1
|
Jackson DA, Pombo A. Replicon clusters are stable units of chromosome structure: evidence that nuclear organization contributes to the efficient activation and propagation of S phase in human cells. J Cell Biol 1998; 140:1285-95. [PMID: 9508763 PMCID: PMC2132671 DOI: 10.1083/jcb.140.6.1285] [Citation(s) in RCA: 649] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In proliferating cells, DNA synthesis must be performed with extreme precision. We show that groups of replicons, labeled together as replicon clusters, form stable units of chromosome structure. HeLa cells were labeled with 5-bromodeoxyuridine (BrdU) at different times of S phase. At the onset of S phase, clusters of replicons were activated in each of approximately 750 replication sites. The majority of these replication "foci" were shown to be individual replicon clusters that remained together, as stable cohorts, throughout the following 15 cell cycles. In individual cells, the same replication foci were labeled with BrdU and 5-iododeoxyuridine at the beginning of different cell cycles. In DNA fibers, 95% of replicons in replicon clusters that were labeled at the beginning of one S phase were also labeled at the beginning of the next. This shows that a subset of origins are activated both reliably and efficiently in different cycles. The majority of replication forks activated at the onset of S phase terminated 45-60 min later. During this interval, secondary replicon clusters became active. However, while the activation of early replicons is synchronized at the onset of S phase, different secondary clusters were activated at different times. Nevertheless, replication foci pulse labeled during any short interval of S phase were stable for many cell cycles. We propose that the coordinated replication of related groups of replicons, that form stable replicon clusters, contributes to the efficient activation and propagation of S phase in mammalian cells.
Collapse
|
research-article |
27 |
649 |
2
|
Jackson DA, Hassan AB, Errington RJ, Cook PR. Visualization of focal sites of transcription within human nuclei. EMBO J 1993; 12:1059-65. [PMID: 8458323 PMCID: PMC413307 DOI: 10.1002/j.1460-2075.1993.tb05747.x] [Citation(s) in RCA: 448] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
HeLa cells were encapsulated in agarose microbeads, permeabilized and incubated with Br-UTP in a 'physiological' buffer; then sites of RNA synthesis were immunolabelled using an antibody that reacts with Br-RNA. After extending nascent RNA chains by < 400 nucleotides in vitro, approximately 300-500 focal synthetic sites can be seen in each nucleus by fluorescence microscopy. Most foci also contain a component of the splicing apparatus detected by an anti-Sm antibody. alpha-amanitin, an inhibitor of RNA polymerase II, prevents incorporation into these foci; then, using a slightly higher salt concentration, approximately 25 nucleolar foci became clearly visible. Both nucleolar and extra-nucleolar foci remain after nucleolytic removal of approximately 90% chromatin. An underlying structure probably organizes groups of transcription units into 'factories' where transcripts are both synthesized and processed.
Collapse
|
|
32 |
448 |
3
|
Jackson DA, Symons RH, Berg P. Biochemical method for inserting new genetic information into DNA of Simian Virus 40: circular SV40 DNA molecules containing lambda phage genes and the galactose operon of Escherichia coli. Proc Natl Acad Sci U S A 1972; 69:2904-9. [PMID: 4342968 PMCID: PMC389671 DOI: 10.1073/pnas.69.10.2904] [Citation(s) in RCA: 368] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
We have developed methods for covalently joining duplex DNA molecules to one another and have used these techniques to construct circular dimers of SV40 DNA and to insert a DNA segment containing lambda phage genes and the galactose operon of E. coli into SV40 DNA. The method involves: (a) converting circular SV40 DNA to a linear form, (b) adding single-stranded homodeoxypolymeric extensions of defined composition and length to the 3' ends of one of the DNA strands with the enzyme terminal deoxynucleotidyl transferase (c) adding complementary homodeoxypolymeric extensions to the other DNA strand, (d) annealing the two DNA molecules to form a circular duplex structure, and (e) filling the gaps and sealing nicks in this structure with E. coli DNA polymerase and DNA ligase to form a covalently closed-circular DNA molecule.
