Mohanarajan M, Salunke PP, Arif A, Iglesias Gonzalez PM, Ospina D, Benavides DS, Amudha C, Raman KK, Siddiqui HF. Advancements in Machine Learning and Artificial Intelligence in the Radiological Detection of Pulmonary Embolism.
Cureus 2025;
17:e78217. [PMID:
40026993 PMCID:
PMC11872007 DOI:
10.7759/cureus.78217]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2025] [Indexed: 03/05/2025] Open
Abstract
Pulmonary embolism (PE) is a clinically challenging diagnosis that varies from silent to life-threatening symptoms. Timely diagnosis of the condition is subject to clinical assessment, D-dimer testing and radiological imaging. Computed tomography pulmonary angiogram (CTPA) is considered the gold standard imaging modality, although some cases can be missed due to reader dependency, resulting in adverse patient outcomes. Hence, it is crucial to implement faster and precise diagnostic strategies to help clinicians diagnose and treat PE patients promptly and mitigate morbidity and mortality. Machine learning (ML) and artificial intelligence (AI) are the newly emerging tools in the medical field, including in radiological imaging, potentially improving diagnostic efficacy. Our review of the studies showed that computer-aided design (CAD) and AI tools displayed similar to superior sensitivity and specificity in identifying PE on CTPA as compared to radiologists. Several tools demonstrated the potential in identifying minor PE on radiological scans showing promising ability to aid clinicians in reducing missed cases substantially. However, it is imperative to design sophisticated tools and conduct large clinical trials to integrate AI use in everyday clinical setting and establish guidelines for its ethical applicability. ML and AI can also potentially help physicians in formulating individualized management strategies to enhance patient outcomes.
Collapse