1
|
Corradi G, Forte D, Cristiano G, Polimeno A, Ciciarello M, Salvestrini V, Bandini L, Robustelli V, Ottaviani E, Cavo M, Ocadlikova D, Curti A. Ex vivo characterization of acute myeloid leukemia patients undergoing hypomethylating agents and venetoclax regimen reveals a venetoclax-specific effect on non-suppressive regulatory T cells and bona fide PD-1 +TIM3 + exhausted CD8 + T cells. Front Immunol 2024; 15:1386517. [PMID: 38812504 PMCID: PMC11133521 DOI: 10.3389/fimmu.2024.1386517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/30/2024] [Indexed: 05/31/2024] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive heterogeneous disease characterized by several alterations of the immune system prompting disease progression and treatment response. The therapies available for AML can affect lymphocyte function, limiting the efficacy of immunotherapy while hindering leukemia-specific immune reactions. Recently, the treatment based on Venetoclax (VEN), a specific B-cell lymphoma 2 (BCL-2) inhibitor, in combination with hypomethylating agents (HMAs) or low-dose cytarabine, has emerged as a promising clinical strategy in AML. To better understand the immunological effect of VEN treatment, we characterized the phenotype and immune checkpoint (IC) receptors' expression on CD4+ and CD8+ T cells from AML patients after the first and second cycle of HMA in combination with VEN. HMA and VEN treatment significantly increased the percentage of naïve CD8+ T cells and TIM-3+ CD4+ and CD8+ T cells and reduced cytokine-secreting non-suppressive T regulatory cells (Tregs). Of note, a comparison between AML patients treated with HMA only and HMA in combination with VEN revealed the specific contribution of VEN in modulating the immune cell repertoire. Indeed, the reduction of cytokine-secreting non-suppressive Tregs, the increased TIM-3 expression on CD8+ T cells, and the reduced co-expression of PD-1 and TIM-3 on both CD4+ and CD8+ T cells are all VEN-specific. Collectively, our study shed light on immune modulation induced by VEN treatment, providing the rationale for a novel therapeutic combination of VEN and IC inhibitors in AML patients.
Collapse
|
2
|
Ocadlikova D, Lussana F, Fracchiolla N, Bonifacio M, Santoro L, Delia M, Chiaretti S, Pasciolla C, Cignetti A, Forghieri F, Grimaldi F, Corradi G, Zannoni L, De Propris S, Borleri GM, Tanasi I, Vadakekolathu J, Rutella S, Guarini AR, Foà R, Curti A. Blinatumomab differentially modulates peripheral blood and bone marrow immune cell repertoire: A Campus ALL study. Br J Haematol 2023; 203:637-650. [PMID: 37700538 DOI: 10.1111/bjh.19104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 08/04/2023] [Accepted: 08/30/2023] [Indexed: 09/14/2023]
Abstract
Blinatumomab is the first bi-specific T-cell engager approved for relapsed or refractory B-cell precursor acute lymphoblastic leukaemia (B-ALL). Despite remarkable clinical results, the effects of blinatumomab on the host immune cell repertoire are not fully elucidated. In the present study, we characterized the peripheral blood (PB) and, for the first time, the bone marrow (BM) immune cell repertoire upon blinatumomab treatment. Twenty-nine patients with B-ALL received blinatumomab according to clinical practice. Deep multiparametric flow cytometry was used to characterize lymphoid subsets during the first treatment cycle. Blinatumomab induced a transient redistribution of PB effector T-cell subsets and Treg cells with a persistent increase in cytotoxic NK cells, which was associated with a transient upregulation of immune checkpoint receptors on PB CD4 and CD8 T-cell subpopulations and of CD39 expression on suppressive Treg cells. Of note, BM immune T-cell subsets showed a broader post-treatment subversion, including the modulation of markers associated with a T-cell-exhausted phenotype. In conclusion, our study indicates that blinatumomab differentially modulates the PB and BM immune cell repertoire, which may have relevant clinical implications in the therapeutic setting.
