Bérubé R, LeFauve MK, Khalaf A, Aminioroomi D, Kassotis CD. Effects of organic and inorganic contaminants and their mixtures on metabolic health and gene expression in developmentally exposed zebrafish.
BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620642. [PMID:
39554096 PMCID:
PMC11565930 DOI:
10.1101/2024.10.28.620642]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Organic and inorganic chemicals co-occur in household dust, and these chemicals have been determined to have endocrine and metabolic disrupting effects. While there is increasing study of chemical mixtures, the effects of complex mixtures mimicking household dust and other environmental matrices have not been well studied and their potential metabolism disrupting effects are thus poorly understood. Previous research has demonstrated high potency adipogenic effects of residential household dust extracts using in vitro adipogenesis assays. More recent research simplified this to a mixture relevant to household dust and comprised of common co-occurring organic and inorganic contaminants, finding that these complex combinations often exhibited additive or even synergistic effects in cell models. This study aimed to translate our previous in vitro observation to an in vivo model, the developing zebrafish, to evaluate the metabolic effects of early exposure to organic and inorganic chemicals, individually and in mixtures. Zebrafish embryos were exposed from 1 day post fertilization (dpf) to 6 dpf, then metabolic energy expenditure, swimming behavior and gene expression were measured. Globally, we observed that most mixtures did not reflect the effects of individual chemicals; the BFR mixture produced a less potent effect when compared to the individual chemicals, while the PFAS and the inorganic mixtures seemed to have a more potent effect than the individual chemicals. Finally, the environmental mixture, mimicking household dust proportions, was less potent than the inorganic chemical mix alone. Additional work is necessary to better understand the mixture effect of inorganic and organic chemicals combined.
Collapse