1
|
Jaffray DA, Siewerdsen JH, Wong JW, Martinez AA. Flat-panel cone-beam computed tomography for image-guided radiation therapy. Int J Radiat Oncol Biol Phys 2002; 53:1337-49. [PMID: 12128137 DOI: 10.1016/s0360-3016(02)02884-5] [Citation(s) in RCA: 926] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE Geometric uncertainties in the process of radiation planning and delivery constrain dose escalation and induce normal tissue complications. An imaging system has been developed to generate high-resolution, soft-tissue images of the patient at the time of treatment for the purpose of guiding therapy and reducing such uncertainties. The performance of the imaging system is evaluated and the application to image-guided radiation therapy is discussed. METHODS AND MATERIALS A kilovoltage imaging system capable of radiography, fluoroscopy, and cone-beam computed tomography (CT) has been integrated with a medical linear accelerator. Kilovoltage X-rays are generated by a conventional X-ray tube mounted on a retractable arm at 90 degrees to the treatment source. A 41 x 41 cm(2) flat-panel X-ray detector is mounted opposite the kV tube. The entire imaging system operates under computer control, with a single application providing calibration, image acquisition, processing, and cone-beam CT reconstruction. Cone-beam CT imaging involves acquiring multiple kV radiographs as the gantry rotates through 360 degrees of rotation. A filtered back-projection algorithm is employed to reconstruct the volumetric images. Geometric nonidealities in the rotation of the gantry system are measured and corrected during reconstruction. Qualitative evaluation of imaging performance is performed using an anthropomorphic head phantom and a coronal contrast phantom. The influence of geometric nonidealities is examined. RESULTS Images of the head phantom were acquired and illustrate the submillimeter spatial resolution that is achieved with the cone-beam approach. High-resolution sagittal and coronal views demonstrate nearly isotropic spatial resolution. Flex corrections on the order of 0.2 cm were required to compensate gravity-induced flex in the support arms of the source and detector, as well as slight axial movements of the entire gantry structure. Images reconstructed without flex correction suffered from loss of detail, misregistration, and streak artifacts. Reconstructions of the contrast phantom demonstrate the soft-tissue imaging capability of the system. A contrast of 47 Hounsfield units was easily detected in a 0.1-cm-thick reconstruction for an imaging exposure of 1.2 R (in-air, in absence of phantom). The comparison with a conventional CT scan of the phantom further demonstrates the spatial resolution advantages of the cone-beam CT approach. CONCLUSIONS A kV cone-beam CT imaging system based on a large-area, flat-panel detector has been successfully adapted to a medical linear accelerator. The system is capable of producing images of soft tissue with excellent spatial resolution at acceptable imaging doses. Integration of this technology with the medical accelerator will result in an ideal platform for high-precision, image-guided radiation therapy.
Collapse
|
|
23 |
926 |
2
|
Atun R, Jaffray DA, Barton MB, Bray F, Baumann M, Vikram B, Hanna TP, Knaul FM, Lievens Y, Lui TYM, Milosevic M, O'Sullivan B, Rodin DL, Rosenblatt E, Van Dyk J, Yap ML, Zubizarreta E, Gospodarowicz M. Expanding global access to radiotherapy. Lancet Oncol 2015; 16:1153-86. [PMID: 26419354 DOI: 10.1016/s1470-2045(15)00222-3] [Citation(s) in RCA: 703] [Impact Index Per Article: 70.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/01/2015] [Accepted: 08/03/2015] [Indexed: 12/31/2022]
Abstract
Radiotherapy is a critical and inseparable component of comprehensive cancer treatment and care. For many of the most common cancers in low-income and middle-income countries, radiotherapy is essential for effective treatment. In high-income countries, radiotherapy is used in more than half of all cases of cancer to cure localised disease, palliate symptoms, and control disease in incurable cancers. Yet, in planning and building treatment capacity for cancer, radiotherapy is frequently the last resource to be considered. Consequently, worldwide access to radiotherapy is unacceptably low. We present a new body of evidence that quantifies the worldwide coverage of radiotherapy services by country. We show the shortfall in access to radiotherapy by country and globally for 2015-35 based on current and projected need, and show substantial health and economic benefits to investing in radiotherapy. The cost of scaling up radiotherapy in the nominal model in 2015-35 is US$26·6 billion in low-income countries, $62·6 billion in lower-middle-income countries, and $94·8 billion in upper-middle-income countries, which amounts to $184·0 billion across all low-income and middle-income countries. In the efficiency model the costs were lower: $14·1 billion in low-income, $33·3 billion in lower-middle-income, and $49·4 billion in upper-middle-income countries-a total of $96·8 billion. Scale-up of radiotherapy capacity in 2015-35 from current levels could lead to saving of 26·9 million life-years in low-income and middle-income countries over the lifetime of the patients who received treatment. The economic benefits of investment in radiotherapy are very substantial. Using the nominal cost model could produce a net benefit of $278·1 billion in 2015-35 ($265·2 million in low-income countries, $38·5 billion in lower-middle-income countries, and $239·3 billion in upper-middle-income countries). Investment in the efficiency model would produce in the same period an even greater total benefit of $365·4 billion ($12·8 billion in low-income countries, $67·7 billion in lower-middle-income countries, and $284·7 billion in upper-middle-income countries). The returns, by the human-capital approach, are projected to be less with the nominal cost model, amounting to $16·9 billion in 2015-35 (-$14·9 billion in low-income countries; -$18·7 billion in lower-middle-income countries, and $50·5 billion in upper-middle-income countries). The returns with the efficiency model were projected to be greater, however, amounting to $104·2 billion (-$2·4 billion in low-income countries, $10·7 billion in lower-middle-income countries, and $95·9 billion in upper-middle-income countries). Our results provide compelling evidence that investment in radiotherapy not only enables treatment of large numbers of cancer cases to save lives, but also brings positive economic benefits.
