1
|
Li F, Lu J, Liu J, Liang C, Wang M, Wang L, Li D, Yao H, Zhang Q, Wen J, Zhang ZK, Li J, Lv Q, He X, Guo B, Guan D, Yu Y, Dang L, Wu X, Li Y, Chen G, Jiang F, Sun S, Zhang BT, Lu A, Zhang G. A water-soluble nucleolin aptamer-paclitaxel conjugate for tumor-specific targeting in ovarian cancer. Nat Commun 2017; 8:1390. [PMID: 29123088 PMCID: PMC5680242 DOI: 10.1038/s41467-017-01565-6] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 09/27/2017] [Indexed: 12/05/2022] Open
Abstract
Paclitaxel (PTX) is among the most commonly used first-line drugs for cancer chemotherapy. However, its poor water solubility and indiscriminate distribution in normal tissues remain clinical challenges. Here we design and synthesize a highly water-soluble nucleolin aptamer-paclitaxel conjugate (NucA-PTX) that selectively delivers PTX to the tumor site. By connecting a tumor-targeting nucleolin aptamer (NucA) to the active hydroxyl group at 2' position of PTX via a cathepsin B sensitive dipeptide bond, NucA-PTX remains stable and inactive in the circulation. NucA facilitates the uptake of the conjugated PTX specifically in tumor cells. Once inside cells, the dipeptide bond linker of NucA-PTX is cleaved by cathepsin B and then the conjugated PTX is released for action. The NucA modification assists the selective accumulation of the conjugated PTX in ovarian tumor tissue rather than normal tissues, and subsequently resulting in notably improved antitumor activity and reduced toxicity.
Collapse
|
research-article |
8 |
185 |
2
|
Zhang ZK, Li J, Guan D, Liang C, Zhuo Z, Liu J, Lu A, Zhang G, Zhang BT. A newly identified lncRNA MAR1 acts as a miR-487b sponge to promote skeletal muscle differentiation and regeneration. J Cachexia Sarcopenia Muscle 2018; 9:613-626. [PMID: 29512357 PMCID: PMC5989759 DOI: 10.1002/jcsm.12281] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 11/06/2017] [Accepted: 12/07/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Skeletal muscle atrophy induced by either aging (sarcopenia) or mechanical unloading is associated with serious health consequences. Long non-coding RNAs (lncRNAs) are implicated as important regulators in numerous physiological and pathological processes. METHODS Microarray analysis was performed to identify the differentially expressed lncRNAs in skeletal muscle between adult and aged mice. The most decreased lncRNA in aged skeletal muscle was identified. The C2C12 mouse myoblast cells were used to assess the biological function of the lncRNA in vitro. The target microRNA of lncRNA and the target protein of microRNA were predicted by bioinformatics analysis and validated in vitro. Furthermore, the biology function of the lncRNA in vivo was investigated by local overexpression or knockdown the lncRNA in skeletal muscle. The therapeutic effect of the lncRNA overexpression in age-related or mechanical unloading-induced muscle atrophy was also evaluated. RESULTS We identified a novel lncRNA (muscle anabolic regulator 1, MAR1) which was highly expressed in mice skeletal muscle and positively correlated with muscle differentiation and growth in vitro and in vivo. We predicted and validated that microRNA-487b (miR-487b) was a direct target of MAR1. We also predicted and validated that Wnt5a, an important regulator during myogenesis, was a target of miR-487b in C2C12 cells. Our findings further demonstrated that enforced MAR1 expression in myoblasts led to derepression of Wnt5a. Moreover, MAR1 promoted skeletal muscle mass/strength and Wnt5a protein level in mice. Enforced MAR1 expression in mice attenuated muscle atrophy induced by either aging or unloading. CONCLUSIONS The newly identified lncRNA MAR1 acts as a miR-487b sponge to regulate Wnt5a protein, resulting in promoting muscle differentiation and regeneration. MAR1 could be a novel therapeutic target for treating muscle atrophy induced by either aging or mechanical unloading.
Collapse
|
research-article |
7 |
143 |
3
|
King PDC, Hatch RC, Bianchi M, Ovsyannikov R, Lupulescu C, Landolt G, Slomski B, Dil JH, Guan D, Mi JL, Rienks EDL, Fink J, Lindblad A, Svensson S, Bao S, Balakrishnan G, Iversen BB, Osterwalder J, Eberhardt W, Baumberger F, Hofmann P. Large tunable Rashba spin splitting of a two-dimensional electron gas in Bi2Se3. PHYSICAL REVIEW LETTERS 2011; 107:096802. [PMID: 21929260 DOI: 10.1103/physrevlett.107.096802] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Indexed: 05/13/2023]
Abstract
We report a Rashba spin splitting of a two-dimensional electron gas in the topological insulator Bi(2)Se(3) from angle-resolved photoemission spectroscopy. We further demonstrate its electrostatic control, and show that spin splittings can be achieved which are at least an order-of-magnitude larger than in other semiconductors. Together these results show promise for the miniaturization of spintronic devices to the nanoscale and their operation at room temperature.