Collapse
|
3
|
Corradi G, Bassani B, Simonetti G, Sangaletti S, Vadakekolathu J, Fontana MC, Pazzaglia M, Gulino A, Tripodo C, Cristiano G, Bandini L, Ottaviani E, Ocadlikova D, Piccioli M, Martinelli G, Colombo MP, Rutella S, Cavo M, Ciciarello M, Curti A. Release of IFN-γ by acute myeloid leukemia cells remodels bone marrow immune microenvironment by inducing regulatory T cells. Clin Cancer Res 2022; 28:3141-3155. [PMID: 35349670 DOI: 10.1158/1078-0432.ccr-21-3594] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/10/2022] [Accepted: 03/25/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE The stromal and immune bone marrow (BM) landscape is emerging as a crucial determinant for acute myeloid leukemia (AML). Regulatory T cells (Tregs) are enriched in the AML microenvironment, but the underlying mechanisms are poorly elucidated. Here, we addressed the effect of IFN-γ released by AML cells in BM Tregs induction and its impact on AML prognosis. EXPERIMENTAL DESIGN BM aspirates from AML patients were subdivided according to IFNG expression. Gene expression profiles in INFGhigh and IFNGlow samples were compared by microarray and NanoString analysis and used to compute a prognostic index. The IFN-g release effect on the BM microenvironment was investigated in mesenchymal stromal cell (MSC)/AML cell co-cultures. In mice, AML cells silenced for IFN-γ expression were injected intrabone. RESULTS IFNGhigh AMLsamples showed an upregulation of inflammatory genes, usually correlated with a good prognosis in cancer. By contrast, in AML patients, high IFNG expression associated with poor overall survival. Notably, IFN-g release by AML cells positively correlated with a higher BM suppressive Tregs' frequency. In co-culture experiments, IFNGhigh AML cells modified MSC transcriptome by up-regulating IFN-γ-dependent genes related to Treg induction, including indoleamine 2,3-dioxygenase 1 (IDO1). IDO1 inhibitor abrogated the effect of IFN-γ release by AML cells on MSC-derived Treg induction. Invivo, the genetic ablation of IFN-γ production by AML cells reduced MSC IDO1 expression and Treg infiltration, hindering AML engraftment. CONCLUSIONS IFN-g release by AML cells induces an immune-regulatory program in MSCs and remodels BM immunological landscape toward Treg induction, contributing to an immunotolerant microenvironment.
Collapse
|
4
|
Parisi S, Ruggeri L, Dan E, Rizzi S, Sinigaglia B, Ocadlikova D, Bontadini A, Giudice V, Urbani E, Ciardelli S, Sartor C, Cristiano G, Nanni J, Zannoni L, Chirumbolo G, Arpinati M, Lewis RE, Bonifazi F, Marconi G, Martinelli G, Papayannidis C, Paolini S, Velardi A, Cavo M, Lemoli RM, Curti A. Long-Term Outcome After Adoptive Immunotherapy With Natural Killer Cells: Alloreactive NK Cell Dose Still Matters. Front Immunol 2022; 12:804988. [PMID: 35173709 PMCID: PMC8841588 DOI: 10.3389/fimmu.2021.804988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/21/2021] [Indexed: 11/13/2022] Open
Abstract
Recently, many reports were published supporting the clinical use of adoptively transferred natural killer (NK) cells as a therapeutic tool against cancer, including acute myeloid leukemia (AML). Our group demonstrated promising clinical response using adoptive immunotherapy with donor-derived alloreactive KIR-ligand-mismatched NK cells in AML patients. Moreover, the antileukemic effect was correlated with the dose of infused alloreactive NK cells (“functional NK cell dose”). Herein, we update the results of our previous study on a cohort of adult AML patients (median age at enrollment 64) in first morphological complete remission (CR), not eligible for allogeneic stem cell transplantation. After an extended median follow-up of 55.5 months, 8/16 evaluable patients (50%) are still off-therapy and alive disease-free. Overall survival (OS) and disease-free survival (DFS) are related with the dose of infused alloreactive NK cells (≥2 × 105/kg).