Collapse
|
Review |
10 |
703 |
3
|
Wong JW, Sharpe MB, Jaffray DA, Kini VR, Robertson JM, Stromberg JS, Martinez AA. The use of active breathing control (ABC) to reduce margin for breathing motion. Int J Radiat Oncol Biol Phys 1999; 44:911-9. [PMID: 10386650 DOI: 10.1016/s0360-3016(99)00056-5] [Citation(s) in RCA: 649] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE For tumors in the thorax and abdomen, reducing the treatment margin for organ motion due to breathing reduces the volume of normal tissues that will be irradiated. A higher dose can be delivered to the target, provided that the risk of marginal misses is not increased. To ensure safe margin reduction, we investigated the feasibility of using active breathing control (ABC) to temporarily immobilize the patient's breathing. Treatment planning and delivery can then be performed at identical ABC conditions with minimal margin for breathing motion. METHODS AND MATERIALS An ABC apparatus is constructed consisting of 2 pairs of flow monitor and scissor valve, 1 each to control the inspiration and expiration paths to the patient. The patient breathes through a mouth-piece connected to the ABC apparatus. The respiratory signal is processed continuously, using a personal computer that displays the changing lung volume in real-time. After the patient's breathing pattern becomes stable, the operator activates ABC at a preselected phase in the breathing cycle. Both valves are then closed to immobilize breathing motion. Breathing motion of 12 patients were held with ABC to examine their acceptance of the procedure. The feasibility of applying ABC for treatment was tested in 5 patients by acquiring volumetric scans with a spiral computed tomography (CT) scanner during active breath-hold. Two patients had Hodgkin's disease, 2 had metastatic liver cancer, and 1 had lung cancer. Two intrafraction ABC scans were acquired at the same respiratory phase near the end of normal or deep inspiration. An additional ABC scan near the end of normal expiration was acquired for 2 patients. The ABC scans were also repeated 1 week later for a Hodgkin's patient. In 1 liver patient, ABC scans were acquired at 7 different phases of the breathing cycle to facilitate examination of the liver motion associated with ventilation. Contours of the lungs and livers were outlined when applicable. The variation of the organ positions and volumes for the different scans were quantified and compared. RESULTS The ABC procedure was well tolerated in the 12 patients. When ABC was applied near the end of normal expiration, the minimal duration of active breath-hold was 15 s for 1 patient with lung cancer, and 20 s or more for all other patients. The duration was greater than 40 s for 2 patients with Hodgkin's disease when ABC was applied during deep inspiration. Scan artifacts associated with normal breathing motion were not observed in the ABC scans. The analysis of the small set of intrafraction scan data indicated that with ABC, the liver volumes were reproducible at about 1%, and lung volumes to within 6 %. The excursions of a "center of target" parameter for the livers were less than 1 mm at the same respiratory phase, but were larger than 4 mm at the extremes of the breathing cycle. The inter-fraction scan study indicated that daily setup variation contributed to the uncertainty in assessing the reproducibility of organ immobilization with ABC between treatment fractions. CONCLUSION The results were encouraging; ABC provides a simple means to minimize breathing motion. When applied for CT scanning and treatment, the ABC procedure requires no more than standard operation of the CT scanner or the medical accelerator. The ABC scans are void of motion artifacts commonly seen on fast spiral CT scans. When acquired at different points in the breathing cycle, these ABC scans show organ motion in three-dimension (3D) that can be used to enhance treatment planning. Reproducibility of organ immobilization with ABC throughout the course of treatment must be quantified before the procedure can be applied to reduce margin for conformal treatment.
Collapse
|
|
26 |
649 |
4
|
Her S, Jaffray DA, Allen C. Gold nanoparticles for applications in cancer radiotherapy: Mechanisms and recent advancements. Adv Drug Deliv Rev 2017; 109:84-101. [PMID: 26712711 DOI: 10.1016/j.addr.2015.12.012] [Citation(s) in RCA: 511] [Impact Index Per Article: 63.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 12/10/2015] [Accepted: 12/11/2015] [Indexed: 12/13/2022]
Abstract
Gold nanoparticles (AuNPs) have emerged as novel radiosensitizers owing to their high X-ray absorption, synthetic versatility, and unique chemical, electronic and optical properties. Multi-disciplinary research performed over the past decade has demonstrated the potential of AuNP-based radiosensitizers, and identified possible mechanisms underlying the observed radiation enhancement effects of AuNPs. Despite promising findings from pre-clinical studies, the benefits of AuNP radiosensitization have yet to successfully translate into clinical practice. In this review, we present an overview of the current state of AuNP-based radiosensitization in the context of the physical, chemical and biological modes of radiosensitization. As well, recent advancements that focus on formulation design and enable multi-modality treatment and clinical utilization are discussed, concluding with design considerations to guide the development of next generation AuNPs for clinical applications.
Collapse
|
Review |
8 |
511 |
5
|
Chithrani DB, Jelveh S, Jalali F, van Prooijen M, Allen C, Bristow RG, Hill RP, Jaffray DA. Gold nanoparticles as radiation sensitizers in cancer therapy. Radiat Res 2010; 173:719-28. [PMID: 20518651 DOI: 10.1667/rr1984.1] [Citation(s) in RCA: 415] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Among other nanoparticle systems, gold nanoparticles have been explored as radiosensitizers. While most of the research in this area has focused on either gold nanoparticles with diameters of less than 2 nm or particles with micrometer dimensions, it has been shown that nanoparticles 50 nm in diameter have the highest cellular uptake. We present the results of in vitro studies that focus on the radiosensitization properties of nanoparticles in the size range from 14-74 nm. Radiosensitization was dependent on the number of gold nanoparticles internalized within the cells. Gold nanoparticles 50-nm in diameter showed the highest radiosensitization enhancement factor (REF) (1.43 at 220 kVp) compared to gold nanoparticles of 14 and 74 nm (1.20 and 1.26, respectively). Using 50-nm gold nanoparticles, the REF for lower- (105 kVp) and higher- (6 MVp) energy photons was 1.66 and 1.17, respectively. DNA double-strand breaks were quantified using radiation-induced foci of gamma-H2AX and 53BP1, and a modest increase in the number of foci per nucleus was observed in irradiated cell populations with internalized gold nanoparticles. The outcome of this research will enable the optimization of gold nanoparticle-based sensitizers for use in therapy.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
415 |
6
|
Siewerdsen JH, Jaffray DA. Cone-beam computed tomography with a flat-panel imager: magnitude and effects of x-ray scatter. Med Phys 2001; 28:220-31. [PMID: 11243347 DOI: 10.1118/1.1339879] [Citation(s) in RCA: 408] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A system for cone-beam computed tomography (CBCT) based on a flat-panel imager (FPI) is used to examine the magnitude and effects of x-ray scatter in FPI-CBCT volume reconstructions. The system is being developed for application in image-guided therapies and has previously demonstrated spatial resolution and soft-tissue visibility comparable or superior to a conventional CT scanner under conditions of low x-ray scatter. For larger objects consistent with imaging of human anatomy (e.g., the pelvis) and for increased cone angle (i.e., larger volumetric reconstructions), however, the effects of x-ray scatter become significant. The magnitude of x-ray scatter with which the FPI-CBCT system must contend is quantified in terms of the scatter-to-primary energy fluence ratio (SPR) and scatter intensity profiles in the detector plane, each measured as a function of object size and cone angle. For large objects and cone angles (e.g., a pelvis imaged with a cone angle of 6 degrees), SPR in excess of 100% is observed. Associated with such levels of x-ray scatter are cup and streak artifacts as well as reduced accuracy in reconstruction values, quantified herein across a range of SPR consistent with the clinical setting. The effect of x-ray scatter on the contrast, noise, and contrast-to-noise ratio (CNR) in FPI-CBCT reconstructions was measured as a function of SPR and compared to predictions of a simple analytical model. The results quantify the degree to which elevated SPR degrades the CNR. For example, FPI-CBCT images of a breast-equivalent insert in water were degraded in CNR by nearly a factor of 2 for SPR ranging from approximately 2% to 120%. The analytical model for CNR provides a quantitative understanding of the relationship between CNR, dose, and spatial resolution and allows knowledgeable selection of the acquisition and reconstruction parameters that, for a given SPR, are required to restore the CNR to values achieved under conditions of low x-ray scatter. For example, for SPR = 100%, the CNR in FPI-CBCT images can be fully restored by: (1) increasing the dose by a factor of 4 (at full spatial resolution); (2) increasing dose and slice thickness by a factor of 2; or (3) increasing slice thickness by a factor of 4 (with no increase in dose). Other reconstruction parameters, such as transaxial resolution length and reconstruction filter, can be similarly adjusted to achieve CNR equal to that obtained in the scatter-free case.