Collapse
|
|
14 |
139 |
4
|
Guan D, Tkatch T, Surmeier DJ, Armstrong WE, Foehring RC. Kv2 subunits underlie slowly inactivating potassium current in rat neocortical pyramidal neurons. J Physiol 2007; 581:941-60. [PMID: 17379638 PMCID: PMC2170822 DOI: 10.1113/jphysiol.2007.128454] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We determined the expression of Kv2 channel subunits in rat somatosensory and motor cortex and tested for the contributions of Kv2 subunits to slowly inactivating K+ currents in supragranular pyramidal neurons. Single cell RT-PCR showed that virtually all pyramidal cells expressed Kv2.1 mRNA and approximately 80% expressed Kv2.2 mRNA. Immunocytochemistry revealed striking differences in the distribution of Kv2.1 and Kv2.2 subunits. Kv2.1 subunits were clustered and located on somata and proximal dendrites of all pyramidal cells. Kv2.2 subunits were primarily distributed on large apical dendrites of a subset of pyramidal cells from deep layers. We used two methods for isolating currents through Kv2 channels after excluding contributions from Kv1 subunits: intracellular diffusion of Kv2.1 antibodies through the recording pipette and extracellular application of rStromatoxin-1 (ScTx). The Kv2.1 antibody specifically blocked the slowly inactivating K+ current by 25-50% (at 8 min), demonstrating that Kv2.1 subunits underlie much of this current in neocortical pyramidal neurons. ScTx (300 nM) also inhibited approximately 40% of the slowly inactivating K+ current. We observed occlusion between the actions of Kv2.1 antibody and ScTx. In addition, Kv2.1 antibody- and ScTx-sensitive currents demonstrated similar recovery from inactivation and voltage dependence and kinetics of activation and inactivation. These data indicate that both agents targeted the same channels. Considering the localization of Kv2.1 and 2.2 subunits, currents from truncated dissociated cells are probably dominated by Kv2.1 subunits. Compared with Kv2.1 currents in expression systems, the Kv2.1 current in neocortical pyramidal cells activated and inactivated at relatively negative potentials and was very sensitive to holding potential.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
90 |
5
|
Guan D, Lee JCF, Tkatch T, Surmeier DJ, Armstrong WE, Foehring RC. Expression and biophysical properties of Kv1 channels in supragranular neocortical pyramidal neurones. J Physiol 2005; 571:371-89. [PMID: 16373387 PMCID: PMC1796796 DOI: 10.1113/jphysiol.2005.097006] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Potassium channels are extremely diverse regulators of neuronal excitability. As part of an investigation into how this molecular diversity is utilized by neurones, we examined the expression and biophysical properties of native Kv1 channels in layer II/III pyramidal neurones from somatosensory and motor cortex. Single-cell RT-PCR, immunocytochemistry, and whole cell recordings with specific peptide toxins revealed that individual pyramidal cells express multiple Kv1 alpha-subunits. The most abundant subunit mRNAs were Kv1.1 > 1.2 > 1.4 > 1.3. All of these subunits were localized to somatodendritic as well as axonal cell compartments. These data suggest variability in the subunit complexion of Kv1 channels in these cells. The alpha-dendrotoxin (alpha-DTX)-sensitive current activated more rapidly and at more negative potentials than the alpha-DTX-insensitive current, was first observed at voltages near action potential threshold, and was relatively insensitive to holding potential. The alpha-DTX-sensitive current comprised about 10% of outward current at steady-state, in response to steps from -70 mV. From -50 mV, this percentage increased to approximately 20%. All cells expressed an alpha-DTX-sensitive current with slow inactivation kinetics. In some cells a transient component was also present. Deactivation kinetics were voltage dependent, such that deactivation was slow at potentials traversed by interspike intervals during repetitive firing. Because of its kinetics and voltage dependence, the alpha-DTX-sensitive current should be most important at physiological resting potentials and in response to brief stimuli. Kv1 channels should also be important at voltages near threshold and corresponding to interspike intervals.
Collapse
|
Research Support, N.I.H., Extramural |
20 |
89 |
6
|
Spannagel AW, Green GM, Guan D, Liddle RA, Faull K, Reeve JR. Purification and characterization of a luminal cholecystokinin-releasing factor from rat intestinal secretion. Proc Natl Acad Sci U S A 1996; 93:4415-20. [PMID: 8633081 PMCID: PMC39552 DOI: 10.1073/pnas.93.9.4415] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Cholecystokinin (CCK) secretion in rats and humans is inhibited by pancreatic proteases and bile acids in the intestine. It has been hypothesized that the inhibition of CCK release caused by pancreatic proteases is due to proteolytic inactivation of a CCK-releasing peptide present in intestinal secretion. To purify the putative luminal CCK-releasing factor (LCRF), intestinal secretions were collected by perfusing a modified Thiry-Vella fistula of jejunum in conscious rats. From these secretions, the peptide was concentrated by ultrafiltration followed by low-pressure reverse-phase chromatography and purified by reverse-phase high-pressure liquid chromatography. Purity was confirmed by high-performance capillary electrophoresis. Fractions were assayed for CCK-releasing activity by their ability to stimulate pancreatic protein secretion when infused into the proximal small intestine of conscious rats. Partially purified fractions strongly stimulated both pancreatic secretion and CCK release while CCK receptor blockade abolished the pancreatic response. Amino acid analysis and mass spectral analysis showed that the purified peptide is composed of 70-75 amino acid residues and has a mass of 8136 Da. Microsequence analysis of LCRF yielded an amino acid sequence for 41 residues as follows: STFWAYQPDGDNDPTDYQKYEHTSSPSQLLAPGDYPCVIEV. When infused intraduodenally, the purified peptide stimulated pancreatic protein and fluid secretion in a dose-related manner in conscious rats and significantly elevated plasma CCK levels. Immunoaffinity chromatography using antisera raised to synthetic LCRF-(1-6) abolished the CCK releasing activity of intestinal secretions. These studies demonstrate, to our knowledge, the first chemical characterization of a luminally secreted enteric peptide functioning as an intraluminal regulator of intestinal hormone release.