Collapse
MESH Headings
- Aged
- Female
- Histocompatibility Antigens/immunology
- Histocompatibility Testing
- Humans
- Immunotherapy, Adoptive/adverse effects
- Immunotherapy, Adoptive/methods
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Leukemia, Myeloid, Acute/etiology
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/therapy
- Male
- Middle Aged
- Prognosis
- Treatment Outcome
Collapse
|
5
|
Ocadlikova D, Lecciso M, Broto JM, Scotlandi K, Cavo M, Curti A, Palmerini E. Sunitinib Exerts In Vitro Immunomodulatory Activity on Sarcomas via Dendritic Cells and Synergizes With PD-1 Blockade. Front Immunol 2021; 12:577766. [PMID: 33717062 PMCID: PMC7952316 DOI: 10.3389/fimmu.2021.577766] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 01/12/2021] [Indexed: 12/17/2022] Open
Abstract
Background High-grade sarcomas are a heterogeneous group of aggressive tumors arising in bone and soft tissues. After relapse, treatment options are limited. The multi-targeted receptor tyrosine kinase inhibitors (TKIs) sunitinib and inhibitor of PD-1 (anti-PD-1) nivolumab have shown antitumor activity in selected subtypes. In this study, we examine the role of TKIs and PD-1 based therapy in in vitro cocultures of sarcoma. Methods The human osteosarcoma (SaOS-2) and synovial sarcoma (SYO-1) cell lines were treated with sunitinib. After cell death and proliferation assessment, expression of PD-L1 was analyzed by flow cytometry. Sunitinib-treated sarcoma cells were cocultured with dendritic cells (DCs), and the phenotype of mature DCs was determined by flow cytometry. Mature DCs were cultured with autologous T cells. PD-1 expression on T cells, their proliferation, T regulatory cell (Tregs) induction and IFN-γ production, before and after nivolumab exposure, were analyzed. Results Along with its anti-proliferative and direct pro-apoptotic effect on sarcoma cell lines, sunitinib prompted PD-L1 upregulation on sarcoma cells. Interestingly, sunitinib-treated sarcoma cells drive DCs to full maturation and increase their capacity to induce sarcoma-reactive T cells to produce IFN-γ. Conversely, no effect on T cell proliferation and T cell subpopulation composition was observed. Moreover, both bone and synovial sarcoma cell lines induced Tregs through DCs but sunitinib treatment completely abrogated Treg induction. Finally, sarcoma cell lines induced PD-1 upregulation on both effector T cells and Tregs when loaded into DCs, providing a rationale for using PD-1 blockade. Indeed, PD-1 blockade by nivolumab synergized with sunitinib in inducing IFN-γ-producing effector T cells. Conclusions Taken together, our in vitro data indicate that the treatment of sarcoma cells with sunitinib can exert significant changes on immune cell subsets toward immune activation, leading to DC-based cross-priming of IFN-γ-producing effector T cells and reduced Treg induction. PD-1 blockade with nivolumab has a synergistic effect with sunitinib, supporting the use of TKI and anti-PD-1 approach in sarcomas, and perhaps in other cancers. DC-targeted drugs, including toll-like receptor 3 inhibitors and CD47 inhibitors, are under development and our preclinical model might help to better design their clinical application.
Collapse
|
6
|
Ocadlikova D, Iannarone C, Redavid AR, Cavo M, Curti A. A Screening of Antineoplastic Drugs for Acute Myeloid Leukemia Reveals Contrasting Immunogenic Effects of Etoposide and Fludarabine. Int J Mol Sci 2020; 21:E6802. [PMID: 32948017 PMCID: PMC7556041 DOI: 10.3390/ijms21186802] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 09/15/2020] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Recent evidence demonstrated that the treatment of acute myeloid leukemia (AML) cells with daunorubicin (DNR) but not cytarabine (Ara-C) results in immunogenic cell death (ICD). In the clinical setting, chemotherapy including anthracyclines and Ara-C remains a gold standard for AML treatment. In the last decade, etoposide (Eto) and fludarabine (Flu) have been added to the standard treatment for AML to potentiate its therapeutic effect and have been tested in many trials. Very little data are available about the ability of these drugs to induce ICD. METHODS AML cells were treated with all four drugs. Calreticulin and heat shock protein 70/90 translocation, non-histone chromatin-binding protein high mobility group box 1 and adenosine triphosphate release were evaluated. The treated cells were pulsed into dendritic cells (DCs) and used for in vitro immunological tests. RESULTS Flu and Ara-C had no capacity to induce ICD-related events. Interestingly, Eto was comparable to DNR in inducing all ICD events, resulting in DC maturation. Moreover, Flu was significantly more potent in inducing suppressive T regulatory cells compared to other drugs. CONCLUSIONS Our results indicate a novel and until now poorly investigated feature of antineoplastic drugs commonly used for AML treatment, based on their different immunogenic potential.
Collapse
|
7
|
Ocadlikova D, Lecciso M, Isidori A, Loscocco F, Visani G, Amadori S, Cavo M, Curti A. Chemotherapy-Induced Tumor Cell Death at the Crossroads Between Immunogenicity and Immunotolerance: Focus on Acute Myeloid Leukemia. Front Oncol 2019; 9:1004. [PMID: 31649875 PMCID: PMC6794495 DOI: 10.3389/fonc.2019.01004] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/18/2019] [Indexed: 01/25/2023] Open
Abstract
In solid tumors and hematological malignancies, including acute myeloid leukemia, some chemotherapeutic agents, such as anthracyclines, have proven to activate an immune response via dendritic cell-based cross-priming of anti-tumor T lymphocytes. This process, known as immunogenic cell death, is characterized by a variety of tumor cell modifications, i.e., cell surface translocation of calreticulin, extracellular release of adenosine triphosphate and pro-inflammatory factors, such as high mobility group box 1 proteins. However, in addition to with immunogenic cell death, chemotherapy is known to induce inflammatory modifications within the tumor microenvironment, which may also elicit immunosuppressive pathways. In particular, DCs may be driven to acquire tolerogenic features, such as the overexpression of indoleamine 2,3-dioxygensase 1, which may ultimately hamper anti-tumor T-cells via the induction of T regulatory cells. The aim of this review is to summarize the current knowledge about the mechanisms and effects by which chemotherapy results in both activation and suppression of anti-tumor immune response. Indeed, a better understanding of the whole process underlying chemotherapy-induced alterations of the immunological tumor microenvironment has important clinical implications to fully exploit the immunogenic potential of anti-leukemia agents and tune their application.