Collapse
|
research-article |
53 |
368 |
4
|
Abstract
HeLa cells in early S phase were encapsulated in agarose microbeads, permeabilized, and incubated with biotin-11-dUTP in a "physiological" buffer. Sites of DNA synthesis were then immunolabeled. As others have found, approximately 150 focal sites of synthesis were visible in each nucleus by light microscopy; they also contained DNA polymerase alpha and proliferating cell nuclear antigen. Electron microscopy of thick resinless sections from which approximately 90% of the chromatin had been removed revealed a similar number of dense, morphologically discrete ovoid bodies strung along a nucleoskeleton. The ovoids remained morphologically and functionally intact despite the removal of most of the chromatin. After 2.5 min of incubation with biotin-11-dUTP, the incorporated analog was associated only with ovoids; after 5 min it began to spread into the adjacent chromatin, which became extensively labeled after 1 hr. This provides visual evidence for polymerization "factories" fixed to a skeleton, with replication occurring as the template moves through them.
Collapse
|
|
32 |
350 |
5
|
Iborra FJ, Pombo A, Jackson DA, Cook PR. Active RNA polymerases are localized within discrete transcription “factories' in human nuclei. J Cell Sci 1996; 109 ( Pt 6):1427-36. [PMID: 8799830 DOI: 10.1242/jcs.109.6.1427] [Citation(s) in RCA: 308] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nascent transcripts in permeabilized HeLa cells were elongated by approximately 30–2,000 nucleotides in Br-UTP or biotin-14-CTP, before incorporation sites were immunolabelled either pre- or post-embedding, and visualized by light or electron microscopy. Analogues were concentrated in approximately 2,100 (range 2,000-2,700) discrete sites attached to a nucleoskeleton and surrounded by chromatin. A typical site contained a cluster (diameter 71 nm) of at least 4, and probably about 20, engaged polymerases, plus associated transcripts that partially overlapped a zone of RNA polymerase II, ribonucleoproteins, and proteins rich in thiols and acidic groups. As each site probably contains many transcription units, these results suggest that active polymerases are confined to these sites, which we call transcription ‘factories’. Results are consistent with transcription occurring as templates slide past attached polymerases, as nascent RNA is extruded into the factories.
Collapse
|
|
29 |
308 |
6
|
Iborra FJ, Jackson DA, Cook PR. Coupled transcription and translation within nuclei of mammalian cells. Science 2001; 293:1139-42. [PMID: 11423616 DOI: 10.1126/science.1061216] [Citation(s) in RCA: 293] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
It is widely assumed that the vital processes of transcription and translation are spatially separated in eukaryotes and that no translation occurs in nuclei. We localized translation sites by incubating permeabilized mammalian cells with [3H]lysine or lysyl-transfer RNA tagged with biotin or BODIPY; although most nascent polypeptides were cytoplasmic, some were found in discrete nuclear sites known as transcription "factories." Some of this nuclear translation also depends on concurrent transcription by RNA polymerase II. This coupling is simply explained if nuclear ribosomes translate nascent transcripts as those transcripts emerge from still-engaged RNA polymerases, much as they do in bacteria.