Collapse
|
research-article |
29 |
78 |
7
|
Schwartz JG, Green GM, Guan D, McMahan CA, Phillips WT. Rapid gastric emptying of a solid pancake meal in type II diabetic patients. Diabetes Care 1996; 19:468-71. [PMID: 8732711 DOI: 10.2337/diacare.19.5.468] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To estimate the rate of gastric emptying of a solid pancake carbohydrate meal in recently diagnosed asymptomatic type II diabetic patients compared with nondiabetic control subjects. RESEARCH DESIGN AND METHODS Gastric emptying studies using radiolabeled meals were performed on eight recently diagnosed asymptomatic diabetic patients and on eight sex-, BMI- and age-matched nondiabetic control subjects. Although a liquid protein drink was administered along with the pancake meal, the radioactivity was adherent to only the pancake portion of the meal. Plasma glucose and serum insulin levels were measured in fasting and postprandial blood samples collected at 15-min intervals up to 120 min after ingestion of the mixed nutrient meal. RESULTS The average gastric half-emptying time (time it takes for one-half of the meal to empty) was significantly more rapid for the diabetic patients (45.3 +/- 4.8 min) when compared with the nondiabetic control subjects (60.4 +/- 5.1 min; P = 0.05). The serum insulin concentrations were not statistically different between the two groups. Plasma glucose values were significantly higher in the diabetic patients compared with the nondiabetic control subjects. CONCLUSIONS Type II diabetic patients with no clinical evidence of neuronal dysfunction have a significantly more rapid rate of gastric emptying of a solid high-carbohydrate meal when compared with nondiabetic control subjects.
Collapse
|
Comparative Study |
29 |
75 |
8
|
Zhao Y, Song M, Guan D, Bi S, Meng J, Li Q, Wang W. Genetic polymorphisms of CYP3A5 genes and concentration of the cyclosporine and tacrolimus. Transplant Proc 2005; 37:178-81. [PMID: 15808586 DOI: 10.1016/j.transproceed.2005.01.077] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE CYP3A is the major enzyme responsible for metabolism of the calcineurin inhibitors cyclosporine (CsA) and tacrolimus. Our objective was to determine the relationship between genetic polymorphisms of CYP3A5 with respect to interindividual variability in CsA and tacrolimus pharmacokinetics. METHODS Kidney transplant recipients receiving CsA (n = 137) or tacrolimus (n = 30) were genotyped for CYP3A5*3 and *6 by a PCR/RFLP method. The patients were grouped according to the CYP3A5 genotype. Dose-adjusted trough levels were correlated with the corresponding genotype. RESULTS At 3, 6, and 12 months, the tacrolimus dose-adjusted trough levels (dose-adjusted C0) showed a statistically significant difference between the group of CYP3A5*3/*3 (n = 19) and the group of CYP3A5*1 allele carriers. The former was higher than the latter. The CsA dose-adjusted C0 and the actual C0 did not display a significant relation (P < .05) between the group of CYP3A5*3/*3 and the group of CYP3A5*1 allele carriers. CONCLUSION Patients with the CYP3A5*3/*3 genotype require less tacrolimus to reach target concentrations compared to those with the CYP3A5*1 allele.
Collapse
|
Journal Article |
20 |
75 |
9
|
Zhuo Z, Wan Y, Guan D, Ni S, Wang L, Zhang Z, Liu J, Liang C, Yu Y, Lu A, Zhang G, Zhang B. A Loop-Based and AGO-Incorporated Virtual Screening Model Targeting AGO-Mediated miRNA-mRNA Interactions for Drug Discovery to Rescue Bone Phenotype in Genetically Modified Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903451. [PMID: 32670749 PMCID: PMC7341099 DOI: 10.1002/advs.201903451] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/18/2020] [Indexed: 05/05/2023]
Abstract
Several virtual screening models are proposed to screen small molecules only targeting primary miRNAs without selectivity. Few attempts have been made to develop virtual screening strategies for discovering small molecules targeting mature miRNAs. Mature miRNAs and their specific target mRNA can form unique functional loops during argonaute (AGO)-mediated miRNA-mRNA interactions, which may serve as potential targets for small-molecule drug discovery. Thus, a loop-based and AGO-incorporated virtual screening model is constructed for targeting the loops. The previously published studies have found that miR-214 can target ATF4 to inhibit osteoblastic bone formation, whereas miR-214 can target TRAF3 to promote osteoclast activity. By using the virtual model, the top ten candidate small molecules targeting miR-214-ATF4 mRNA interactions and top ten candidate small molecules targeting miR-214-TRAF3 mRNA interactions are selected, respectively. Based on both in vitro and in vivo data, one small molecule can target miR-214-ATF4 mRNA to promote ATF4 protein expression and enhance osteogenic potential, whereas one small molecule can target miR-214-TRAF3 mRNA to promote TRAF3 protein expression and inhibit osteoclast activity. These data indicate that the loop-based and AGO-incorporated virtual screening model can help to obtain small molecules specifically targeting miRNA-mRNA interactions to rescue bone phenotype in genetically modified mice.