Collapse
|
|
24 |
408 |
7
|
Jaffray DA, Siewerdsen JH. Cone-beam computed tomography with a flat-panel imager: initial performance characterization. Med Phys 2000; 27:1311-23. [PMID: 10902561 DOI: 10.1118/1.599009] [Citation(s) in RCA: 371] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The development and performance of a system for x-ray cone-beam computed tomography (CBCT) using an indirect-detection flat-panel imager (FPI) is presented. Developed as a bench-top prototype for initial investigation of FPI-based CBCT for bone and soft-tissue localization in radiotherapy, the system provides fully three-dimensional volumetric image data from projections acquired during a single rotation. The system employs a 512 x 512 active matrix of a-Si:H thin-film transistors and photodiodes in combination with a luminescent phosphor. Tomographic imaging performance is quantified in terms of response uniformity, response linearity, voxel noise, noise-power spectrum (NPS), and modulation transfer function (MTF), each in comparison to the performance measured on a conventional CT scanner. For the geometry employed and the objects considered, response is uniform to within 2% and linear within 1%. Voxel noise, at a level of approximately 20 HU, is comparable to the conventional CT scanner. NPS and MTF results highlight the frequency-dependent transfer characteristics, confirming that the CBCT system can provide high spatial resolution and does not suffer greatly from additive noise levels. For larger objects and/or low exposures, additive noise levels must be reduced to maintain high performance. Imaging studies of a low-contrast phantom and a small animal (a euthanized rat) qualitatively demonstrate excellent soft-tissue visibility and high spatial resolution. Image quality appears comparable or superior to that of the conventional scanner. These quantitative and qualitative results clearly demonstrate the potential of CBCT systems based upon flat-panel imagers. Advances in FPI technology (e.g., improved x-ray converters and enhanced electronics) are anticipated to allow high-performance FPI-based CBCT for medical imaging. General and specific requirements of kilovoltage CBCT systems are discussed, and the applicability of FPI-based CBCT systems to tomographic localization and image-guidance for radiotherapy is considered.
Collapse
|
Evaluation Study |
25 |
371 |
8
|
Jaffray DA. Image-guided radiotherapy: from current concept to future perspectives. Nat Rev Clin Oncol 2012; 9:688-99. [DOI: 10.1038/nrclinonc.2012.194] [Citation(s) in RCA: 302] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
|
13 |
302 |
9
|
Abstract
Imaging is central to radiation oncology practice, with advances in radiation oncology occurring in parallel to advances in imaging. Targets to be irradiated and normal tissues to be spared are delineated on computed tomography (CT) scans in the planning process. Computer-assisted design of the radiation dose distribution ensures that the objectives for target coverage and avoidance of healthy tissue are achieved. The radiation treatment units are now recognized as state-of-the-art robotics capable of three-dimensional soft tissue imaging immediately before, during, or after radiation delivery, improving the localization of the target at the time of radiation delivery, to ensure that radiation therapy is delivered as planned. Frequent imaging in the treatment room during a course of radiation therapy, with decisions made on the basis of imaging, is referred to as image-guided radiation therapy (IGRT). IGRT allows changes in tumor position, size, and shape to be measured during the course of therapy, with adjustments made to maximize the geometric accuracy and precision of radiation delivery, reducing the volume of healthy tissue irradiated and permitting dose escalation to the tumor. These geometric advantages increase the chance of tumor control, reduce the risk of toxicity after radiotherapy, and facilitate the development of shorter radiotherapy schedules. By reducing the variability in delivered doses across a population of patients, IGRT should also improve interpretation of future clinical trials.