Collapse
|
8
|
Palmerini E, Ocadlikova D, Picci P, Lecciso M, Lollini PL, Martin Broto J, Benassi MS, Ferrari S, Curti A. Preclinical development of sunitinib and nivolumab in osteosarcoma and synovial sarcoma: In vitro functional studies. J Clin Oncol 2018. [DOI: 10.1200/jco.2018.36.15_suppl.e14543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
9
|
Moresco M, Lecciso M, Ocadlikova D, Filardi M, Melzi S, Kornum BR, Antelmi E, Pizza F, Mignot E, Curti A, Plazzi G. Flow cytometry analysis of T-cell subsets in cerebrospinal fluid of narcolepsy type 1 patients with long-lasting disease. Sleep Med 2018. [DOI: 10.1016/j.sleep.2017.11.1150] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
10
|
Lecciso M, Ocadlikova D, Sangaletti S, Trabanelli S, De Marchi E, Orioli E, Pegoraro A, Portararo P, Jandus C, Bontadini A, Redavid A, Salvestrini V, Romero P, Colombo MP, Di Virgilio F, Cavo M, Adinolfi E, Curti A. ATP Release from Chemotherapy-Treated Dying Leukemia Cells Elicits an Immune Suppressive Effect by Increasing Regulatory T Cells and Tolerogenic Dendritic Cells. Front Immunol 2017; 8:1918. [PMID: 29312358 PMCID: PMC5744438 DOI: 10.3389/fimmu.2017.01918] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 12/14/2017] [Indexed: 12/12/2022] Open
Abstract
Chemotherapy-induced immunogenic cell death can favor dendritic cell (DC) cross-priming of tumor-associated antigens for T cell activation thanks to the release of damage-associated molecular patterns, including ATP. Here, we tested the hypothesis that in acute myeloid leukemia (AML), ATP release, along with its well-known immune stimulatory effect, may also contribute to the generation of an immune suppressive microenvironment. In a cohort of AML patients, undergoing combined daunorubicin and cytarabine chemotherapy, a population of T regulatory cells (Tregs) with suppressive phenotype, expressing the immune checkpoint programmed cell death protein 1 (PD-1), was significantly increased. Moving from these results, initial in vitro data showed that daunorubicin was more effective than cytarabine in modulating DC function toward Tregs induction and such difference was correlated with the higher capacity of daunorubicin to induce ATP release from treated AML cells. DCs cultured with daunorubicin-treated AML cells upregulated indoleamine 2,3-dioxygenase 1 (IDO1), which induced anti-leukemia Tregs. These data were confirmed in vivo as daunorubicin-treated mice show an increase in extracellular ATP levels with increased number of Tregs, expressing PD-1 and IDO1+CD39+ DCs. Notably, daunorubicin failed to induce Tregs and tolerogenic DCs in mice lacking the ATP receptor P2X7. Our data indicate that ATP release from chemotherapy-treated dying cells contributes to create an immune suppressive microenvironment in AML.
Collapse
|
11
|
Parisi S, Lecciso M, Ocadlikova D, Salvestrini V, Ciciarello M, Forte D, Corradi G, Cavo M, Curti A. The More, The Better: "Do the Right Thing" For Natural Killer Immunotherapy in Acute Myeloid Leukemia. Front Immunol 2017; 8:1330. [PMID: 29097997 PMCID: PMC5653691 DOI: 10.3389/fimmu.2017.01330] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 09/29/2017] [Indexed: 12/11/2022] Open
Abstract
Natural killer (NK) cells are circulating CD3− lymphocytes, which express CD56 or CD16 and an array of inhibitory receptors, called killer-immunoglobulin-like receptors (KIRs). Alloreactive KIR-ligand mismatched NK cells crucially mediate the innate immune response and have a well-recognized antitumor activity. Adoptive immunotherapy with alloreactive NK cells determined promising clinical results in terms of response in acute myeloid leukemia (AML) patients and several data demonstrated that response can be influenced by the composition of NK graft. Several data show that there is a correlation between NK alloreactivity and clinical outcome: in a cohort of AML patients who received NK infusion with active disease, more alloreactive NK cell clones were found in the donor repertoire of responders than in non-responders. These findings demonstrate that the frequency of alloreactive NK cell clones influence clinical response in AML patients undergoing NK cell immunotherapy. In this work, we will review the most recent preclinical and clinical data about the impact of alloreactive NK cells features other than frequency of alloreactive clones and cytokine network status on their anti-leukemic activity. A better knowledge of these aspects is critical to maximize the effects of this therapy in AML patients.