Collapse
|
research-article |
5 |
70 |
10
|
Guan D, Lee JCF, Higgs MH, Spain WJ, Foehring RC. Functional Roles of Kv1 Channels in Neocortical Pyramidal Neurons. J Neurophysiol 2007; 97:1931-40. [PMID: 17215507 DOI: 10.1152/jn.00933.2006] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pyramidal neurons from layers II/III of somatosensory and motor cortex express multiple Kv1 α-subunits and a current sensitive to block by α-dendrotoxin (α-DTX). We examined functional roles of native Kv1 channels in these cells using current-clamp recordings in brain slices and current- and voltage-clamp recordings in dissociated cells. α-DTX caused a significant negative shift in voltage threshold for action potentials (APs) and reduced rheobase. Correspondingly, a ramp-voltage protocol revealed that the α-DTX–sensitive current activated at subthreshold voltages. AP width at threshold increased with successive APs during repetitive firing. The steady-state threshold width for a given firing rate was similar in control and α-DTX, despite an initially broader AP in α-DTX. AP voltage threshold increased similarly during a train of spikes under control conditions and in the presence of α-DTX. α-DTX had no effect on input resistance or resting membrane potential and modest effects on the amplitude or width of a single AP. Accordingly, experiments using AP waveforms (APWs) as voltage protocols revealed that α-DTX–sensitive current peaked late during the AP repolarization phase. Application of α-DTX increased the rate of firing to intracellular current injection and increased gain (multiplicative effects), but did not alter spike-frequency adaptation. Consistent with these findings, voltage-clamp experiments revealed that the proportion of outward current sensitive to α-DTX was highest during the interval between two APWs, reflecting slow deactivation kinetics at −50 mV. Finally, α-DTX did not alter the selectivity of pyramidal neurons for DC versus time-varying stimuli.
Collapse
|
|
18 |
63 |
11
|
Wang L, Liang C, Li F, Guan D, Wu X, Fu X, Lu A, Zhang G. PARP1 in Carcinomas and PARP1 Inhibitors as Antineoplastic Drugs. Int J Mol Sci 2017; 18:E2111. [PMID: 28991194 PMCID: PMC5666793 DOI: 10.3390/ijms18102111] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 09/30/2017] [Accepted: 10/02/2017] [Indexed: 01/06/2023] Open
Abstract
Poly (ADP-ribose) polymerase 1 (PARP1), the best-studied isoform of the nuclear enzyme PARP family, plays a pivotal role in cellular biological processes, such as DNA repair, gene transcription, and so on. PARP1 has been found to be overexpressed in various carcinomas. These all indicate the clinical potential of PARP1 as a therapeutic target of human malignancies. Additionally, multiple preclinical research studies and clinical trials demonstrate that inhibition of PARP1 can repress tumor growth and metastasis. Up until now, PARP1 inhibitors are clinically used not only for monotherapy to suppress various tumors, but also for adjuvant therapy, to maintain or enhance therapeutic effects of mature antineoplastic drugs, as well as protect patients from chemotherapy and surgery-induced injury. To supply a framework for understanding recent research progress of PARP1 in carcinomas, we review the structure, expression, functions, and mechanisms of PARP1, and summarize the clinically mature PARP1-related anticancer agents, to provide some ideas for the development of other promising PARP1 inhibitors in antineoplastic therapy.
Collapse
|
Review |
8 |
58 |
12
|
Guan D, Gray P, Kang DH, Tang J, Shafer B, Ito K, Younce F, Yang T. Microbiological Validation of Microwave-Circulated Water Combination Heating Technology by Inoculated Pack Studies. J Food Sci 2003. [DOI: 10.1111/j.1365-2621.2003.tb09661.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
|
22 |
58 |
13
|
Guan D, Factor D, Liu Y, Wang Z, Kao HY. The epigenetic regulator UHRF1 promotes ubiquitination-mediated degradation of the tumor-suppressor protein promyelocytic leukemia protein. Oncogene 2013; 32:3819-28. [PMID: 22945642 PMCID: PMC3578017 DOI: 10.1038/onc.2012.406] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 07/23/2012] [Accepted: 07/23/2012] [Indexed: 12/27/2022]
Abstract
The promyelocytic leukemia (PML) protein is a tumor suppressor originally identified in acute promyelocytic leukemia and implicated in tumorigenesis in multiple forms of cancer. Here, we demonstrate that the PML protein undergoes ubiquitination-mediated degradation facilitated by an E3 ligase UHRF1 (ubiquitin-like with PHD and RING finger domains 1), which is commonly upregulated in various human malignancies. Furthermore, UHRF1 negatively regulates PML protein accumulation in primary human umbilical vein endothelial cells (HUVECs), HEK 293 cells and cancer cells. Knockdown of UHRF1 upregulates whereas ectopic overexpression of UHRF1 downregulates protein abundance of endogenous or exogenous PML, doing so through its binding to the N-terminus of PML. Overexpression of wild-type UHRF1 shortens PML protein half-life and promotes PML polyubiquitination, whereas deletion of the RING domain or coexpression of the dominant-negative E2 ubiquitin-conjugating enzyme, E2D2, attenuates this modification to PML. Finally, knockdown of UHRF1 prolongs PML half-life and increases PML protein accumulation, yet inhibits cell migration and in vitro capillary tube formation, whereas co-knockdown of PML compromises this inhibitory effect. These findings suggest that UHRF1 promotes the turnover of PML protein, and thus targeting UHRF1 to restore PML-mediated tumor suppression represents a promising, novel, anticancer strategy.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
