1
|
Farmer JG, Thomas RP, Graham MC, Geelhoed JS, Lumsdon DG, Paterson E. Chromium speciation and fractionation in ground and surface waters in the vicinity of chromite ore processing residue disposal sites. JOURNAL OF ENVIRONMENTAL MONITORING : JEM 2002; 4:235-43. [PMID: 11993762 DOI: 10.1039/b108681m] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chromium concentrations of up to 91 mg l(-1) were found by ICP-OES for ground water from nine boreholes at four landfill sites in an area of S.E. Glasgow/S. Lanarkshire where high-lime chromite ore processing residue (COPR) from a local chemical works had been deposited from 1830 to 1968. Surface water concentrations of up to 6.7 mg l(-1) in a local tributary stream fell to 0.11 mg l(-1) in the River Clyde. Two independent techniques of complexation/colorimetry and speciated isotope dilution mass spectrometry (SIDMS) showed that Cr was predominantly (>90%) in hexavalent form (CrVI) as CrO4(2-), as anticipated at the high pH (7.5-12.5) of the sites. Some differences between the implied and directly determined concentrations of dissolved CrIII, however, appeared related to the total organic carbon (TOC) content. This was most significant for the ground water from one borehole that had the highest TOC concentration of 300 mg l(-1) and at which < 3% of Cr was in the form of CrVI. Subsequent ultrafiltration produced significant decreases in Cr concentration with decreasing size fractions, e.g. <0.45 microm, < 100 kDa, <30 kDa and < 1 kDa by the tangential-flow method. As this appeared related more to concentrations of humic substances than of TOC per se, horizontal bed gel electrophoresis of freeze-dried ultrafilter retentates was carried out to further characterise the CrIII-organic complex. This showed for the main Cr-containing fraction, 100 kDa-0.45 microm, that the Cr was associated with a dark brown band characteristic of organic (humic) matter. Comparison of gel electrophoresis and FTIR results for ultrafilter retentates of ground water from this borehole with those for a borehole at another site where CrVI predominated suggested the influence of carboxylate groups, both in reducing CrVI and in forming soluble CrIII-humic complexes. The implications of this for remediation strategies (especially those based on the addition of organic matter) designed to reduce highly mobile and carcinogenic Cr(VI)O4(2-) to the much less harmful CrIII as insoluble Cr(OH)3 are discussed.
Collapse
|
|
23 |
58 |
2
|
Lumsdon DG, Evans LJ, Bolton KA. The influence of pH and chloride on the retention of cadmium, lead, mercury, and zinc by soils. ACTA ACUST UNITED AC 2008. [DOI: 10.1080/15320389509383488] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
|
17 |
32 |
3
|
Campbell CD, Hird M, Lumsdon DG, Meeussen JC. The effect of EDTA and fulvic acid on Cd, Zn, and Cu toxicity to a bioluminescent construct (pUCD607) of Escherichia coli. CHEMOSPHERE 2000; 40:319-325. [PMID: 10665423 DOI: 10.1016/s0045-6535(99)00302-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The hypothesis, that metal toxicity is dominated by free ion activity, was tested by comparing calculated metal activities with measured toxic responses to a genetically modified, luminescent bacterium, Escherichia coli. The toxicity of Cd, Cu, and Zn sulphate salts in the presence of EDTA and fulvic acid in well-defined solutions was measured. Good agreement between free metal activity and toxicity was found for Cu but not for Zn and Cd. The toxicity relationships were altered by glucose addition to the organism. Stable chloride complexes may have contributed to the toxicity of Cd under the test conditions. The results suggest that there is not always a simple relationship between toxicity and free-ion metal concentration and that further account should be taken of competitive interactions between living cells and ligands and the physiological status of the organism.