Collapse
|
12
|
Curti A, Ruggeri L, Parisi S, Bontadini A, Dan E, Motta MR, Rizzi S, Trabanelli S, Ocadlikova D, Lecciso M, Giudice V, Fruet F, Urbani E, Papayannidis C, Martinelli G, Bandini G, Bonifazi F, Lewis RE, Cavo M, Velardi A, Lemoli RM. Larger Size of Donor Alloreactive NK Cell Repertoire Correlates with Better Response to NK Cell Immunotherapy in Elderly Acute Myeloid Leukemia Patients. Clin Cancer Res 2016; 22:1914-21. [PMID: 26787753 DOI: 10.1158/1078-0432.ccr-15-1604] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 12/17/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE In acute myeloid leukemia (AML), alloreactive natural killer (NK) cells are crucial mediators of immune responses after haploidentical stem cell transplantation. Allogeneic NK cell infusions have been adoptively transferred with promising clinical results. We aimed at determining whether the composition of NK graft in terms of frequency of alloreactive NK cells influence the clinical response in a group of elderly AML patients undergoing NK immunotherapy. EXPERIMENTAL DESIGN Seventeen AML patients, in first complete remission (CR; median age 64 years, range 53-73) received NK cells from haploidentical KIR-ligand-mismatched donors after fludarabine/cyclophosphamide chemotherapy, followed by IL2. To correlate donor NK cell activity with clinical response, donor NK cells were assessed before and after infusion. RESULTS Toxicity was moderate, although 1 patient died due to bacterial pneumonia and was censored for clinical follow-up. With a median follow-up of 22.5 months (range, 6-68 months), 9 of 16 evaluable patients (0.56) are alive disease-free, whereas 7 of 16 (0.44) relapsed with a median time to relapse of 9 months (range, 3-51 months). All patients treated with molecular disease achieved molecular CR. A significantly higher number of donor alloreactive NK cell clones was observed in responders over nonresponders. The infusion of higher number of alloreactive NK cells was associated with prolonged disease-free survival (0.81 vs. 0.14, respectively;P= 0.03). CONCLUSIONS Infusion of purified NK cells is feasible in elderly AML patients as post-CR consolidation strategy. The clinical efficacy of adoptively transferred haploidentical NK cells may be improved by infusing high numbers of alloreactive NK cells.
Collapse
MESH Headings
- Age Factors
- Aged
- Combined Modality Therapy
- Female
- Genotype
- Haplotypes
- Histocompatibility Testing
- Humans
- Immunophenotyping
- Immunotherapy/adverse effects
- Immunotherapy/methods
- Isoantigens/immunology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/therapy
- Male
- Middle Aged
- Phenotype
- Prospective Studies
- Receptors, KIR3DL1/genetics
- Receptors, KIR3DL1/metabolism
- Recurrence
- Tissue Donors
- Treatment Outcome
Collapse
|
13
|
Isidori A, Salvestrini V, Ciciarello M, Loscocco F, Visani G, Parisi S, Lecciso M, Ocadlikova D, Rossi L, Gabucci E, Clissa C, Curti A. The role of the immunosuppressive microenvironment in acute myeloid leukemia development and treatment. Expert Rev Hematol 2014; 7:807-18. [PMID: 25227702 DOI: 10.1586/17474086.2014.958464] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Functional interplay between acute myeloid leukemia (AML) cells and the bone marrow microenvironment is a distinctive characteristic of this hematological cancer. Indeed, a large body of evidence suggests that proliferation, survival and drug resistance of AML are sustained and modulated by the bone marrow immunosuppressive microenvironment, where both innate and adaptive immune responses are profoundly deregulated. Furthermore, the presence of a number of different immunosuppressive mechanisms results in massive immune deregulation, which causes the eventual escape from natural immune control. Modulating the immune system, as documented by 40 years of stem cell transplantation, may improve survival of AML patients, as the immune system is clearly able to recognize and attack leukemic cells. The understanding of the factors responsible for the escape from immune destruction in AML, which becomes more prominent with disease progression, is necessary for the development of innovative immunotherapeutic treatment modalities in AML.