55 |
14
|
Pan G, Hanaoka T, Yamano Y, Hara K, Ichiba M, Wang Y, Zhang J, Feng Y, Shujuan Z, Guan D, Gao G, Liu N, Takahashi K. A study of multiple biomarkers in coke oven workers--a cross-sectional study in China. Carcinogenesis 1998; 19:1963-8. [PMID: 9855010 DOI: 10.1093/carcin/19.11.1963] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We conducted a cross-sectional molecular epidemiological study of coke oven workers exposed to the established carcinogen polycyclic aromatic hydrocarbons (PAHs) to evaluate the relationships between both traditional 'exposure markers' and a series of biomarkers, including urinary 1-hydroxypyrene as a marker of internal dose, leukocyte aromatic DNA adducts as markers of biologically effective dose, serum p53 protein as a response marker and genetic polymorphisms of cytochrome P4501A1 and glutathione S-transferase MI as susceptibility markers. Twenty-five male subjects each were randomly selected from the top, middle and bottom work areas of the oven, and the control plant. They were matched for age and smoking status. The mean levels of PAH exposure, monitored by stationary and personal samplers, and of worker urinary 1-hydroxypyrene differed significantly between the top, middle and bottom of the oven and control work areas. The highest stationary and personal PAH concentrations and 1-hydroxypyrene levels were demonstrated at the top work area. Good correlations were found between the stationary PAH levels, personal PAH levels and urinary 1-hydroxypyrene levels. No positive correlations were demonstrated between aromatic DNA adduct levels and current or cumulative PAH exposure dose. In the presence of genetic polymorphisms of cytochrome P4501A1, a positive correlation was demonstrated between aromatic DNA adducts and urinary 1-hydroxypyrene levels. There was also a significant correlation between serum p53 protein levels and the cumulated benzo[a]pyrene exposure dose. Although these biomarkers have certain limitations, they are applicable to cancer epidemiology, and may contribute to our understanding of the mechanisms of carcinogenesis.
Collapse
|
|
27 |
54 |
15
|
Zhang ZK, Li J, Guan D, Liang C, Zhuo Z, Liu J, Lu A, Zhang G, Zhang BT. Long Noncoding RNA lncMUMA Reverses Established Skeletal Muscle Atrophy following Mechanical Unloading. Mol Ther 2018; 26:2669-2680. [PMID: 30415659 PMCID: PMC6225098 DOI: 10.1016/j.ymthe.2018.09.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 09/13/2018] [Accepted: 09/14/2018] [Indexed: 12/26/2022] Open
Abstract
Reversing established muscle atrophy following mechanical unloading is of great clinical challenge. Long noncoding RNAs (lncRNAs) have been demonstrated to play important roles in myogenesis. Here we identified a lncRNA (mechanical unloading-induced muscle atrophy-related lncRNA [lncMUMA]) enriched in muscle, which was the most downregulated lncRNA during muscle atrophy development in hindlimb suspension (HLS) mice. The in vitro and in vivo data demonstrated that the decreased expression levels of lncMUMA closely associated with a reduction of myogenesis during mechanical unloading. Mechanistically, lncMUMA promoted myogenic differentiation by functioning as a miR-762 sponge to regulate the core myogenic regulator MyoD in vitro. The enforced expression of lncMUMA relieved the decreases in MyoD protein and muscle mass in miR-762 knockin mice. Therapeutically, the enforced expression of lncMUMA improved the in vitro myogenic differentiation of myoblasts under microgravity simulation, prevented the muscle atrophy development, and reversed the established muscle atrophy in HLS mice. These findings identify lncMUMA as an anabolic regulator to reverse established muscle atrophy following mechanical unloading.
Collapse
|
research-article |
7 |
49 |
16
|
Lv H, Jiang F, Guan D, Lu C, Guo B, Chan C, Peng S, Liu B, Guo W, Zhu H, Xu X, Lu A, Zhang G. Metabolomics and Its Application in the Development of Discovering Biomarkers for Osteoporosis Research. Int J Mol Sci 2016; 17:E2018. [PMID: 27918446 PMCID: PMC5187818 DOI: 10.3390/ijms17122018] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/17/2016] [Accepted: 11/28/2016] [Indexed: 12/30/2022] Open
Abstract
Osteoporosis is a progressive skeletal disorder characterized by low bone mass and increased risk of fracture in later life. The incidence and costs associated with treating osteoporosis cause heavy socio-economic burden. Currently, the diagnosis of osteoporosis mainly depends on bone mineral density and bone turnover markers. However, these indexes are not sensitive and accurate enough to reflect the osteoporosis progression. Metabolomics offers the potential for a holistic approach for clinical diagnoses and treatment, as well as understanding of the pathological mechanism of osteoporosis. In this review, we firstly describe the study subjects of osteoporosis and bio-sample preparation procedures for different analytic purposes, followed by illustrating the biomarkers with potentially predictive, diagnosis and pharmaceutical values when applied in osteoporosis research. Then, we summarize the published metabolic pathways related to osteoporosis. Furthermore, we discuss the importance of chronological data and combination of multi-omics in fully understanding osteoporosis. The application of metabolomics in osteoporosis could provide researchers the opportunity to gain new insight into the metabolic profiling and pathophysiological mechanisms. However, there is still much to be done to validate the potential biomarkers responsible for the progression of osteoporosis and there are still many details needed to be further elucidated.