Collapse
|
|
24 |
293 |
7
|
Jackson DA, Iborra FJ, Manders EM, Cook PR. Numbers and organization of RNA polymerases, nascent transcripts, and transcription units in HeLa nuclei. Mol Biol Cell 1998; 9:1523-36. [PMID: 9614191 PMCID: PMC25378 DOI: 10.1091/mbc.9.6.1523] [Citation(s) in RCA: 212] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Using HeLa cells, we have developed methods to determine 1) the number of RNA polymerases that are active at any moment, 2) the number of transcription sites, and 3) the number of polymerases associated with one transcription unit. To count engaged polymerases, cells were encapsulated in agarose, permeabilized, treated with ribonuclease, and the now-truncated transcripts extended in [32P]uridine triphosphate; then, the number of growing transcripts was calculated from the total number of nucleotides incorporated and the average increment in length of the transcripts. Approximately 15, 000 transcripts were elongated by polymerase I, and approximately 75,000 were elongated by polymerases II and III. Transcription sites were detected after the cells were grown in bromouridine for <2.5 min, after which the resulting bromo-RNA was labeled with gold particles; electron microscopy showed that most extranucleolar transcripts were concentrated in approximately 2400 sites with diameters of approximately 80 nm. The number of polymerases associated with a transcription unit was counted after templates were spread over a large area; most extranucleolar units were associated with one elongating complex. These results suggest that many templates are attached in a "cloud" of loops around a site; each site, or transcription "factory," would contain approximately 30 active polymerases and associated transcripts.
Collapse
|
research-article |
27 |
212 |
8
|
|
|
44 |
196 |
9
|
Pombo A, Jackson DA, Hollinshead M, Wang Z, Roeder RG, Cook PR. Regional specialization in human nuclei: visualization of discrete sites of transcription by RNA polymerase III. EMBO J 1999; 18:2241-53. [PMID: 10205177 PMCID: PMC1171307 DOI: 10.1093/emboj/18.8.2241] [Citation(s) in RCA: 194] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mammalian nuclei contain three different RNA polymerases defined by their characteristic locations and drug sensitivities; polymerase I is found in nucleoli, and polymerases II and III in the nucleoplasm. As nascent transcripts made by polymerases I and II are concentrated in discrete sites, the locations of those made by polymerase III were investigated. HeLa cells were lysed with saponin in an improved 'physiological' buffer that preserves transcriptional activity and nuclear ultrastructure; then, engaged polymerases were allowed to extend nascent transcripts in Br-UTP, before the resulting Br-RNA was immunolabelled indirectly with fluorochromes or gold particles. Biochemical analysis showed that approximately 10 000 transcripts were being made by polymerase III at the moment of lysis, while confocal and electron microscopy showed that these transcripts were concentrated in only approximately 2000 sites (diameter approximately 40 nm). Therefore, each site contains approximately five active polymerases. These sites contain specific subunits of polymerase III, but not the hyperphosphorylated form of the largest subunit of polymerase II. The results indicate that the active forms of all three nuclear polymerases are concentrated in their own dedicated transcription sites or 'factories', suggesting that different regions of the nucleus specialize in the transcription of different types of gene.
Collapse
|
research-article |
26 |
194 |
10
|
Abstract
It is widely believed that the chromatin fibre is organized into loops during interphase, with the loop being implicated as an important unit of nuclear function. However, there remains little direct evidence for looping, with estimates of loop size varying widely. This has led to the suggestion that some loops, or even all of them, arise artefactually during isolation as chromatin aggregates so easily. We have now investigated the effect of isolation procedure on loop size using HeLa cells encapsulated in agarose to allow easy manipulation. Loop size in various derivatives (i.e. nuclei, nucleoids, matrices and scaffolds) critically depended on procedure; some (or all) of their loops are artefacts. The loop size in derivatives isolated using the most 'physiological' conditions was 86 kb; this remained unchanged throughout the cell cycle. This loop size is probably an average of a range of loops of between 5 and 200 kb.
Collapse
|
|
35 |
164 |
11
|
Abstract
Whether nucleoskeletons seen after extracting cells are preparative artefacts is controversial. Using an extraction method that preserves vital nuclear functions, we have visualized part of a nucleoskeleton by electron microscopy of thick resinless sections. Cells encapsulated in agarose microbeads are lysed using Triton in a physiological buffer; the agarose coat prevents aggregation and protects fragile cell contents. These extracted cells are accessible to small molecules and transcribe and replicate at rates close to those in vivo. After electroeluting most chromatin after treatment with HaeIII, a skeleton is uncovered which ramifies throughout the nucleus. Individual filaments are approximately 10 nm wide with an axial repeat of 23 nm, characteristic of intermediate filaments.