Collapse
|
Review |
18 |
281 |
10
|
Ghilezan MJ, Jaffray DA, Siewerdsen JH, Van Herk M, Shetty A, Sharpe MB, Zafar Jafri S, Vicini FA, Matter RC, Brabbins DS, Martinez AA. Prostate gland motion assessed with cine-magnetic resonance imaging (cine-MRI). Int J Radiat Oncol Biol Phys 2005; 62:406-17. [PMID: 15890582 DOI: 10.1016/j.ijrobp.2003.10.017] [Citation(s) in RCA: 279] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2003] [Revised: 09/24/2004] [Accepted: 10/15/2004] [Indexed: 10/25/2022]
Abstract
PURPOSE To quantify prostate motion during a radiation therapy treatment using cine-magnetic resonance imaging (cine-MRI) for time frames comparable to that expected in an image-guided radiation therapy treatment session (20-30 min). MATERIALS AND METHODS Six patients undergoing radiation therapy for prostate cancer were imaged on 3 days, over the course of therapy (Weeks 1, 3, and 5). Four hundred images were acquired during the 1-h MRI session in 3 sagittal planes through the prostate at 6-s intervals. Eleven anatomic points of interest (POIs) have been used to characterize prostate/bony pelvis/abdominal wall displacement. Motion traces and standard deviation for each of the 11 POIs have been determined. The probability of displacement over time has also been calculated. RESULTS Patients were divided into 2 groups according to rectal filling status: full vs. empty rectum. The displacement of POIs (standard deviation) ranged from 0.98 to 1.72 mm for the full-rectum group and from 0.68 to 1.04 mm for the empty-rectum group. The low standard deviations in position (2 mm or less) would suggest that these excursions have a low frequency of occurrence. The most sensitive prostate POI to rectal wall motion was the mid-posterior with a standard deviation of 1.72 mm in the full-rectum group vs. 0.79 mm in the empty-rectum group (p = 0.0001). This POI has a 10% probability of moving more than 3 mm in a time frame of approximately 1 min if the rectum is full vs. approximately 20 min if the rectum is empty. CONCLUSION Motion of the prostate and seminal vesicles during a time frame similar to a standard treatment session is reduced compared to that reported in interfraction studies. The most significant predictor for intrafraction prostate motion is the status of rectal filling. A prostate displacement of <3 mm (90%) can be expected for the 20 min after the moment of initial imaging for patients with an empty rectum. This is not the case for patients presenting with full rectum. The determination of appropriate intrafraction margins in radiation therapy to accommodate the time-dependent uncertainty in positional targeting is a topic of ongoing investigations for the on-line image guidance model.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
279 |
11
|
Purdie TG, Bissonnette JP, Franks K, Bezjak A, Payne D, Sie F, Sharpe MB, Jaffray DA. Cone-beam computed tomography for on-line image guidance of lung stereotactic radiotherapy: localization, verification, and intrafraction tumor position. Int J Radiat Oncol Biol Phys 2007; 68:243-52. [PMID: 17331671 DOI: 10.1016/j.ijrobp.2006.12.022] [Citation(s) in RCA: 261] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Revised: 12/06/2006] [Accepted: 12/08/2006] [Indexed: 02/07/2023]
Abstract
PURPOSE Cone-beam computed tomography (CBCT) in-room imaging allows accurate inter- and intrafraction target localization in stereotactic body radiotherapy of lung tumors. METHODS AND MATERIALS Image-guided stereotactic body radiotherapy was performed in 28 patients (89 fractions) with medically inoperable Stage T1-T2 non-small-cell lung carcinoma. The targets from the CBCT and planning data set (helical or four-dimensional CT) were matched on-line to determine the couch shift required for target localization. Matching based on the bony anatomy was also performed retrospectively. Verification of target localization was done using either megavoltage portal imaging or CBCT imaging; repeat CBCT imaging was used to assess the intrafraction tumor position. RESULTS The mean three-dimensional tumor motion for patients with upper lesions (n = 21) and mid-lobe or lower lobe lesions (n = 7) was 4.2 and 6.7 mm, respectively. The mean difference between the target and bony anatomy matching using CBCT was 6.8 mm (SD, 4.9, maximum, 30.3); the difference exceeded 13.9 mm in 10% of the treatment fractions. The mean residual error after target localization using CBCT imaging was 1.9 mm (SD, 1.1, maximum, 4.4). The mean intrafraction tumor deviation was significantly greater (5.3 mm vs. 2.2 mm) when the interval between localization and repeat CBCT imaging (n = 8) exceeded 34 min. CONCLUSION In-room volumetric imaging, such as CBCT, is essential for target localization accuracy in lung stereotactic body radiotherapy. Imaging that relies on bony anatomy as a surrogate of the target may provide erroneous results in both localization and verification.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
261 |
12
|
Brock KK, Sharpe MB, Dawson LA, Kim SM, Jaffray DA. Accuracy of finite element model-based multi-organ deformable image registration. Med Phys 2005; 32:1647-59. [PMID: 16013724 DOI: 10.1118/1.1915012] [Citation(s) in RCA: 258] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
As more pretreatment imaging becomes integrated into the treatment planning process and full three-dimensional image-guidance becomes part of the treatment delivery the need for a deformable image registration technique becomes more apparent. A novel finite element model-based multiorgan deformable image registration method, MORFEUS, has been developed. The basis of this method is twofold: first, individual organ deformation can be accurately modeled by deforming the surface of the organ at one instance into the surface of the organ at another instance and assigning the material properties that allow the internal structures to be accurately deformed into the secondary position and second, multi-organ deformable alignment can be achieved by explicitly defining the deformation of a subset of organs and assigning surface interfaces between organs. The feasibility and accuracy of the method was tested on MR thoracic and abdominal images of healthy volunteers at inhale and exhale. For the thoracic cases, the lungs and external surface were explicitly deformed and the breasts were implicitly deformed based on its relation to the lung and external surface. For the abdominal cases, the liver, spleen, and external surface were explicitly deformed and the stomach and kidneys were implicitly deformed. The average accuracy (average absolute error) of the lung and liver deformation, determined by tracking visible bifurcations, was 0.19 (s.d.: 0.09), 0.28 (s.d.: 0.12) and 0.17 (s.d.: 0.07) cm, in the LR, AP, and IS directions, respectively. The average accuracy of implicitly deformed organs was 0.11 (s.d.: 0.11), 0.13 (s.d.: 0.12), and 0.08 (s.d.: 0.09) cm, in the LR, AP, and IS directions, respectively. The average vector magnitude of the accuracy was 0.44 (s.d.: 0.20) cm for the lung and liver deformation and 0.24 (s.d.: 0.18) cm for the implicitly deformed organs. The two main processes, explicit deformation of the selected organs and finite element analysis calculations, require less than 120 and 495 s, respectively. This platform can facilitate the integration of deformable image registration into online image guidance procedures, dose calculations, and tissue response monitoring as well as performing multi-modality image registration for purposes of treatment planning.