Collapse
|
Review |
9 |
45 |
17
|
Poon ENY, Hao B, Guan D, Jun Li M, Lu J, Yang Y, Wu B, Wu SCM, Webb SE, Liang Y, Miller AL, Yao X, Wang J, Yan B, Boheler KR. Integrated transcriptomic and regulatory network analyses identify microRNA-200c as a novel repressor of human pluripotent stem cell-derived cardiomyocyte differentiation and maturation. Cardiovasc Res 2019; 114:894-906. [PMID: 29373717 DOI: 10.1093/cvr/cvy019] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/22/2018] [Indexed: 11/12/2022] Open
Abstract
Aims MicroRNAs (miRNAs) are crucial for the post-transcriptional control of protein-encoding genes and together with transcription factors (TFs) regulate gene expression; however, the regulatory activities of miRNAs during cardiac development are only partially understood. In this study, we tested the hypothesis that integrative computational approaches could identify miRNAs that experimentally could be shown to regulate cardiomyogenesis. Methods and results We integrated expression profiles with bioinformatics analyses of miRNA and TF regulatory programs to identify candidate miRNAs involved with cardiac development. Expression profiling showed that miR-200c, which is not normally detected in adult heart, is progressively down-regulated both during cardiac development and in vitro differentiation of human embryonic stem cells (hESCs) to cardiomyocytes (CMs). We employed computational methodologies to predict target genes of both miR-200c and five key cardiac TFs to identify co-regulated gene networks. The inferred cardiac networks revealed that the cooperative action of miR-200c with these five key TFs, including three (GATA4, SRF and TBX5) targeted by miR-200c, should modulate key processes and pathways necessary for CM development and function. Experimentally, over-expression (OE) of miR-200c in hESC-CMs reduced the mRNA levels of GATA4, SRF and TBX5. Cardiac expression of Ca2+, K+ and Na+ ion channel genes (CACNA1C, KCNJ2 and SCN5A) were also significantly altered by knockdown or OE of miR-200c. Luciferase reporter assays validated miR-200c binding sites on the 3' untranslated region of CACNA1C. In hESC-CMs, elevated miR-200c increased beating frequency, and repressed both Ca2+ influx, mediated by the L-type Ca2+ channel and Ca2+ transients. Conclusions Our analyses demonstrate that miR-200c represses hESC-CM differentiation and maturation. The integrative computation and experimental approaches described here, when applied more broadly, will enhance our understanding of the interplays between miRNAs and TFs in controlling cardiac development and disease processes.
Collapse
|
Validation Study |
6 |
43 |
18
|
Schwartz JG, Guan D, Green GM, Phillips WT. Treatment with an oral proteinase inhibitor slows gastric emptying and acutely reduces glucose and insulin levels after a liquid meal in type II diabetic patients. Diabetes Care 1994; 17:255-62. [PMID: 8026279 DOI: 10.2337/diacare.17.4.255] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To determine whether an oral trypsin/chymotrypsin inhibitor, POT II, will delay the rate of gastric emptying in recently diagnosed type II diabetic patients and improve their postprandial metabolic parameters. RESEARCH DESIGN AND METHODS Two gastric emptying studies were performed on each of six type II diabetic patients. During one study, the patient ingested a glucose/protein solution, and during the other study, the patient ingested the same glucose/protein solution with the addition of 1.5 g of POT II, a putative stimulant of cholecystokinin (CCK) release. Each patient served as their own control subject. Each of the two oral solutions were administered to the patients in a counter-balanced order separated by at least 1 week. RESULTS Serum insulin, plasma glucose, plasma gastric inhibitory polypeptide (GIP) values, and the rate of gastric emptying were all significantly (P < 0.05) decreased over the 2-h testing period when POT II was added to the oral glucose/protein meal. The area under the curve above baseline for glucose with POT II was 75% of the glucose value without POT II. The area under the curve above baseline for insulin with POT II was 68% of the value without POT II. Plasma CCK was significantly increased by POT II 15 min postprandially. CONCLUSIONS A trypsin/chymotrypsin inhibitor, POT II, can delay the rate of gastric emptying, and decrease postprandial plasma glucose levels, GIP levels, and serum insulin levels in type II diabetic patients diagnosed recently. Delay of gastric emptying in diabetic patients may provide a unique or adjunctive approach to the treatment of type II diabetes.