Collapse
|
|
37 |
152 |
12
|
Abstract
The site of S-phase DNA synthesis has been the subject of recurring controversy. All recent evidence supporting a site fixed to some nuclear sub-structure is derived from studies in which cells or nuclei have been extracted in hypertonic salt concentrations. The controversy centres on whether the resulting nuclear matrices or cages have counterparts in vivo or are simply artefacts. Using isotonic conditions throughout the isolation and analytic procedures we have now reinvestigated the site of replication. Cells are encapsulated in agarose microbeads and lysed to leave encapsulated nuclei which are nevertheless completely accessible to enzymes. After incubation with endonucleases, most chromatin can be electroeluted from beads: however, nascent DNA and active DNA polymerase remain entrapped. Since chromatin particles containing DNA the size of 125 kbp can electroelute, we conclude that the polymerizing complex is attached to a nucleoskeleton which is too large to escape. We have also studied various artefacts induced by departure from isotonic conditions. Perhaps surprisingly, the hypotonic conditions used during isolation of nuclei by conventional procedures are a significant source of artefact.
Collapse
|
|
39 |
137 |
13
|
Lancaster-Smith MJ, Jaderberg ME, Jackson DA. Ranitidine in the treatment of non-steroidal anti-inflammatory drug associated gastric and duodenal ulcers. Gut 1991; 32:252-5. [PMID: 2013419 PMCID: PMC1378828 DOI: 10.1136/gut.32.3.252] [Citation(s) in RCA: 119] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In a multicentre study the effect of ranitidine on healing non-steroidal anti-inflammatory drug (NSAID) associated peptic ulcers was compared in a group of patients who had stopped NSAID treatment with another group who continued with NSAID treatment. A total of 190 patients with confirmed ulcers were randomised to continue or stop NSAID treatment. All patients in addition received ranitidine 150 mg twice daily. Patients were endoscopically monitored at four, eight, and 12 weeks. Gastric ulcers at eight weeks had healed in 63% of those taking NSAIDs compared with 95% of those who had stopped NSAID treatment. For duodenal ulcer the healing rates at eight weeks were 84% in the group continuing NSAIDs compared with 100% in those who stopped NSAIDs. The differences in healing rates were statistically significant for both gastric ulcer (p = 0.001) and for duodenal ulcer (p = 0.006). At 12 weeks, 79% of gastric ulcers and 92% of duodenal ulcers were healed in the group continuing with NSAIDs. All patients with gastric and duodenal ulcers who stopped taking NSAIDs were healed at 12 weeks. The study shows that ranitidine 150 mg twice daily effectively heals NSAID associated peptic ulcers. Healing is more successful when NSAID treatment stops but even if these drugs are continued, substantial healing rates are achievable.