Collapse
|
|
25 |
13 |
4
|
Evans LJ, Sengdy B, Lumsdon DG, Stanbury DA. Cadmium adsorption by an organic soil: a comparison of some humic – metal complexation models. CHEMICAL SPECIATION & BIOAVAILABILITY 2015. [DOI: 10.3184/095422903782775172] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
|
10 |
13 |
5
|
Graham MC, Farmer JG, Anderson P, Paterson E, Hillier S, Lumsdon DG, Bewley RJF. Calcium polysulfide remediation of hexavalent chromium contamination from chromite ore processing residue. THE SCIENCE OF THE TOTAL ENVIRONMENT 2006; 364:32-44. [PMID: 16442591 DOI: 10.1016/j.scitotenv.2005.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2005] [Revised: 10/27/2005] [Accepted: 11/03/2005] [Indexed: 05/06/2023]
Abstract
Past disposal of high-lime chromite ore processing residue (COPR) from a chemical works in S.E. Glasgow, UK, has led to continuing release of toxic and carcinogenic hexavalent chromium (Cr(VI)) to groundwaters which are highly contaminated with Cr(VI)O4(2-). Traditional methods of remediating Cr(VI)-contaminated land, e.g. using ferrous sulfate and organic matter, have had limited success in converting Cr(VI) to less harmful and insoluble Cr(III). This paper describes the first application of calcium polysulfide (CaS(x)) to the remediation of contaminated groundwater and high-lime COPR in a series of laboratory experiments, which have demonstrated the effectiveness of the treatment in quantitatively and rapidly reducing Cr(VI) to Cr(III) over the pH range (8-12.5) typically found at the sites. Cr(III)-organic complexes, present in groundwater at one location, were also effectively precipitated upon treatment with CaS(x). The potential for large-scale use of CaS(x) in the remediation of Cr(VI) from COPR is also discussed.
Collapse
|
|
19 |
11 |
6
|
Giles CD, Richardson AE, Cade-Menun BJ, Mezeli MM, Brown LK, Menezes-Blackburn D, Darch T, Blackwell MS, Shand CA, Stutter MI, Wendler R, Cooper P, Lumsdon DG, Wearing C, Zhang H, Haygarth PM, George TS. Phosphorus acquisition by citrate- and phytase-exuding Nicotiana tabacum plant mixtures depends on soil phosphorus availability and root intermingling. PHYSIOLOGIA PLANTARUM 2018; 163:356-371. [PMID: 29498417 DOI: 10.1111/ppl.12718] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/08/2018] [Accepted: 02/27/2018] [Indexed: 05/16/2023]
Abstract
Citrate and phytase root exudates contribute to improved phosphorus (P) acquisition efficiency in Nicotiana tabacum (tobacco) when both exudates are produced in a P deficient soil. To test the importance of root intermingling in the interaction of citrate and phytase exudates, Nicotiana tabacum plant-lines with constitutive expression of heterologous citrate (Cit) or fungal phytase (Phy) exudation traits were grown under two root treatments (roots separated or intermingled) and in two soils with contrasting soil P availability. Complementarity of plant mixtures varying in citrate efflux rate and mobility of the expressed phytase in soil was determined based on plant biomass and P accumulation. Soil P composition was evaluated using solution 31 P NMR spectroscopy. In the soil with limited available P, positive complementarity occurred in Cit+Phy mixtures with roots intermingled. Root separation eliminated positive interactions in mixtures expressing the less mobile phytase (Aspergillus niger PhyA) whereas positive complementarity persisted in mixtures that expressed the more mobile phytase (Peniophora lycii PhyA). Soils from Cit+Phy mixtures contained less inorganic P and more organic P compared to monocultures. Exudate-specific strategies for the acquisition of soil P were most effective in P-limited soil and depended on citrate efflux rate and the relative mobility of the expressed phytase in soil. Plant growth and soil P utilization in plant systems with complementary exudation strategies are expected to be greatest where exudates persist in soil and are expressed synchronously in space and time.
Collapse
|
|
7 |
11 |
7
|
Lumsdon DG, Fraser AR. Infrared spectroscopic evidence supporting heterogeneous site binding models for humic substances. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2005; 39:6624-31. [PMID: 16190220 DOI: 10.1021/es050180i] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Infrared spectroscopy was used to corroborate predictions made by newly developed heterogeneous site binding models for humic substances. Experimental conditions to acquire the spectra of soil humic substances (humic and fulvic acid and a polysaccharide fraction) in an aqueous state using horizontal attenuated total reflectance Fourier transform infrared spectroscopy (HATR-FTIR) were established. Elimination of the water spectrum from that of the sample was achieved by spectral subtraction of the water peak at 2020 cm(-1). A KSCN internal standard with an absorption band at 2067 cm(-1) was used to verify the efficacy of the subtraction procedure. Spectral artifacts produced by the water spectrum subtraction and from contaminants within the humic materials have been identified. Three fulvic and one humic acid solution were examined in solutions of varying pH. Results show that the observed proportion of ionized carboxylate in relation to pH is consistent with models that assume electrostatic effects and a continuous distribution of proton association constants (log KH). The spectroscopic data were in accordance with calculations made using the generic humic and fulvic acid NICA-Donnan model parameters.