Collapse
|
|
31 |
42 |
19
|
Liang C, Peng S, Li J, Lu J, Guan D, Jiang F, Lu C, Li F, He X, Zhu H, Au DWT, Yang D, Zhang BT, Lu A, Zhang G. Inhibition of osteoblastic Smurf1 promotes bone formation in mouse models of distinctive age-related osteoporosis. Nat Commun 2018; 9:3428. [PMID: 30143635 PMCID: PMC6109183 DOI: 10.1038/s41467-018-05974-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 08/06/2018] [Indexed: 11/20/2022] Open
Abstract
Bone morphogenetic protein (BMP) signaling is essential for osteogenesis. However, recombinant human BMPs (rhBMPs) exhibit large inter-individual variations in local bone formation during clinical spinal fusion. Smurf1 ubiquitinates BMP downstream molecules for degradation. Here, we classify age-related osteoporosis based on distinct intraosseous BMP-2 levels and Smurf1 activity. One major subgroup with a normal BMP-2 level and elevated Smurf1 activity (BMP-2n/Smurf1e) shows poor response to rhBMP-2 during spinal fusion, when compared to another major subgroup with a decreased BMP-2 level and normal Smurf1 activity (BMP-2d/Smurf1n). We screen a chalcone derivative, i.e., 2-(4-cinnamoylphenoxy)acetic acid, which effectively inhibits Smurf1 activity and increases BMP signaling. For BMP-2n/Smurf1e mice, the chalcone derivative enhances local bone formation during spinal fusion. After conjugating to an osteoblast-targeting and penetrating oligopeptide (DSS)6, the chalcone derivative promotes systemic bone formation in BMP-2n/Smurf1e mice. This study demonstrates a precision medicine-based bone anabolic strategy for age-related osteoporosis. BMP promotes bone formation but its efficacy is limited in some patients. Here, the authors show that osteoporosis patients with a poor response to BMP have increased expression of Smurf1, which targets BMP effectors for degradation, and demonstrate that its chemical inhibition enhances BMP-mediated bone formation in mice.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
37 |
20
|
Guan D, Higgs MH, Horton LR, Spain WJ, Foehring RC. Contributions of Kv7-mediated potassium current to sub- and suprathreshold responses of rat layer II/III neocortical pyramidal neurons. J Neurophysiol 2011; 106:1722-33. [PMID: 21697446 DOI: 10.1152/jn.00211.2011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
After block of Kv1- and Kv2-mediated K(+) currents in acutely dissociated neocortical pyramidal neurons from layers II/III of rat somatosensory and motor cortex, the remaining current is slowly activating and persistent. We used whole cell voltage clamp to show that the Kv7 blockers linopirdine and XE-991 blocked a current with similar kinetics to the current remaining after combined block of Kv1 and Kv2 channels. This current was sensitive to low doses of linopirdine and activated more slowly and at more negative potentials than Kv1- or Kv2-mediated current. The Kv7-mediated current decreased in amplitude with time in whole cell recordings, but in most cells the current was stable for several minutes. Current in response to a traditional M-current protocol was blocked by muscarine, linopirdine, and XE-991. Whole cell slice recordings revealed that the Q₁₀ for channel deactivation was ∼2.5. Sharp electrode current-clamp recordings from adult pyramidal cells demonstrated that block of Kv7-mediated current with XE-991 reduced rheobase, shortened the latency to firing to near rheobase current, induced more regular firing at low current intensity, and increased the rate of firing to a given current injection. XE-991 did not affect single action potentials or spike frequency adaptation. Application of XE-991 also eliminated subthreshold voltage oscillations and increased gain for low-frequency inputs (<10 Hz) without affecting gain for higher frequency inputs. These data suggest important roles for Kv7 channels in subthreshold regulation of excitability, generation of theta-frequency subthreshold oscillations, regulation of interspike intervals, and biasing selectivity toward higher frequency inputs.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
33 |
21
|
Guan D, Lim JH, Peng L, Liu Y, Lam M, Seto E, Kao HY. Deacetylation of the tumor suppressor protein PML regulates hydrogen peroxide-induced cell death. Cell Death Dis 2014; 5:e1340. [PMID: 25032863 PMCID: PMC4123062 DOI: 10.1038/cddis.2014.185] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 03/18/2014] [Accepted: 03/26/2014] [Indexed: 12/29/2022]
Abstract
The promyelocytic leukemia protein (PML) is a tumor suppressor that is expressed at a low level in various cancers. Although post-translational modifications including SUMOylation, phosphorylation, and ubiquitination have been found to regulate the stability or activity of PML, little is known about the role of its acetylation in the control of cell survival. Here we demonstrate that acetylation of lysine 487 (K487) and SUMO1 conjugation of K490 at PML protein are mutually exclusive. We found that hydrogen peroxide (H2O2) promotes PML deacetylation and identified SIRT1 and SIRT5 as PML deacetylases. Both SIRT1 and SIRT5 are required for H2O2-mediated deacetylation of PML and accumulation of nuclear PML protein in HeLa cells. Knockdown of SIRT1 reduces the number of H2O2-induced PML-nuclear bodies (NBs) and increases the survival of HeLa cells. Ectopic expression of wild-type PML but not the K487R mutant rescues H2O2-induced cell death in SIRT1 knockdown cells. Furthermore, ectopic expression of wild-type SIRT5 but not a catalytic defective mutant can also restore H2O2-induced cell death in SIRT1 knockdown cells. Taken together, our findings reveal a novel regulatory mechanism in which SIRT1/SIRT5-mediated PML deacetylation plays a role in the regulation of cancer cell survival.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
33 |
22
|
Guan D, Maouyo D, Taylor IL, Gettys TW, Greeley GH, Morisset J. Peptide-YY, a new partner in the negative feedback control of pancreatic secretion. Endocrinology 1991; 128:911-6. [PMID: 1989869 DOI: 10.1210/endo-128-2-911] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Peptide YY (PYY), a newly discovered ileocolonic peptide, is released by nutrients in the proximal and distal intestine and inhibits pancreatic secretion. However, it is not clear whether PYY can be released in the absence of nutrients in the intestine or whether a physiological role exists for endogenous PYY in negative feedback regulation of pancreatic secretion by pancreatic proteases. In the present study we measured plasma PYY concentrations and determined the effects of anti-PYY serum during stimulation of pancreatic secretion by pancreatic juice diversion (PJD). The effect of SMS 201-995 (SMS; an analog of somatostatin), another inhibitor of pancreatic secretion, on regulation of PYY release induced by PJD was also investigated. Male Wistar rats equipped with pancreatic, biliary, duodenal, and jugular venous cannulas were studied 4-6 days postoperatively. After 90 min of basal collection, pancreatic juice was diverted for 4 h with or without infusion of SMS (2 micrograms/kg.h), given either iv or intraduodenally (ID). Plasma PYY concentrations were significantly increased from a basal level of 177 +/- 15 pg/ml to a peak level of 328 +/- 43 pg/ml 2 h after PJD. These increases in PYY concentration paralleled those in pancreatic protein and fluid outputs. Both iv and ID infusion of SMS during the first 2 h of PJD markedly decreased the plasma PYY concentration to 134 +/- 27 pg/ml and 156 +/- 19 pg/ml, respectively; the total incremental PYY release during 4 h of PJD was inhibited by 100% and 84% by iv and ID SMS, respectively. One milliliter of anti-PYY serum given iv significantly augmented the increment in protein and fluid output during PJD. These results suggest that endogenous PYY released by PJD may play a physiological role in negative feedback regulation of pancreatic secretion in rats.