Collapse
|
research-article |
34 |
119 |
14
|
|
|
25 |
119 |
15
|
Muirhead CR, Goodill AA, Haylock RG, Vokes J, Little MP, Jackson DA, O'Hagan JA, Thomas JM, Kendall GM, Silk TJ, Bingham D, Berridge GL. Occupational radiation exposure and mortality: second analysis of the National Registry for Radiation Workers. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 1999; 19:3-26. [PMID: 10321692 DOI: 10.1088/0952-4746/19/1/002] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The National Registry for Radiation Workers (NRRW) is the largest epidemiological study of UK radiation workers. Following the first analysis published in 1992, a second analysis has been conducted using an enlarged cohort of 124,743 workers, updated dosimetry and personal data for some workers, and a longer follow-up. Overall levels of mortality were found to be less than those expected from national rates; the standardised mortality ratio for all causes was 82, increasing to 89 after adjusting for social class. This 'healthy worker effect' was particularly strong for lung cancer and for some smoking-related non-malignant diseases. Analysis of potential radiation effects involved testing for any trend in mortality risk with external dose, after adjusting for likely confounding factors. For leukaemia, excluding chronic lymphatic leukaemia (CLL), the central estimate of excess relative risk (ERR) per Sv was similar to that estimated for the Japanese atomic bomb survivors at low doses (without the incorporation of a dose-rate correction factor); the corresponding 90% confidence limits for this trend were tighter than in the first analysis, ranging from just under four times the risk estimated at low doses from the Japanese atomic bomb survivors to about zero. For the grouping of all malignancies other than leukaemia, the central estimate of the trend in risk with dose was closer to zero than in the first analysis; also, the 90% confidence limits were tighter than before and included zero. Since results for lung cancer and non-malignant smoking-related diseases suggested the possibility of confounding by smoking, an examination was made, as in the first analysis, of all malignancies other than leukaemia and lung cancer. In this instance the central estimate of the ERR per Sv was similar to that from the A-bomb data (without the incorporation of a dose-rate correction factor), with a 90% confidence interval ranging from about four times the A-bomb value to less than zero. For multiple myeloma there was an indication of an increasing trend in risk with external dose (p = 0.06), although the evidence for this trend disappeared after omitting workers monitored for exposure to internal emitters. The second NRRW analysis provides stronger inferences than the first on occupational radiation exposure and cancer mortality; the 90% confidence intervals for the risk per unit dose are tighter than before, and now exclude values which are greater than four times those seen among the Japanese A-bomb survivors, although they are also generally consistent with an observation of no raised risk. Furthermore, there is evidence, of borderline statistical significance, of an increasing risk for leukaemia excluding CLL, and, as with solid cancers, the data are consistent with the A-bomb findings.
Collapse
|
|
26 |
116 |
16
|
|
|
47 |
116 |
17
|
Blow JJ, Gillespie PJ, Francis D, Jackson DA. Replication origins in Xenopus egg extract Are 5-15 kilobases apart and are activated in clusters that fire at different times. J Cell Biol 2001; 152:15-25. [PMID: 11149917 PMCID: PMC2193667 DOI: 10.1083/jcb.152.1.15] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
When Xenopus eggs and egg extracts replicate DNA, replication origins are positioned randomly with respect to DNA sequence. However, a completely random distribution of origins would generate some unacceptably large interorigin distances. We have investigated the distribution of replication origins in Xenopus sperm nuclei replicating in Xenopus egg extract. Replicating DNA was labeled with [(3)H]thymidine or bromodeoxyuridine and the geometry of labeled sites on spread DNA was examined. Most origins were spaced 5-15 kb apart. This regular distribution provides an explanation for how complete chromosome replication can be ensured although origins are positioned randomly with respect to DNA sequence. Origins were grouped into small clusters (typically containing 5-10 replicons) that fired at approximately the same time, with different clusters being activated at different times in S phase. This suggests that a temporal program of origin firing similar to that seen in somatic cells also exists in the Xenopus embryo. When the quantity of origin recognition complexes (ORCs) on the chromatin was restricted, the average interorigin distance increased, and the number of origins in each cluster decreased. This suggests that the binding of ORCs to chromatin determines the regular spacing of origins in this system.