Collapse
|
|
20 |
258 |
13
|
Islam MK, Purdie TG, Norrlinger BD, Alasti H, Moseley DJ, Sharpe MB, Siewerdsen JH, Jaffray DA. Patient dose from kilovoltage cone beam computed tomography imaging in radiation therapy. Med Phys 2006; 33:1573-82. [PMID: 16872065 DOI: 10.1118/1.2198169] [Citation(s) in RCA: 235] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Kilovoltage cone-beam computerized tomography (kV-CBCT) systems integrated into the gantry of linear accelerators can be used to acquire high-resolution volumetric images of the patient in the treatment position. Using on-line software and hardware, patient position can be determined accurately with a high degree of precision and, subsequently, set-up parameters can be adjusted to deliver the intended treatment. While the patient dose due to a single volumetric imaging acquisition is small compared to the therapy dose, repeated and daily image guidance procedures can lead to substantial dose to normal tissue. The dosimetric properties of a clinical CBCT system have been studied on an Elekta linear accelerator (Synergy RP, XVI system) and additional measurements performed on a laboratory system with identical geometry. Dose measurements were performed with an ion chamber and MOSFET detectors at the center, periphery, and surface of 30 and 16-cm-diam cylindrical shaped water phantoms, as a function of x-ray energy and longitudinal field-of-view (FOV) settings of 5,10,15, and 26 cm. The measurements were performed for full 360 degrees CBCT acquisition as well as for half-rotation scans for 120 kVp beams using the 30-cm-diam phantom. The dose at the center and surface of the body phantom were determined to be 1.6 and 2.3 cGy for a typical imaging protocol, using full rotation scan, with a technique setting of 120 kVp and 660 mAs. The results of our measurements have been presented in terms of a dose conversion factor fCBCT, expressed in cGy/R. These factors depend on beam quality and phantom size as well as on scan geometry and can be utilized to estimate dose for any arbitrary mAs setting and reference exposure rate of the x-ray tube at standard distance. The results demonstrate the opportunity to manipulate the scanning parameters to reduce the dose to the patient by employing lower energy (kVp) beams, smaller FOV, or by using half-rotation scan.
Collapse
|
|
19 |
235 |
14
|
Moseley DJ, White EA, Wiltshire KL, Rosewall T, Sharpe MB, Siewerdsen JH, Bissonnette JP, Gospodarowicz M, Warde P, Catton CN, Jaffray DA. Comparison of localization performance with implanted fiducial markers and cone-beam computed tomography for on-line image-guided radiotherapy of the prostate. Int J Radiat Oncol Biol Phys 2007; 67:942-53. [PMID: 17293243 PMCID: PMC1906849 DOI: 10.1016/j.ijrobp.2006.10.039] [Citation(s) in RCA: 224] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Revised: 10/24/2006] [Accepted: 10/24/2006] [Indexed: 11/22/2022]
Abstract
PURPOSE The aim of this work was to assess the accuracy of kilovoltage (kV) cone-beam computed tomography (CBCT)-based setup corrections as compared with orthogonal megavoltage (MV) portal image-based corrections for patients undergoing external-beam radiotherapy of the prostate. METHODS AND MATERIALS Daily cone-beam CT volumetric images were acquired after setup for patients with three intraprostatic fiducial markers. The estimated couch shifts were compared retrospectively to patient adjustments based on two orthogonal MV portal images (the current clinical standard of care in our institution). The CBCT soft-tissue based shifts were also estimated by digitally removing the gold markers in each projection to suppress the artifacts in the reconstructed volumes. A total of 256 volumetric images for 15 patients were analyzed. RESULTS The Pearson coefficient of correlation for the patient position shifts using fiducial markers in MV vs. kV was (R2 = 0.95, 0.84, 0.81) in the left-right (LR), anterior-posterior (AP), and superior-inferior (SI) directions, respectively. The correlation using soft-tissue matching was as follows: R2 = 0.90, 0.49, 0.51 in the LR, AP and SI directions. A Bland-Altman analysis showed no significant trends in the data. The percentage of shifts within a +/-3-mm tolerance (the clinical action level) was 99.7%, 95.5%, 91.3% for fiducial marker matching and 99.5%, 70.3%, 78.4% for soft-tissue matching. CONCLUSIONS Cone-beam CT is an accurate and precise tool for image guidance. It provides an equivalent means of patient setup correction for prostate patients with implanted gold fiducial markers. Use of the additional information provided by the visualization of soft-tissue structures is an active area of research.
Collapse
|
Comparative Study |
18 |
224 |
15
|
Herman MG, Balter JM, Jaffray DA, McGee KP, Munro P, Shalev S, Van Herk M, Wong JW. Clinical use of electronic portal imaging: report of AAPM Radiation Therapy Committee Task Group 58. Med Phys 2001; 28:712-37. [PMID: 11393467 DOI: 10.1118/1.1368128] [Citation(s) in RCA: 222] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
AAPM Task Group 58 was created to provide materials to help the medical physicist and colleagues succeed in the clinical implementation of electronic portal imaging devices (EPIDs) in radiation oncology. This complex technology has matured over the past decade and is capable of being integrated into routine practice. However, the difficulties encountered during the specification, installation, and implementation process can be overwhelming. TG58 was charged with providing sufficient information to allow the users to overcome these difficulties and put EPIDs into routine clinical practice. In answering the charge, this report provides; comprehensive information about the physics and technology of currently available EPID systems; a detailed discussion of the steps required for successful clinical implementation, based on accumulated experience; a review of software tools available and clinical use protocols to enhance EPID utilization; and specific quality assurance requirements for initial and continuing clinical use of the systems. Specific recommendations are summarized to assist the reader with successful implementation and continuing use of an EPID.
Collapse
|
|
24 |
222 |
16
|
Yu CX, Jaffray DA, Wong JW. The effects of intra-fraction organ motion on the delivery of dynamic intensity modulation. Phys Med Biol 1998; 43:91-104. [PMID: 9483625 DOI: 10.1088/0031-9155/43/1/006] [Citation(s) in RCA: 218] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Computer-optimized treatment plans, aimed to enhance tumour control and reduce normal tissue complication, generally require non-uniform beam intensities. One of the techniques for delivering intensity-modulated beams is the use of dynamic multileaf collimation, where the beam aperture moves and the field shape changes during irradiation. When intensity-modulated beams are delivered with dynamic collimation, the problem of intra-fraction organ motion can cause distortions to the desired beam intensities. Unlike static field treatments, where intra-fraction organ motion only affects the boundaries creating broad dose penumbra, the interplay of the movement of the beam aperture and the movement of the patient anatomy can create 'hot' and 'cold' spots throughout the field. The mechanism for creating these effects is not well understood. This paper provides a simple analytical model which illustrates the fundamental mechanism for creating the dosimetric variations in the target when both the beam aperture and the target move during irradiation. Numerical analysis was carried out which calculates the cumulative primary photon fluence, or beam intensity, received by each point in the target, for a given pattern of motion. The results show that, for clinically realistic parameters, the magnitude of intensity variations in the target can be greater than 100% of the desired beam intensity. The magnitude of the photon intensity variations is strongly dependent on the speed of the beam aperture relative to the speed of the target motion, and the width of the scanning beam relative to the amplitude of target motion. The effects of fractionation as well as methods of minimizing and eliminating the dosimetric effects of intra-fraction organ motion are discussed.