Collapse
|
|
34 |
30 |
23
|
Lv Q, Meng Z, Yu Y, Jiang F, Guan D, Liang C, Zhou J, Lu A, Zhang G. Molecular Mechanisms and Translational Therapies for Human Epidermal Receptor 2 Positive Breast Cancer. Int J Mol Sci 2016; 17:E2095. [PMID: 27983617 PMCID: PMC5187895 DOI: 10.3390/ijms17122095] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/15/2016] [Accepted: 12/01/2016] [Indexed: 12/16/2022] Open
Abstract
Breast cancer is the second leading cause of cancer death among women. Human epidermal receptor 2 (HER2) positive breast cancer (HER2+ BC) is the most aggressive subtype of breast cancer, with poor prognosis and a high rate of recurrence. About one third of breast cancer is HER2+ BC with significantly high expression level of HER2 protein compared to other subtypes. Therefore, HER2 is an important biomarker and an ideal target for developing therapeutic strategies for the treatment HER2+ BC. In this review, HER2 structure and physiological and pathological roles in HER2+ BC are discussed. Two diagnostic tests, immunohistochemistry (IHC) and fluorescent in situ hybridization (FISH), for evaluating HER2 expression levels are briefly introduced. The current mainstay targeted therapies for HER2+ BC include monoclonal antibodies, small molecule tyrosine kinase inhibitors, antibody-drug conjugates (ADC) and other emerging anti-HER2 agents. In clinical practice, combination therapies are commonly adopted in order to achieve synergistic drug response. This review will help to better understand the molecular mechanism of HER2+ BC and further facilitate the development of more effective therapeutic strategies against HER2+ BC.
Collapse
|
Review |
9 |
30 |
24
|
Zhang C, Huo ST, Wu Z, Chen L, Wen C, Chen H, Du WW, Wu N, Guan D, Lian S, Yang BB. Rapid Development of Targeting circRNAs in Cardiovascular Diseases. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:568-576. [PMID: 32721877 PMCID: PMC7390851 DOI: 10.1016/j.omtn.2020.06.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/27/2020] [Accepted: 06/23/2020] [Indexed: 12/13/2022]
Abstract
Circular RNAs (circRNAs) are circularized, single-stranded RNAs that are covalently linked. With their abundance in tissues and developmental stage-specific expression, circRNAs participate in a variety of physiological and pathological processes. In this review, we discuss the development of circRNAs used as biomarkers and therapeutic targets for cardiovascular diseases (CVDs), focusing on recent discoveries and applications of exosomal circRNAs that highlight opportunities and challenges. Some studies have identified a spectrum of circRNAs that are differentially expressed in CVDs, while other studies further manipulated specific circRNA expression and showed an ameliorated pathogenic state such as ischemic injury, hypertrophy, and cardiac fibrosis. Studies and applications of circRNAs are being rapidly developed. We expect to see clinical use of circRNAs as biomarkers and targets for disease treatment in the near future.
Collapse
|
Review |
5 |
29 |
25
|
Yan B, Li H, Yang X, Shao J, Jang M, Guan D, Zou S, Van Waes C, Chen Z, Zhan M. Unraveling regulatory programs for NF-kappaB, p53 and microRNAs in head and neck squamous cell carcinoma. PLoS One 2013; 8:e73656. [PMID: 24069219 PMCID: PMC3777940 DOI: 10.1371/journal.pone.0073656] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 07/20/2013] [Indexed: 12/14/2022] Open
Abstract
In head and neck squamous cell carcinoma (HNSCC), mutations of p53 usually coexist with aberrant activation of NF-kappaB (NF-κB), other transcription factors and microRNAs, which promote tumor pathogenesis. However, how these factors and microRNAs interact to globally modulate gene expression and mediate oncogenesis is not fully understood. We devised a novel bioinformatics method to uncover interactive relationships between transcription factors or microRNAs and genes. This approach is based on matrix decomposition modeling under the joint constraints of sparseness and regulator-target connectivity, and able to integrate gene expression profiling and binding data of regulators. We employed this method to infer the gene regulatory networks in HNSCC. We found that the majority of the predicted p53 targets overlapped with those for NF-κB, suggesting that the two transcription factors exert a concerted modulation on regulatory programs in tumor cells. We further investigated the interrelationships of p53 and NF-κB with five additional transcription factors, AP1, CEBPB, EGR1, SP1 and STAT3, and microRNAs mir21 and mir34ac. The resulting gene networks indicate that interactions among NF-κB, p53, and the two miRNAs likely regulate progression of HNSCC. We experimentally validated our findings by determining expression of the predicted NF-κB and p53 target genes by siRNA knock down, and by examining p53 binding activity on promoters of predicted target genes in the tumor cell lines. Our results elucidating the cross-regulations among NF-κB, p53, and microRNAs provide insights into the complex regulatory mechanisms underlying HNSCC, and shows an efficient approach to inferring gene regulatory programs in biological complex systems.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
28 |