Collapse
|
research-article |
24 |
114 |
18
|
Hodge CN, Aldrich PE, Bacheler LT, Chang CH, Eyermann CJ, Garber S, Grubb M, Jackson DA, Jadhav PK, Korant B, Lam PY, Maurin MB, Meek JL, Otto MJ, Rayner MM, Reid C, Sharpe TR, Shum L, Winslow DL, Erickson-Viitanen S. Improved cyclic urea inhibitors of the HIV-1 protease: synthesis, potency, resistance profile, human pharmacokinetics and X-ray crystal structure of DMP 450. CHEMISTRY & BIOLOGY 1996; 3:301-14. [PMID: 8807858 DOI: 10.1016/s1074-5521(96)90110-6] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Effective HIV protease inhibitors must combine potency towards wild-type and mutant variants of HIV with oral bioavailability such that drug levels in relevant tissues continuously exceed that required for inhibition of virus replication. Computer-aided design led to the discovery of cyclic urea inhibitors of the HIV protease. We set out to improve the physical properties and oral bioavailability of these compounds. RESULTS We have synthesized DMP 450 (bis-methanesulfonic acid salt), a water-soluble cyclic urea compound and a potent inhibitor of HIV replication in cell culture that also inhibits variants of HIV with single amino acid substitutions in the protease. DMP 450 is highly selective for HIV protease, consistent with displacement of the retrovirus-specific structural water molecule. Single doses of 10 mg kg-1 DMP 450 result in plasma levels in man in excess of that required to inhibit wild-type and several mutant HIVs. A plasmid-based, in vivo assay model suggests that maintenance of plasma levels of DMP 450 near the antiviral IC90 suppresses HIV protease activity in the animal. We did identify mutants that are resistant to DMP 450, however; multiple mutations within the protease gene caused a significant reduction in the antiviral response. CONCLUSIONS DMP 450 is a significant advance within the cyclic urea class of HIV protease inhibitors due to its exceptional oral bioavailability. The data presented here suggest that an optimal cyclic urea will provide clinical benefit in treating AIDS if it combines favorable pharmacokinetics with potent activity against not only single mutants of HIV, but also multiply-mutant variants.
Collapse
|
|
29 |
110 |
19
|
Kendall GM, Muirhead CR, MacGibbon BH, O'Hagan JA, Conquest AJ, Goodill AA, Butland BK, Fell TP, Jackson DA, Webb MA. Mortality and occupational exposure to radiation: first analysis of the National Registry for Radiation Workers. BMJ (CLINICAL RESEARCH ED.) 1992; 304:220-5. [PMID: 1739796 PMCID: PMC1881453 DOI: 10.1136/bmj.304.6821.220] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE To study cause specific mortality of radiation workers with particular reference to associations between fatal neoplasms and level of exposure to radiation. DESIGN Cohort study. SETTING United Kingdom. SUBJECTS 95,217 radiation workers at major sites of the nuclear industry. MAIN OUTCOME MEASURE Cause of death. RESULTS Most standardised mortality ratios were below 100: 83 unlagged, 85 with a 10 year lag for all causes; 84 unlagged, 86 lagged for all cancers; and 80 for all known other causes, indicating a "healthy worker effect." The deficit of lung cancer (75 unlagged, 76 lagged) was significant at the 0.1% level. Standardised mortality ratios were significantly raised (214 unlagged, 303 lagged) for thyroid cancer, but there was no evidence for any trend with external recorded radiation dose. Dose of external radiation and mortality from all cancers were weakly correlated (p = 0.10), and multiple myeloma was more strongly correlated (p = 0.06); for leukaemia, excluding chronic lymphatic, the trend was significant (p = 0.03; all tests one tailed). The central estimates of lifetime risk derived from these data were 10.0% per Sv (90% confidence interval less than 0 to 24%) for all cancers and 0.76% per Sv (0.07 to 2.4%) for leukaemia (excluding chronic lymphatic leukaemia). These are, respectively, 2.5 times and 1.9 times the risk estimates recommended by the International Commission on Radiological Protection, but 90% confidence intervals are large and the commission's risk factors fall well within the range. The positive trend with dose for all cancers, from which the risk estimate was derived, was not significant. The positive association between leukaemia (except chronic lymphatic leukaemia) was significant and robust in subsidiary analyses. This study showed no association between radiation exposure and prostatic cancer. CONCLUSION There is evidence for an association between radiation exposure and mortality from cancer, in particular leukaemia (excluding chronic lymphatic leukaemia) and multiple myeloma, although mortality from these diseases in the study population overall was below that in the general population. The central estimates of risk from this study lie above the most recent estimates of the International Commission on Radiological Protection for leukaemia (excluding chronic lymphatic leukaemia) and for all malignancies. However, the commission's risk estimates are well within the 90% confidence intervals from this study. Analysis of combined cohorts of radiation workers in the United States indicated lower risk estimates than the commission recommends, and when the American data are combined with our analysis the overall risks are close to those estimated by the commission. This first analysis of the National Registry for Radiation Workers does not provide sufficient evidence to justify a revision in risk estimates for radiological protection purposes.