Collapse
|
|
27 |
218 |
17
|
Welch ML, McIntosh C, Haibe-Kains B, Milosevic MF, Wee L, Dekker A, Huang SH, Purdie TG, O'Sullivan B, Aerts HJWL, Jaffray DA. Vulnerabilities of radiomic signature development: The need for safeguards. Radiother Oncol 2018; 130:2-9. [PMID: 30416044 DOI: 10.1016/j.radonc.2018.10.027] [Citation(s) in RCA: 216] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 10/17/2018] [Accepted: 10/23/2018] [Indexed: 02/03/2023]
Abstract
PURPOSE Refinement of radiomic results and methodologies is required to ensure progression of the field. In this work, we establish a set of safeguards designed to improve and support current radiomic methodologies through detailed analysis of a radiomic signature. METHODS A radiomic model (MW2018) was fitted and externally validated using features extracted from previously reported lung and head and neck (H&N) cancer datasets using gross-tumour-volume contours, as well as from images with randomly permuted voxel index values; i.e. images without meaningful texture. To determine MW2018's added benefit, the prognostic accuracy of tumour volume alone was calculated as a baseline. RESULTS MW2018 had an external validation concordance index (c-index) of 0.64. However, a similar performance was achieved using features extracted from images with randomized signal intensities (c-index = 0.64 and 0.60 for H&N and lung, respectively). Tumour volume had a c-index = 0.64 and correlated strongly with three of the four model features. It was determined that the signature was a surrogate for tumour volume and that intensity and texture values were not pertinent for prognostication. CONCLUSION Our experiments reveal vulnerabilities in radiomic signature development processes and suggest safeguards that can be used to refine methodologies, and ensure productive radiomic development using objective and independent features.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
216 |
18
|
Jaffray DA, Drake DG, Moreau M, Martinez AA, Wong JW. A radiographic and tomographic imaging system integrated into a medical linear accelerator for localization of bone and soft-tissue targets. Int J Radiat Oncol Biol Phys 1999; 45:773-89. [PMID: 10524434 DOI: 10.1016/s0360-3016(99)00118-2] [Citation(s) in RCA: 216] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
PURPOSE Dose escalation in conformal radiation therapy requires accurate field placement. Electronic portal imaging devices are used to verify field placement but are limited by the low subject contrast of bony anatomy at megavoltage (MV) energies, the large imaging dose, and the small size of the radiation fields. In this article, we describe the in-house modification of a medical linear accelerator to provide radiographic and tomographic localization of bone and soft-tissue targets in the reference frame of the accelerator. This system separates the verification of beam delivery (machine settings, field shaping) from patient and target localization. MATERIALS AND METHODS A kilovoltage (kV) x-ray source is mounted on the drum assembly of an Elekta SL-20 medical linear accelerator, maintaining the same isocenter as the treatment beam with the central axis at 90 degrees to the treatment beam axis. The x-ray tube is powered by a high-frequency generator and can be retracted to the drum-face. Two CCD-based fluoroscopic imaging systems are mounted on the accelerator to collect MV and kV radiographic images. The system is also capable of cone-beam tomographic imaging at both MV and kV energies. The gain stages of the two imaging systems have been modeled to assess imaging performance. The contrast-resolution of the kV and MV systems was measured using a contrast-detail (C-D) phantom. The dosimetric advantage of using the kV imaging system over the MV system for the detection of bone-like objects is quantified for a specific imaging geometry using a C-D phantom. Accurate guidance of the treatment beam requires registration of the imaging and treatment coordinate systems. The mechanical characteristics of the treatment and imaging gantries are examined to determine a localizing precision assuming an unambiguous object. MV and kV radiographs of patients receiving radiation therapy are acquired to demonstrate the radiographic performance of the system. The tomographic performance is demonstrated on phantoms using both the MV and the kV imaging system, and the visibility of soft-tissue targets is assessed. RESULTS AND DISCUSSION Characterization of the gains in the two systems demonstrates that the MV system is x-ray quantum noise-limited at very low spatial frequencies; this is not the case for the kV system. The estimates of gain used in the model are validated by measurements of the total gain in each system. Contrast-detail measurements demonstrate that the MV system is capable of detecting subject contrasts of less than 0.1% (at 6 and 18 MV). A comparison of the kV and MV contrast-detail performance indicates that equivalent bony object detection can be achieved with the kV system at significantly lower doses (factors of 40 and 90 lower than for 6 and 18 MV, respectively). The tomographic performance of the system is promising; soft-tissue visibility is demonstrated at relatively low imaging doses (3 cGy) using four laboratory rats. CONCLUSIONS We have integrated a kV radiographic and tomographic imaging system with a medical linear accelerator to allow localization of bone and soft-tissue structures in the reference frame of the accelerator. Modeling and experiments have demonstrated the feasibility of acquiring high-quality radiographic and tomographic images at acceptable imaging doses. Full integration of the kV and MV imaging systems with the treatment machine will allow on-line radiographic and tomographic guidance of field placement.
Collapse
|
|
26 |
216 |
19
|
Siewerdsen JH, Moseley DJ, Burch S, Bisland SK, Bogaards A, Wilson BC, Jaffray DA. Volume CT with a flat-panel detector on a mobile, isocentric C-arm: Pre-clinical investigation in guidance of minimally invasive surgery. Med Phys 2005; 32:241-54. [PMID: 15719975 DOI: 10.1118/1.1836331] [Citation(s) in RCA: 213] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A mobile isocentric C-arm (Siemens PowerMobil) has been modified in our laboratory to include a large area flat-panel detector (in place of the x-ray image intensifier), providing multi-mode fluoroscopy and cone-beam computed tomography (CT) imaging capability. This platform represents a promising technology for minimally invasive, image-guided surgical procedures where precision in the placement of interventional tools with respect to bony and soft-tissue structures is critical. The image quality and performance in surgical guidance was investigated in pre-clinical evaluation in image-guided spinal surgery. The control, acquisition, and reconstruction system are described. The reproducibility of geometric calibration, essential to achieving high three-dimensional (3D) image quality, is tested over extended time scales (7 months) and across a broad range in C-arm angulation (up to 45 degrees), quantifying the effect of improper calibration on spatial resolution, soft-tissue visibility, and image artifacts. Phantom studies were performed to investigate the precision of 3D localization (viz., fiber optic probes within a vertebral body) and effect of lateral projection truncation (limited field of view) on soft-tissue detectability in image reconstructions. Pre-clinical investigation was undertaken in a specific spinal procedure (photodynamic therapy of spinal metastases) in five animal subjects (pigs). In each procedure, placement of fiber optic catheters in two vertebrae (L1 and L2) was guided by fluoroscopy and cone-beam CT. Experience across five procedures is reported, focusing on 3D image quality, the effects of respiratory motion, limited field of view, reconstruction filter, and imaging dose. Overall, the intraoperative cone-beam CT images were sufficient for guidance of needles and catheters with respect to bony anatomy and improved surgical performance and confidence through 3D visualization and verification of transpedicular trajectories and tool placement. Future investigation includes improvement in image quality, particularly regarding x-ray scatter, motion artifacts and field of view, and integration with optical tracking and navigation systems.