Collapse
|
|
20 |
10 |
8
|
Darch T, Giles CD, Blackwell MSA, George TS, Brown LK, Menezes-Blackburn D, Shand CA, Stutter MI, Lumsdon DG, Mezeli MM, Wendler R, Zhang H, Wearing C, Cooper P, Haygarth PM. Inter- and intra-species intercropping of barley cultivars and legume species, as affected by soil phosphorus availability. PLANT AND SOIL 2017; 427:125-138. [PMID: 30996483 PMCID: PMC6438642 DOI: 10.1007/s11104-017-3365-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 07/28/2017] [Indexed: 05/29/2023]
Abstract
AIMS Intercropping can improve plant yields and soil phosphorus (P) use efficiency. This study compares inter- and intra-species intercropping, and determines whether P uptake and shoot biomass accumulation in intercrops are affected by soil P availability. METHODS Four barley cultivars (Hordeum vulgare L.) and three legume species (Trifolium subterreneum, Ornithopus sativus and Medicago truncatula) were selected on the basis of their contrasting root exudation and morphological responses to P deficiency. Monocultures and barley-barley and barley-legume intercrops were grown for 6 weeks in a pot trial at very limiting, slightly limiting and excess available soil P. Above-ground biomass and shoot P were measured. RESULTS Barley-legume intercrops had 10-70% greater P accumulation and 0-40% greater biomass than monocultures, with the greatest gains occurring at or below the sub-critical P requirement for barley. No benefit of barley-barley intercropping was observed. The plant combination had no significant effect on biomass and P uptake observed in intercropped treatments. CONCLUSIONS Barley-legume intercropping shows promise for sustainable production systems, especially at low soil P. Gains in biomass and P uptake come from inter- rather than intra-species intercropping, indicating that plant diversity resulted in decreased competition between plants for P.
Collapse
|
research-article |
8 |
8 |
9
|
Stutter MI, Langan SJ, Lumsdon DG. Vegetated buffer strips can lead to increased release of phosphorus to waters: a biogeochemical assessment of the mechanisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2009; 43:1858-63. [PMID: 19368183 DOI: 10.1021/es8030193] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Establishing vegetated buffer strips (VBS) between cropland and watercourses is currently promoted as a principal control of diffuse pollution transport. However, we lackthe mechanistic understanding to evaluate P retention in VBS and predict risks of P transport to aquatic ecosystems. We observed that VBS establishment led to enhanced rates of soil P cycling, increasing soil P solubility and the potential amount leached to watercourses. Soil in VBS, relative to adjacentfields, had increased inorganic P solubility indices, dissolved organic P, phosphatase enzyme activity, microbial diversity, and biomass P. Small relative increases in the pool of soil P rendered labile had disproportionate effects on the P available for leaching. We propose a mechanism whereby the establishment of VBS on previous agricultural land causes a diversifying plant-microbial system which can access previous immobilized soil P from past fertilization or trapped sediment P. Laboratory experiments suggested that sediment-P inputs to VBS were insufficient alone to increase P solubility without biological cycling. Results showthat VBS management may require strategies, for example, harvesting vegetation, to offset biochemical processes that can increase the susceptibility of VBS soil P to move to adjoining streams.
Collapse
|
|
16 |
7 |
10
|
Giles CD, Brown LK, Adu MO, Mezeli MM, Sandral GA, Simpson RJ, Wendler R, Shand CA, Menezes-Blackburn D, Darch T, Stutter MI, Lumsdon DG, Zhang H, Blackwell MSA, Wearing C, Cooper P, Haygarth PM, George TS. Response-based selection of barley cultivars and legume species for complementarity: Root morphology and exudation in relation to nutrient source. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 255:12-28. [PMID: 28131338 DOI: 10.1016/j.plantsci.2016.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/26/2016] [Accepted: 11/04/2016] [Indexed: 05/18/2023]
Abstract
Phosphorus (P) and nitrogen (N) use efficiency may be improved through increased biodiversity in agroecosystems. Phenotypic variation in plants' response to nutrient deficiency may influence positive complementarity in intercropping systems. A multicomponent screening approach was used to assess the influence of P supply and N source on the phenotypic plasticity of nutrient foraging traits in barley (H. vulgare L.) and legume species. Root morphology and exudation were determined in six plant nutrient treatments. A clear divergence in the response of barley and legumes to the nutrient treatments was observed. Root morphology varied most among legumes, whereas exudate citrate and phytase activity were most variable in barley. Changes in root morphology were minimized in plants provided with ammonium in comparison to nitrate but increased under P deficiency. Exudate phytase activity and pH varied with legume species, whereas citrate efflux, specific root length, and root diameter lengths were more variable among barley cultivars. Three legume species and four barley cultivars were identified as the most responsive to P deficiency and the most contrasting of the cultivars and species tested. Phenotypic response to nutrient availability may be a promising approach for the selection of plant combinations for minimal input cropping systems.