Collapse
|
14
|
Zahradova L, Mollova K, Ocadlikova D, Kovarova L, Adam Z, Krejci M, Pour L, Krivanova A, Sandecka V, Hajek R. Efficacy and safety of Id-protein-loaded dendritic cell vaccine in patients with multiple myeloma--phase II study results. Neoplasma 2012; 59:440-9. [PMID: 22489700 DOI: 10.4149/neo_2012_057] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
UNLABELLED In a phase II clinical study, pretreated multiple myeloma patients with relapsing or stable disease received autologous anticancer vaccine containing dendritic cells loaded with Id-protein. Patients received a total of 6 vaccine doses intradermally in monthly intervals. No clinical responses were observed. During the follow-up with a median of 33.1 months (range: 11-43 months), the disease remained stable in 7/11 (64%) of patients. Immune responses measured by ELISpot were noted in 3/11 (27%) and DTH skin test for Id-protein was positive in 8/11 (73%) of patients; out of those, 1/11 (9%) and 5/11 (46%), respectively, had preexisting immune response to Id-protein before the vaccination began. Outcomes were compared to those of a control group of 13 patients. A trend to lower cumulative incidence of progression in the vaccinated group was observed at 12 months from the first vaccination (p= 0.099). More patients from the control group compared to vaccinated patients required active anticancer therapy [4/11 (36%) vs. 8/13 (62%)]. Vaccines based on dendritic cells loaded with Id-protein are safe and induce specific immune response in multiple myeloma patients. Our results suggest that the vaccination could stabilize the disease in approximately two-thirds of patients. KEYWORDS dendritic cells, immunotherapy, anticancer vaccines, Id-protein, multiple myeloma.
Collapse
|
15
|
Trabanelli S, Ocadlikova D, Evangelisti C, Parisi S, Curti A. Induction of regulatory T Cells by dendritic cells through indoleamine 2,3-dioxygenase: a potent mechanism of acquired peripheral tolerance. Curr Med Chem 2011; 18:2234-9. [PMID: 21517756 DOI: 10.2174/092986711795656054] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Accepted: 04/17/2011] [Indexed: 11/22/2022]
Abstract
Indoleamine 2,3-dioxygenase (IDO) is an intracellular heme-containing enzyme that catalyzes the initial rate-limiting step in tryptophan degradation along the kynurenine pathway. Recent works have demonstrated a crucial role for IDO in the induction of immune tolerance during infections, pregnancy, transplantation, autoimmunity, and neoplasias. IDO is widely expressed in human tissues and cell subsets, including dendritic cells, where it modulates their function by increasing tolerogenic capacities. The aim of the present paper is to highlight the most recent data about IDO expression in dendritic cells and its role as a potent inducer of T regulatory cells.
Collapse
|
16
|
Ocadlikova D, Kryukov F, Mollova K, Kovarova L, Buresdova I, Matejkova E, Penka M, Buchler T, Hajek R, Michalek J. Generation of myeloma-specific T cells using dendritic cells loaded with MUC1- and hTERT- drived nonapeptides or myeloma cell apoptotic bodies. Neoplasma 2010; 57:455-64. [PMID: 20568900 DOI: 10.4149/neo_2010_05_455] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Dendritic cells are able to induce anti-tumor immune responses by presenting tumor-specific antigens to T-lymphocytes. Various tumor-associated antigens have been studied in multiple myeloma in an effort to find a strong antigen capable of generating clinically meaningful responses in vaccinated patients. The aim of our study was to generate myeloma-specific cytotoxic T lymphocytes in vitro using dendritic cells loaded with peptide antigens or apoptotic bodies. Peripheral blood mononuclear cells from HLA-A2+ healthy donors were used for isolation and culture of dendritic cells (DCs) and T lymphocytes. DCs were loaded with hTERT- and MUC1-derived nonapeptides or apoptotic bodies from myeloma cells. Repeated stimulation of T lymphocytes led to their activation characterized by interferon-gamma production. Activated T lymphocytes were separated immunomagnetically and expanded in vitro. Specific cytotoxicity of the expanded T lymphocytes was tested against a myeloma cell line. There was evidence of cytotoxicity for all three types of antigens used for T lymphocyte priming and expansion. No statistically significant differences were observed in T lymphocyte cytotoxicity for any of the antigens. We present a method for the priming and expansion of myeloma-specific T lymphocytes using dendritic cells loaded with different types of tumor antigens. Cytotoxic T lymphocytes and/or activated dendritic cells generated by the described methods can be applied for cellular immunotherapy against multiple myeloma and other malignancies.