Collapse
|
research-article |
33 |
110 |
20
|
Jackson DA, Yuan J, Cook PR. A gentle method for preparing cyto- and nucleo-skeletons and associated chromatin. J Cell Sci 1988; 90 ( Pt 3):365-78. [PMID: 3075613 DOI: 10.1242/jcs.90.3.365] [Citation(s) in RCA: 109] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We describe a method for permeabilizing and extracting cells that preserves both structure and function whilst allowing the cell derivatives to be handled freely. Cells are encapsulated in microbeads of agarose; the coat of agarose, which is freely permeable to small molecules, forms a protective layer around fragile cell constituents. Cells are then permeabilized by the non-ionic detergent Triton X-100 or antibody and complement in a buffer whose ionic composition mimics that of the cytoplasm. The resulting structures have been characterized morphologically (by immunofluorescence and electron microscopy) and biochemically. Lysis with Triton removes both cell and nuclear membranes, and extracts most of the cytoplasm to leave chromatin surrounded by cytoskeleton; nucleus and cytoplasm then become accessible to triphosphates, enzymes and antibodies. Lysis with complement permeabilizes the cell membrane but leaves the nuclear membrane intact; triphosphates and restriction enzymes, but not antibodies, can then enter both nucleus and cytoplasm. Both types of lysis yield preparations whose chromatin template remains essentially intact, and which is replicated and transcribed at rates close to, or greater than, those found in vivo. Treatment of complement-lysed cells with Triton reduces the very efficient DNA synthesis, implying that the nuclear membrane is involved, directly or indirectly, in replication.
Collapse
|
|
37 |
109 |
21
|
Hozák P, Jackson DA, Cook PR. Replication factories and nuclear bodies: the ultrastructural characterization of replication sites during the cell cycle. J Cell Sci 1994; 107 ( Pt 8):2191-202. [PMID: 7983177 DOI: 10.1242/jcs.107.8.2191] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sites of replication in synchronized HeLa cells were visualized by light and electron microscopy; cells were permeabilized and incubated with biotin-16-dUTP, and incorporation sites were immunolabelled. Electron microscopy of thick resinless sections from which approximately 90% chromatin had been removed showed that most DNA synthesis occurs in specific dense structures (replication factories) attached to a diffuse nucleoskeleton. These factories appear at the end of G1-phase and quickly become active; as S-phase progresses, they increase in size and decrease in number like sites of incorporation seen by light microscopy. Electron microscopy of conventional thin sections proved that these factories are a subset of nuclear bodies; they changed in the same characteristic way and contained DNA polymerase alpha and proliferating cell nuclear antigen. As replication factories can be observed and labelled in non-permeabilized cells, they cannot be aggregation artifacts. Some replication occurs outside factories at discrete sites on the diffuse skeleton; it becomes significant by mid S-phase and later becomes concentrated beneath the lamina.