Collapse
|
|
20 |
213 |
20
|
Abstract
PURPOSE Measurements of internal organ motion have demonstrated that daily organ deformation exists throughout the course of radiation treatment. However, a method of constructing the resultant dose delivered to the organ volume remains a difficult challenge. In this study, a model to quantify internal organ motion and a method to construct a cumulative dose in a deforming organ are introduced. METHODS AND MATERIALS A biomechanical model of an elastic body is used to quantify patient organ motion in the process of radiation therapy. Intertreatment displacements of volume elements in an organ of interest is calculated by applying an finite element method with boundary conditions, obtained from multiple daily computed tomography (CT) measurements. Therefore, by incorporating also the measurements of daily setup error, daily dose delivered to a deforming organ can be accumulated by tracking the position of volume elements in the organ. Furthermore, distribution of patient-specific organ motion is also predicted during the early phase of treatment delivery using the daily measurements, and the cumulative dose distribution in the organ can then be estimated. This dose distribution will be updated whenever a new measurement becomes available, and used to reoptimize the ongoing treatment. RESULTS An integrated process to accumulate dosage in a daily deforming organ was implemented. In this process, intertreatment organ motion and setup error were systematically quantified, and incorporated in the calculation of the cumulative dose. An example of the rectal wall motion in a prostate treatment was applied to test the model. The displacements of volume elements in the rectal wall, as well as the resultant doses, were calculated. CONCLUSION This study is intended to provide a systematic framework to incorporate daily patient-specific organ motion and setup error in the reconstruction of the cumulative dose distribution in an organ of interest. The realistic dose distribution in an organ of interest gives the true dose-volume relationship, and may play an important role in the evaluation of the dose response of human organs. Dose reconstruction during the course of treatment delivery can also be used as an important feedback for the online optimization of individual treatment plans.
Collapse
|
|
26 |
189 |
21
|
Létourneau D, Wong JW, Oldham M, Gulam M, Watt L, Jaffray DA, Siewerdsen JH, Martinez AA. Cone-beam-CT guided radiation therapy: technical implementation. Radiother Oncol 2005; 75:279-86. [PMID: 15890424 DOI: 10.1016/j.radonc.2005.03.001] [Citation(s) in RCA: 184] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2004] [Revised: 02/16/2005] [Accepted: 03/04/2005] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND PURPOSE X-ray volumetric imaging system (XVI) mounted on a linear accelerator is available for image guidance applications. In preparation for clinical implementation, phantom and patient imaging studies were conducted to determine the irradiation parameters that would trade-off image quality, patient dose and scanning time. PATIENTS AND METHODS The XVI image quality and imaging dose were benchmarked against those obtained with a helical CT scanner for a head and body phantom. The irradiation parameters were varied including the total imaging dose, number of projections, field of view, reconstruction resolution and use of a scatter rejection grid. We characterized the image quality based on relative contrast, noise, contrast to noise ratio (CNR) and point spread function (PSF). XVI scans of pelvis, head and neck and lung patients were acquired and submitted to a range of observers to identify the favorable reconstruction parameters. RESULTS Phantom studies have demonstrated that a scatter rejection grid reduces photon scattering and improves the image uniformity. For the body phantom, the helical CT and the wide field XVI technique produce similar image quality, with surface doses of 0.025 and 0.044 Gy respectively. We have demonstrated that the local tomography technique improves the image contrast and the CNR while reducing the skin dose by 40-50% compared to the wide field technique. Clinical scans of head and neck, lung and prostate patients present good soft tissue contrast and excellent bone definition. CONCLUSIONS With adjustment of irradiation parameters and an imaging surface dose of less than 0.05 Gy, high quality XVI images can be obtained for a phantom simulating the body thickness. XVI is currently feasible for image-guided treatments of head and neck, torso and pelvic areas using soft tissue and bony structures.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
184 |
22
|
Siewerdsen JH, Daly MJ, Bakhtiar B, Moseley DJ, Richard S, Keller H, Jaffray DA. A simple, direct method for x-ray scatter estimation and correction in digital radiography and cone-beam CT. Med Phys 2006; 33:187-97. [PMID: 16485425 DOI: 10.1118/1.2148916] [Citation(s) in RCA: 183] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
X-ray scatter poses a significant limitation to image quality in cone-beam CT (CBCT), resulting in contrast reduction, image artifacts, and lack of CT number accuracy. We report the performance of a simple scatter correction method in which scatter fluence is estimated directly in each projection from pixel values near the edge of the detector behind the collimator leaves. The algorithm operates on the simple assumption that signal in the collimator shadow is attributable to x-ray scatter, and the 2D scatter fluence is estimated by interpolating between pixel values measured along the top and bottom edges of the detector behind the collimator leaves. The resulting scatter fluence estimate is subtracted from each projection to yield an estimate of the primary-only images for CBCT reconstruction. Performance was investigated in phantom experiments on an experimental CBCT bench-top, and the effect on image quality was demonstrated in patient images (head, abdomen, and pelvis sites) obtained on a preclinical system for CBCT-guided radiation therapy. The algorithm provides significant reduction in scatter artifacts without compromise in contrast-to-noise ratio (CNR). For example, in a head phantom, cupping artifact was essentially eliminated, CT number accuracy was restored to within 3%, and CNR (breast-to-water) was improved by up to 50%. Similarly in a body phantom, cupping artifact was reduced by at least a factor of 2 without loss in CNR. Patient images demonstrate significantly increased uniformity, accuracy, and contrast, with an overall improvement in image quality in all sites investigated. Qualitative evaluation illustrates that soft-tissue structures that are otherwise undetectable are clearly delineated in scatter-corrected reconstructions. Since scatter is estimated directly in each projection, the algorithm is robust with respect to system geometry, patient size and heterogeneity, patient motion, etc. Operating without prior information, analytical modeling, or Monte Carlo, the technique is easily incorporated as a preprocessing step in CBCT reconstruction to provide significant scatter reduction.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
183 |
23
|
Siewerdsen JH, Waese AM, Moseley DJ, Richard S, Jaffray DA. Spektr: A computational tool for x-ray spectral analysis and imaging system optimization. Med Phys 2004; 31:3057-67. [PMID: 15587659 DOI: 10.1118/1.1758350] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
A set of computational tools are presented that allow convenient calculation of x-ray spectra, selection of elemental and compound filters, and calculation of beam quality characteristics, such as half-value layer, mR/mAs, and fluence per unit exposure. The TASMIP model of Boone and Seibert is adapted to a library of high-level language (Matlab) functions and shown to agree with experimental measurements across a wide range of kVp and beam filtration. Modeling of beam filtration is facilitated by a convenient, extensible database of mass and mass-energy attenuation coefficients compiled from the National Institute of Standards and Technology. The functions and database were integrated in a graphical user interface and made available online at http:// www.aip.org/epaps/epaps.html. The functionality of the toolset and potential for investigation of imaging system optimization was illustrated in theoretical calculations of imaging performance across a broad range of kVp, filter material type, and filter thickness for direct and indirect-detection flat-panel imagers. The calculations reveal a number of nontrivial effects in the energy response of such detectors that may not have been guessed from simple K-edge filter techniques, and point to a variety of compelling hypotheses regarding choice of beam filtration that warrant future investigation.