Collapse
|
|
8 |
7 |
11
|
Farmer JG, Paterson E, Bewley RJF, Geelhoed JS, Hillier S, Meeussen JCL, Lumsdon DG, Thomas RP, Graham MC. The implications of integrated assessment and modelling studies for the future remediation of chromite ore processing residue disposal sites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2006; 360:90-7. [PMID: 16203026 DOI: 10.1016/j.scitotenv.2005.08.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Chromite ore processing residue (COPR) waste from a former chromium chemical works (1830-1968) is still contaminating groundwater in Glasgow, Scotland, with carcinogenic hexavalent chromium, Cr(VI). An integrated analytical, experimental and modelling approach has identified and accounted for mineral phases and processes responsible for the retention and release of Cr(VI) under prevailing field conditions. Both the nature of mineral phase retention and the buffered high pH of the sites, however, militate against direct remediative treatment of the source material, for example by the application of generic methods (e.g. FeSO4) that have been successfully employed elsewhere for the reduction of Cr(VI) to Cr(III) in other matrices. The interception and treatment of groundwater to remove Cr(VI) and the capping of sites to reduce human exposure to airborne Cr(VI)-contaminated dust may well be more realistic and effective, at least in the short to medium term.
Collapse
|
|
19 |
4 |
12
|
Hillier S, Lumsdon DG, Brydson R, Paterson E. Hydrogarnet: a host phase for Cr(VI) in chromite ore processing residue (COPR) and other high pH wastes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2007; 41:1921-7. [PMID: 17410785 DOI: 10.1021/es0621997] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
For understanding both the environmental behavior and developing remediation treatments for chromium ore processing residue (COPR) it is important to identify all the potentially soluble sources of Cr(VI). Hydrogarnet has been identified as a major phase in COPR and it has been previously speculated that it has a capacity to host Cr(VI). Here we provide direct evidence of this capacity by demonstrating the incorporation of Cr(VI) into laboratory synthesized hydrogarnet. Electron microscopy and energy dispersive X-ray microanalysis show incorporation of approximately 17000-22000 mg Cr(VI) kg(-1) hydrogarnet. X-ray powder diffraction data show that peak intensities are altered by chromium substitution and that chromium substituted hydrogarnets have a smaller unit cell than the pure Ca-Al end member. This is consistent with substitution of hydroxyl tetrahedra by smaller chromate tetrahedra. Electron energy loss spectroscopy confirms the tetrahedral coordination and hexavalent oxidation state of chromium in the hydrogarnets. The maximum amount of hexavalent chromium that can be introduced synthetically corresponds to a replacement of about one out of every eight hydroxyl tetrahedral per unit cell by a CrO4(2-) tetrahedra and tallies closely with the amount of chromium measured in hydrogarnets from COPR. Chromium-bearing hydrogarnet is the most abundant crystalline phase in millions of tons of COPR contaminating land around Glasgow, Scotland, and was recently identified in COPR from sites in North America. Calculations based on its abundance and its Cr(VI) content indicate that hydrogarnet can host as much as 50% of the Cr(VI) found in some COPR samples.