Collapse
|
|
31 |
109 |
22
|
Jackson DA, Caton AJ, McCready SJ, Cook PR. Influenza virus RNA is synthesized at fixed sites in the nucleus. Nature 1982; 296:366-8. [PMID: 7063035 DOI: 10.1038/296366a0] [Citation(s) in RCA: 104] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
|
43 |
104 |
23
|
Cermak JM, Holler T, Jackson DA, Blusztajn JK. Prenatal availability of choline modifies development of the hippocampal cholinergic system. FASEB J 1998; 12:349-57. [PMID: 9506479 DOI: 10.1096/fasebj.12.3.349] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Choline supplementation during fetal development [embryonic days (E) 11-17] permanently enhances memory performance in rats. To characterize the neurochemical mechanisms that may mediate this effect, we investigated the development of indices of the cholinergic system in the hippocampus: choline acetyltransferase (ChAT), acetylcholinesterase (AChE), synthesis of acetylcholine (ACh) from choline transported by high-affinity choline uptake (HACU), and potassium-evoked ACh release. During E11-E17, Sprague-Dawley pregnant rats consumed 0 [choline-deficient (ChD)], 1.3 [control (ChC)], and 4.6 [choline-supplemented (ChS)] mmol/(kg x day) of choline, respectively. On postnatal days 17 and 27, hippocampi of the ChD animals had the highest AChE and ChAT activities, and increased synthesis of ACh from choline transported by HACU, concomitant with reductions of tissue ACh content relative to the ChC and ChS rats and an inability to sustain depolarization-evoked ACh release relative to the ChS animals. In contrast, AChE and ChAT activities, and ACh synthesized from choline transported by HACU, were lowest in ChS rats whereas depolarization-evoked ACh release was the highest. This pattern of changes suggests that the hippocampus of the ChD animals is characterized by fast ACh recycling and efficient choline reutilization for ACh synthesis, presumably to maintain adequate ACh release despite the decrease of the ACh pool, whereas in the ChS animals ACh turnover and choline recycling is slower while the evoked release of ACh is high. Together, the data show a complex adaptive response of the hippocampal cholinergic system to prenatal choline availability and provide a novel example of developmental plasticity in the nervous system governed by the supply of a single nutrient.
Collapse
|
|
27 |
95 |
24
|
Davis JM, Kohut ML, Colbert LH, Jackson DA, Ghaffar A, Mayer EP. Exercise, alveolar macrophage function, and susceptibility to respiratory infection. J Appl Physiol (1985) 1997; 83:1461-6. [PMID: 9375306 DOI: 10.1152/jappl.1997.83.5.1461] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The effects of exercise on susceptibility to respiratory infection were determined by using a murine model of intranasal challenge with herpes simplex type 1 virus (HSV-1). Two doses of treadmill exercise were assessed: moderate short-term (30 min) exercise and prolonged strenuous exercise to voluntary fatigue (2.5-3.5 h). Morbidity and mortality among exercised and control mice were compared after intranasal challenge with HSV-1. We also assessed the ability of alveolar macrophages to restrict HSV-1 viral replication (intrinsic resistance) among exercise and control groups of mice at several time points postexercise. Exercise to fatigue followed by exposure to viral infection resulted in greater morbidity and mortality than either no exercise or short-term moderate exercise. In addition, antiviral resistance of macrophages obtained from the lungs of both exercised groups was suppressed, albeit for a longer duration in the fatigued group. These data are particularly important in that they identify an exercise-induced decrease in antiviral resistance of a specific component of the immune system within the lungs, in conjunction with increased susceptibility to respiratory infection in vivo. The specific mechanism of decreased antiviral resistance of alveolar macrophages and its role in respiratory infection after exercise remains to be determined.
Collapse
|
|
28 |
95 |
25
|
Abstract
It may be that eukaryotic nuclei contain a collection of operationally independent units (genes), each controlled through its interactions with soluble protein factors which diffuse at random throughout the nucleoplasmic space. Alternatively, nuclei might be organized in such a sophisticated fashion that specific genes occupy distinct sites and that spatially ordered RNA synthesis, processing and transport delivers mature RNAs to predestined sites in the cytoplasm. Different fields of research support each of these extreme views. Molecular biologists inspecting the precise details of specific interactions, usually in vitro, inevitably favour the former, while cell biologists working with far more complicated systems generally assume that more elaborate arrangements exist. In considering the importance of nuclear architecture, I have attempted to relate a collection of experiments each of which intimates some close relationship between structural aspects of chromatin organization and the precise mechanisms underlying nuclear function. I will argue that higher-order structures are crucial for achieving the observed efficiency and coordination of many nuclear processes.
Collapse
|
Review |
34 |
91 |