Collapse
|
17
|
Curti A, Trabanelli S, Onofri C, Aluigi M, Salvestrini V, Ocadlikova D, Evangelisti C, Rutella S, De Cristofaro R, Ottaviani E, Baccarani M, Lemoli RM. Indoleamine 2,3-dioxygenase-expressing leukemic dendritic cells impair a leukemia-specific immune response by inducing potent T regulatory cells. Haematologica 2010; 95:2022-30. [PMID: 20801903 DOI: 10.3324/haematol.2010.025924] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The immunoregulatory enzyme indoleamine 2,3-dioxygenase, which catalyzes the conversion of tryptophan into kynurenine, is expressed in a significant subset of patients with acute myeloid leukemia, resulting in the inhibition of T-cell proliferation and the induction of regulatory T cells. Acute myeloid leukemia cells can be differentiated into dendritic cells, which have increased immunogenicity and have been proposed as vaccines against leukemia. DESIGN AND METHODS Leukemic dendritic cells were generated from acute myeloid leukemia cells and used as stimulators in functional assays, including the induction of regulatory T cells. Indoleamine 2,3-dioxygenase expression in leukemic dendritic cells was evaluated at molecular, protein and enzymatic levels. RESULTS We demonstrate that, after differentiation into dendritic cells, both indoleamine 2,3-dioxygenase-negative and indoleamine 2,3-dioxygenase-positive acute myeloid leukemia samples show induction and up-regulation of indoleamine 2,3-dioxygenase gene and protein, respectively. Indoleamine 2,3-dioxygenase-positive acute myeloid leukemia dendritic cells catabolize tryptophan into kynurenine metabolite and inhibit T-cell proliferation through an indoleamine 2,3-dioxygenase-dependent mechanism. Moreover, indoleamine 2,3-dioxygenase-positive leukemic dendritic cells increase the number of allogeneic and autologous CD4(+)CD25(+) Foxp3(+) T cells and this effect is completely abrogated by the indoleamine 2,3-dioxygenase-inhibitor, 1-methyl tryptophan. Purified CD4(+)CD25(+) T cells obtained from co-culture with indoleamine 2,3-dioxygenase-positive leukemic dendritic cells act as regulatory T cells as they inhibit naive T-cell proliferation and impair the complete maturation of normal dendritic cells. Importantly, leukemic dendritic cell-induced regulatory T cells are capable of in vitro suppression of a leukemia-specific T cell-mediated immune response, directed against the leukemia-associated antigen, Wilms' tumor protein. CONCLUSIONS These data identify indoleamine 2,3-dioxygenase-mediated catabolism as a tolerogenic mechanism exerted by leukemic dendritic cells and have clinical implications for the use of these cells for active immunotherapy of leukemia.
Collapse
|
18
|
Michalek J, Ocadlikova D, Matejkova E, Foltankova V, Dudová S, Slaby O, Horvath R, Pour L, Hajek R. Individual myeloma-specific T-cell clones eliminate tumour cells and correlate with clinical outcomes in patients with multiple myeloma. Br J Haematol 2010; 148:859-67. [PMID: 20067568 DOI: 10.1111/j.1365-2141.2009.08034.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Despite novel treatment strategies, multiple myeloma (MM) remains an incurable disease with low immunogenicity and multiple immune defects. We developed an ex vivo strategy for inducing myeloma-specific cytotoxic T lymphocytes (CTLs) and demonstrate the possibility of identification and long-term in vivo monitoring of individual myeloma-specific T-cell clones using the most sensitive clonotypic assay that is able to detect low frequencies of T-cell clones (1 clonotypic cell in 10(6) cells). Ten patients with MM were examined for the presence of tumour-reactive T cells using dendritic cells loaded with autologous tumour cells. All patients had detectable myeloma-reactive T cells in vitro. Expanded myeloma-reactive T cells demonstrated specific cytotoxic effects against autologous tumour cells in vitro (median 39.6% at an effector:target ratio of 40:1). The clonality of myeloma-specific T cells was studied with a clonotypic assay, which demonstrated both oligoclonal and monoclonal populations of myeloma-specific T cells. CD8(+) CTLs were the most immunodominant myeloma-specific T-cell clones and clinical responses were closely associated with the in vivo expansion and long-term persistence of individual CD8(+) T-cell clones, usually at very low frequencies (10(-3)-10(-6)). We conclude that the clonotypic assay is the most sensitive tool for immunomonitoring of low-frequency T cells.