Collapse
|
|
21 |
172 |
24
|
Cho Y, Moseley DJ, Siewerdsen JH, Jaffray DA. Accurate technique for complete geometric calibration of cone-beam computed tomography systems. Med Phys 2005; 32:968-83. [PMID: 15895580 DOI: 10.1118/1.1869652] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Cone-beam computed tomography systems have been developed to provide in situ imaging for the purpose of guiding radiation therapy. Clinical systems have been constructed using this approach, a clinical linear accelerator (Elekta Synergy RP) and an iso-centric C-arm. Geometric calibration involves the estimation of a set of parameters that describes the geometry of such systems, and is essential for accurate image reconstruction. We have developed a general analytic algorithm and corresponding calibration phantom for estimating these geometric parameters in cone-beam computed tomography (CT) systems. The performance of the calibration algorithm is evaluated and its application is discussed. The algorithm makes use of a calibration phantom to estimate the geometric parameters of the system. The phantom consists of 24 steel ball bearings (BBs) in a known geometry. Twelve BBs are spaced evenly at 30 deg in two plane-parallel circles separated by a given distance along the tube axis. The detector (e.g., a flat panel detector) is assumed to have no spatial distortion. The method estimates geometric parameters including the position of the x-ray source, position, and rotation of the detector, and gantry angle, and can describe complex source-detector trajectories. The accuracy and sensitivity of the calibration algorithm was analyzed. The calibration algorithm estimates geometric parameters in a high level of accuracy such that the quality of CT reconstruction is not degraded by the error of estimation. Sensitivity analysis shows uncertainty of 0.01 degrees (around beam direction) to 0.3 degrees (normal to the beam direction) in rotation, and 0.2 mm (orthogonal to the beam direction) to 4.9 mm (beam direction) in position for the medical linear accelerator geometry. Experimental measurements using a laboratory bench Cone-beam CT system of known geometry demonstrate the sensitivity of the method in detecting small changes in the imaging geometry with an uncertainty of 0.1 mm in transverse and vertical (perpendicular to the beam direction) and 1.0 mm in the longitudinal (beam axis) directions. The calibration algorithm was compared to a previously reported method, which uses one ball bearing at the isocenter of the system, to investigate the impact of more precise calibration on the image quality of cone-beam CT reconstruction. A thin steel wire located inside the calibration phantom was imaged on the conebeam CT lab bench with and without perturbations in source and detector position during the scan. The described calibration method improved the quality of the image and the geometric accuracy of the object reconstructed, improving the full width at half maximum of the wire by 27.5% and increasing contrast of the wire by 52.8%. The proposed method is not limited to the geometric calibration of cone-beam CT systems but can be used for many other systems, which consist of one or more point sources and area detectors such as calibration of megavoltage (MV) treatment system (focal spot movement during the beam delivery, MV source trajectory versus gantry angle, the axis of collimator rotation, and couch motion), cross calibration between Kilovolt imaging and MV treatment system, and cross calibration between multiple imaging systems. Using the complete information of the system geometry, it was demonstrated that high image quality in CT reconstructions is possible even in systems with large geometric nonidealities.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
170 |
25
|
O'Sullivan B, Griffin AM, Dickie CI, Sharpe MB, Chung PWM, Catton CN, Ferguson PC, Wunder JS, Deheshi BM, White LM, Kandel RA, Jaffray DA, Bell RS. Phase 2 study of preoperative image-guided intensity-modulated radiation therapy to reduce wound and combined modality morbidities in lower extremity soft tissue sarcoma. Cancer 2013; 119:1878-84. [PMID: 23423841 DOI: 10.1002/cncr.27951] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 11/30/2012] [Accepted: 12/04/2012] [Indexed: 11/07/2022]
Abstract
BACKGROUND This study sought to determine if preoperative image-guided intensity-modulated radiotherapy (IG-IMRT) can reduce morbidity, including wound complications, by minimizing dose to uninvolved tissues in adults with lower extremity soft tissue sarcoma. METHODS The primary endpoint was the development of an acute wound complication (WC). IG-IMRT was used to conform volumes to avoid normal tissues (skin flaps for wound closure, bone, or other uninvolved soft tissues). From July 2005 to June 2009, 70 adults were enrolled; 59 were evaluable for the primary endpoint. Median tumor size was 9.5 cm; 55 tumors (93%) were high-grade and 58 (98%) were deep to fascia. RESULTS Eighteen (30.5%) patients developed WCs. This was not statistically significantly different from the result of the National Cancer Institute of Canada SR2 trial (P = .2); however, primary closure technique was possible more often (55 of 59 patients [93.2%] versus 50 of 70 patients [71.4%]; P = .002), and secondary operations for WCs were somewhat reduced (6 of 18 patients [33%] versus 13 of 30 patients [43%]; P = .55). Moderate edema, skin, subcutaneous, and joint toxicity was present in 6 (11.1%), 1 (1.9%), 5 (9.3%), and 3 (5.6%) patients, respectively, but there were no bone fractures. Four local recurrences (6.8%, none near the flaps) occurred with median follow-up of 49 months. CONCLUSIONS The 30.5% incidence of WCs was numerically lower than the 43% risk derived from the National Cancer Institute of Canada SR2 trial, but did not reach statistical significance. Preoperative IG-IMRT significantly diminished the need for tissue transfer. RT chronic morbidities and the need for subsequent secondary operations for WCs were lowered, although not significantly, whereas good limb function was maintained.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
167 |