Collapse
|
|
18 |
4 |
13
|
Lumsdon DG, Stutter MI, Cooper RJ, Manson JR. Model assessment of biogeochemical controls on dissolved organic carbon partitioning in an acid organic soil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2005; 39:8057-63. [PMID: 16295875 DOI: 10.1021/es050266b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A chemical model (constructed in the ORCHESTRA modeling framework) of an organic soil horizon was used to describe soil solution data (10 cm depth) and assess if seasonal variations in soil solution dissolved organic carbon (DOC) could be explained by purely abiotic (geochemical controls) mechanisms or whether factors related to biological activity are needed. The NICA-Donnan equation is used to describe the competitive binding of protons and cations and the charge on soil organic matter. Controls on organic matter solubility are surface charge and a parameter, gamma, that accounts for the distribution of humic molecules between hydrophobic and hydrophilic fractions. Calculations show that the variations in solute chemistry alone are not sufficient to account for the observed variations of DOC, but factors that alter gamma, such as biological activity, are. Assuming that DOC in organic soils is derived from soluble humic material and that gamma is modified seasonally due to biological activity (with monthly soil temperature used as a surrogate for biological activity) we are able to model the observed seasonality of soil solution DOC over a 10-year period. Furthermore, with modeled DOC coupled to other geochemical processes we also model soil solution pH and Al concentrations.
Collapse
|
Comparative Study |
20 |
3 |
14
|
Stutter MI, Lumsdon DG. Interactions of land use and dynamic river conditions on sorption equilibria between benthic sediments and river soluble reactive phosphorus concentrations. WATER RESEARCH 2008; 42:4249-4260. [PMID: 18775552 DOI: 10.1016/j.watres.2008.06.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 06/04/2008] [Accepted: 06/16/2008] [Indexed: 05/26/2023]
Abstract
Within-river cycling of P is a crucial link between catchment pollution sources and the resulting ecological impacts and integrates the biogeochemistry and hydrodynamics of river systems. This study investigates benthic sediment P sorption in relation to river soluble reactive phosphorus (SRP) concentrations during high- to low-flow changes in a major mixed land use river system in NE Scotland. We hypothesised that sediments comprised P sinks during moderate to higher flows but became P saturated with loss of buffering function during prolonged baseflow. Sediment characteristics were evaluated and equilibrium P concentrations (EPC(0)) calculated using a standardised batch adsorption method (EPC(0) values 0.04-1.75 micromol Pl(-1)). Pollution-impacted tributaries (32-69% catchment agricultural land cover) had increased SRP concentrations (0.19-2.62 micromol Pl(-1)) and maintained EPC(0)<SRP values during changing flow conditions. Moorland-dominated tributaries and main stem sites had small SRP concentrations (0.03-0.19 micromol Pl(-1)) but showed EPC(0)>SRP values during summer baseflow so that sediments were indicated as P sources. This deviation from a geochemical sediment-water P equilibrium was attributed to biological accumulation of P from the water column into the sediments. In particular, large stores of sediment P accumulated in main stem reaches below agricultural tributaries and this may be consequential for sensitive downstream ecosystems. Hence, biogeochemical processes at the river bed may strongly influence river SRP cycling between geochemical and biotic pools. The nature of this internal reservoir of river P and its ecosystem interactions needs better understanding to enable best results to be attained from catchment mitigation actions designed to maintain/improve ecological status under the Water Framework Directive.
Collapse
|
|
17 |
3 |
15
|
Shand CA, Coutts G, Hillier S, Lumsdon DG, Chudek A, Eubeler J. Phosphorus composition of sheep feces and changes in the field determined by 31P NMR spectroscopy and XRPD. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2005; 39:9205-10. [PMID: 16382943 DOI: 10.1021/es0510820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Information on the P species in sheep feces is lacking. Such information is required to understand P-cycling in grazed ecosystems. The P composition of feces from sheep grazing grass in Scotland was assessed on freeze-dried samples by 31P MAS (magic angle spinning) NMR (nuclear magnetic resonance) spectroscopy and XRPD (X-ray powder diffraction). The 31P MAS NMR spectrum showed resonances and sidebands consistent with dicalcium phosphate dihydrate (brushite) and ammonium magnesium phosphate hexahydrate (struvite). XRPD confirmed the result and allowed quantification of these minerals, which accounted for 63% of the P. To determine transformations in the field, sheep feces were collected and reapplied to sheep-free pasture in synthetic patches during late summer. The dry weight decreased with time and the feces disappeared between 84 and 112 days following heavy rainfall. The concentration of P in the feces recovered at intervals up to 84 days changed little with time but the contribution from brushite and struvite decreased and within 1 week <50% remained indicating conversion into other forms. Solution-phase 31P NMR spectra of NaOH/EDTA extracts of the feces were dominated by the inorganic orthophosphate with minor amounts of organic P that were attributed to phosphate esters and polyphosphates.
Collapse
|
|
20 |
2 |