Collapse
|
19
|
Kovarova L, Buchler T, Pour L, Zahradova L, Ocadlikova D, Svobodnik A, Penka M, Vorlicek J, Hajek R. Dendritic cell counts and their subsets during treatment of multiple myeloma. Neoplasma 2007; 54:297-303. [PMID: 17822319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Human dendritic cells have distinct roles in the regulation of immunity. In this study we analysed the kinetics and the proportion of myeloid and plasmacytoid subsets of dendritic cells (DC) in peripheral blood of 15 patients with multiple myeloma (MM) before and during treatment that included autologous transplantation. Control group of 15 healthy volunteers was evaluated by using the same approaches. Flowcytometric determination of relative and absolute cell counts in unmanipulated peripheral blood was based on the expression of surface antigens CD83 and HLA-DR. Depending on the expression of CD11c or CD123, we divided these cells into CD11c+ dendritic cells type 1 (DC1) and CD123+ DC type 2 (DC2). Significant differences were found in initial relative counts of CD83+ cells and of the DC2 subtype between the group of controls and the group of patients before treatment. In absolute counts, there was a difference only in the DC2 subtype. After induction treatment (vincristine, doxorubicin, and dexamethasone), the mean percentage of CD83+ DC and the DC1 percentage were significantly higher than initially, but there was no significant difference in absolute counts. Administration of G-CSF again increased the total DC numbers. Intermediate DC counts were found in the apheresis products. After engraftment, we found the highest relative DC numbers, but absolute counts were not very high because of leukopenia. Within six months after transplantation, normal relative and absolute DC counts were found in patients. Untreated patients with MM have significantly lower relative numbers of peripheral blood DC in comparison with healthy volunteers. The highest number of total DC was found after engraftment. The DC1/DC2 ratio showed relative predominance of DC1 subtype and the lowest DC1/DC2 ratio was found in the apheresis products. DC counts comparable with those of healthy volunteers were found in patients six months after transplantation.
Collapse
|
20
|
Ocadlikova D, Zahradova L, Kovarova L, Penka M, Zaloudik J, Buchler T, Hajek R, Michalek J. Isolation and Expansion of Allogeneic Myeloma-Specific Interferon-Gamma Producing T Cells for Adoptive Immunotherapy. Med Oncol 2006; 23:377-84. [PMID: 17018895 DOI: 10.1385/mo:23:3:377] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2005] [Revised: 11/30/1999] [Accepted: 01/26/2006] [Indexed: 11/11/2022]
Abstract
Adoptive immunotherapy is a promising approach in the treatment of multiple myeloma. We have tested the identification, separation, and expansion of allogeneic myeloma-specific T cells in vitro. Irradiated myeloma cell line ARH 77 has been used to stimulate allogeneic CD4(+) and CD8(+) T lymphocytes. Activated myeloma-specific T cells that produced interferon-gamma were isolated using immunomagnetic beads and further expanded in vitro to numbers of up to 400 x 106 T cells. Specificity of the T lymphocytes was tested using a 5-(6-)carboxyfluoresceine diacetate succinimidyl ester (CFSE)-based cytotoxicity test. This study demonstrates the feasibility of identification and isolation of tumor-specific T cells from allogeneic donors that can be expanded in vitro to numbers useful for clinical applications.
Collapse
|
21
|
Rössner P, Bavorova H, Ocadlikova D, Svandova E, Sram RJ. Chromosomal aberrations in peripheral lymphocytes of children as biomarkers of environmental exposure and life style. Toxicol Lett 2002; 134:79-85. [PMID: 12191864 DOI: 10.1016/s0378-4274(02)00166-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The original purpose of our study was to determine if the detection of chromosomal aberrations in peripheral lymphocytes of children might be used as a biomarker of environmental pollution and life style. We compared the results of cytogenetic analyses performed in children and adolescents in the periods 1984-1993 and 1994-1999, in a total of 3402 subjects. The frequency of aberrant cells (AB.C.) markedly decreased in the period 1994-1999 compared with the period 1984-1993. The decreases in AB.C. were significant in the age groups 7-15 and 16-19 years: 1.63% AB.C. versus 1.14% AB.C. and 2.02% AB.C. versus 1.08% AB.C., respectively (P<0.01). No difference in the frequency of AB.C. was observed in newborns. Based on our experience, we believe that monitoring the spontaneous level of chromosomal aberrations in children over 5 year periods may be used to examine the general changes in environmental pollution in larger geographic areas.
Collapse
|
22
|
Rossner P, Cerna M, Bavorova H, Pastorkova A, Ocadlikova D. Monitoring of human exposure to occupational genotoxicants. Cent Eur J Public Health 1995; 3:219-23. [PMID: 8903525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The human exposure to genotoxic agents can be detected by using genetic monitoring procedures which is mainly concerned with markers of exposure and effect. Cytogenetic analysis of human peripheral lymphocytes and urine mutagenicity are routinely used in Hygiene Service of the Czech Republic. The review demonstrated the activity of National Reference laboratory and other laboratories in Hygiene Service of the Czech Republic in the problem dealing with monitoring of population exposure to genotoxic substances. Altogether, 7 regional and 15 district laboratories have been in function. Several thousands of occupationally exposed and control persons have been examined by now. The most followed population at risk were those exposed to cytostatics, polycyclic aromatic hydrocarbons, complex mixtures of chemicals, metals and others. The system of genetic monitoring helped to detect the exposure of population at risk to genotoxic contaminants, to use the obtained data for quantification of exposure and for preventive measures application and to control the efficacy of applied regulatory action.
Collapse
|