity and MDD diagnosis on subcortical brain volumes. Childhood adversity is one of the contributors to brain structural abnormalities. It is associated with subcortical brain abnormalities that are relevant to psychiatric disorders such as depression.
Collapse
|
research-article |
8 |
66 |
4
|
Tozzi L, Garczarek L, Janowitz D, Stein DJ, Wittfeld K, Dobrowolny H, Lagopoulos J, Hatton SN, Hickie IB, Carballedo A, Brooks SJ, Vuletic D, Uhlmann A, Veer IM, Walter H, Bülow R, Völzke H, Klinger-König J, Schnell K, Schoepf D, Grotegerd D, Opel N, Dannlowski U, Kugel H, Schramm E, Konrad C, Kircher T, Jüksel D, Nenadić I, Krug A, Hahn T, Steinsträter O, Redlich R, Zaremba D, Zurowski B, Fu CH, Dima D, Cole J, Grabe HJ, Connolly CG, Yang TT, Ho TC, LeWinn KZ, Li M, Groenewold NA, Salminen LE, Walter M, Simmons AN, van Erp TG, Jahanshad N, Baune BT, van der Wee NJ, van Tol MJ, Penninx BW, Hibar DP, Thompson PM, Veltman DJ, Schmaal L, Frodl T. Interactive impact of childhood maltreatment, depression, and age on cortical brain structure: mega-analytic findings from a large multi-site cohort. Psychol Med 2020; 50:1020-1031. [PMID: 31084657 PMCID: PMC9254722 DOI: 10.1017/s003329171900093x] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Childhood maltreatment (CM) plays an important role in the development of major depressive disorder (MDD). The aim of this study was to examine whether CM severity and type are associated with MDD-related brain alterations, and how they interact with sex and age. METHODS Within the ENIGMA-MDD network, severity and subtypes of CM using the Childhood Trauma Questionnaire were assessed and structural magnetic resonance imaging data from patients with MDD and healthy controls were analyzed in a mega-analysis comprising a total of 3872 participants aged between 13 and 89 years. Cortical thickness and surface area were extracted at each site using FreeSurfer. RESULTS CM severity was associated with reduced cortical thickness in the banks of the superior temporal sulcus and supramarginal gyrus as well as with reduced surface area of the middle temporal lobe. Participants reporting both childhood neglect and abuse had a lower cortical thickness in the inferior parietal lobe, middle temporal lobe, and precuneus compared to participants not exposed to CM. In males only, regardless of diagnosis, CM severity was associated with higher cortical thickness of the rostral anterior cingulate cortex. Finally, a significant interaction between CM and age in predicting thickness was seen across several prefrontal, temporal, and temporo-parietal regions. CONCLUSIONS Severity and type of CM may impact cortical thickness and surface area. Importantly, CM may influence age-dependent brain maturation, particularly in regions related to the default mode network, perception, and theory of mind.
Collapse
|
Multicenter Study |
5 |
62 |