1
|
Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schütz G, Umesono K, Blumberg B, Kastner P, Mark M, Chambon P, Evans RM. The nuclear receptor superfamily: the second decade. Cell 1995; 83:835-9. [PMID: 8521507 PMCID: PMC6159888 DOI: 10.1016/0092-8674(95)90199-x] [Citation(s) in RCA: 5159] [Impact Index Per Article: 172.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
Review |
30 |
5159 |
2
|
|
Review |
30 |
2363 |
3
|
Makishima M, Okamoto AY, Repa JJ, Tu H, Learned RM, Luk A, Hull MV, Lustig KD, Mangelsdorf DJ, Shan B. Identification of a nuclear receptor for bile acids. Science 1999; 284:1362-5. [PMID: 10334992 DOI: 10.1126/science.284.5418.1362] [Citation(s) in RCA: 2066] [Impact Index Per Article: 79.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bile acids are essential for the solubilization and transport of dietary lipids and are the major products of cholesterol catabolism. Results presented here show that bile acids are physiological ligands for the farnesoid X receptor (FXR), an orphan nuclear receptor. When bound to bile acids, FXR repressed transcription of the gene encoding cholesterol 7alpha-hydroxylase, which is the rate-limiting enzyme in bile acid synthesis, and activated the gene encoding intestinal bile acid-binding protein, which is a candidate bile acid transporter. These results demonstrate a mechanism by which bile acids transcriptionally regulate their biosynthesis and enterohepatic transport.
Collapse
|
|
26 |
2066 |
4
|
Abstract
Cholesterol, fatty acids, fat-soluble vitamins, and other lipids present in our diets are not only nutritionally important but serve as precursors for ligands that bind to receptors in the nucleus. To become biologically active, these lipids must first be absorbed by the intestine and transformed by metabolic enzymes before they are delivered to their sites of action in the body. Ultimately, the lipids must be eliminated to maintain a normal physiological state. The need to coordinate this entire lipid-based metabolic signaling cascade raises important questions regarding the mechanisms that govern these pathways. Specifically, what is the nature of communication between these bioactive lipids and their receptors, binding proteins, transporters, and metabolizing enzymes that links them physiologically and speaks to a higher level of metabolic control? Some general principles that govern the actions of this class of bioactive lipids and their nuclear receptors are considered here, and the scheme that emerges reveals a complex molecular script at work.
Collapse
|
Review |
24 |
1492 |
5
|
Inagaki T, Choi M, Moschetta A, Peng L, Cummins CL, McDonald JG, Luo G, Jones SA, Goodwin B, Richardson JA, Gerard RD, Repa JJ, Mangelsdorf DJ, Kliewer SA. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab 2005; 2:217-25. [PMID: 16213224 DOI: 10.1016/j.cmet.2005.09.001] [Citation(s) in RCA: 1408] [Impact Index Per Article: 70.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Revised: 08/01/2005] [Accepted: 09/01/2005] [Indexed: 02/06/2023]
Abstract
The liver and intestine play crucial roles in maintaining bile acid homeostasis. Here, we demonstrate that fibroblast growth factor 15 (FGF15) signals from intestine to liver to repress the gene encoding cholesterol 7alpha-hydroxylase (CYP7A1), which catalyzes the first and rate-limiting step in the classical bile acid synthetic pathway. FGF15 expression is stimulated in the small intestine by the nuclear bile acid receptor FXR and represses Cyp7a1 in liver through a mechanism that involves FGF receptor 4 (FGFR4) and the orphan nuclear receptor SHP. Mice lacking FGF15 have increased hepatic CYP7A1 mRNA and protein levels and corresponding increases in CYP7A1 enzyme activity and fecal bile acid excretion. These studies define FGF15 and FGFR4 as components of a gut-liver signaling pathway that synergizes with SHP to regulate bile acid synthesis.
Collapse
|
Research Support, N.I.H., Extramural |
20 |
1408 |
6
|
Janowski BA, Willy PJ, Devi TR, Falck JR, Mangelsdorf DJ. An oxysterol signalling pathway mediated by the nuclear receptor LXR alpha. Nature 1996; 383:728-31. [PMID: 8878485 DOI: 10.1038/383728a0] [Citation(s) in RCA: 1370] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cholesterol and its oxysterol congeners are important constituents of cell membranes and function as intermediates in several crucial biosynthetic pathways. These compounds autoregulate their metabolic fate by end-product repression and activation of downstream catabolism. Although end-product repression by oxysterols is relatively well understood, the mechanism by which these compounds act as positive transcription signalling molecules is unknown. Here we identify a specific group of endogenous oxysterols that activate transcription through the nuclear receptor LXR alpha. Transactivation of LXR alpha by oxysterols occurs at concentrations at which these compounds exist in vivo. The most potent activators also serve as intermediary substrates in the rate-limiting steps of three important metabolic pathways: steroid hormone biosynthesis, bile acid synthesis, and conversion of lanosterol to cholesterol. Our results demonstrate the existence of a nuclear receptor signalling pathway for oxysterols and suggest that LXR alpha may be important as a sensor of cholesterol metabolites.
Collapse
|
|
29 |
1370 |
7
|
Schultz JR, Tu H, Luk A, Repa JJ, Medina JC, Li L, Schwendner S, Wang S, Thoolen M, Mangelsdorf DJ, Lustig KD, Shan B. Role of LXRs in control of lipogenesis. Genes Dev 2000; 14:2831-8. [PMID: 11090131 PMCID: PMC317060 DOI: 10.1101/gad.850400] [Citation(s) in RCA: 1338] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The discovery of oxysterols as the endogenous liver X receptor (LXR) ligands and subsequent gene targeting studies in mice provided strong evidence that LXR plays a central role in cholesterol metabolism. The identification here of a synthetic, nonsteroidal LXR-selective agonist series represented by T0314407 and T0901317 revealed a novel physiological role of LXR. Oral administration of T0901317 to mice and hamsters showed that LXR activated the coordinate expression of major fatty acid biosynthetic genes (lipogenesis) and increased plasma triglyceride and phospholipid levels in both species. Complementary studies in cell culture and animals suggested that the increase in plasma lipids occurs via LXR-mediated induction of the sterol regulatory element-binding protein 1 (SREBP-1) lipogenic program.
Collapse
|
research-article |
25 |
1338 |
8
|
Heyman RA, Mangelsdorf DJ, Dyck JA, Stein RB, Eichele G, Evans RM, Thaller C. 9-cis retinoic acid is a high affinity ligand for the retinoid X receptor. Cell 1992; 68:397-406. [PMID: 1310260 DOI: 10.1016/0092-8674(92)90479-v] [Citation(s) in RCA: 1330] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
All-trans retinoic acid (RA) has previously been shown to modulate the transcriptional properties of the retinoic acid receptor (RAR) and retinoid X receptor (RXR). The inability of all-trans RA to bind to RXR suggests that it may be metabolized to a more active high affinity ligand. We report here an experimental approach that has identified 9-cis RA as an RXR ligand. It is up to 40-fold more potent than all-trans RA in transfection assays and binds with high affinity. The production of 9-cis RA in cultured cells and the identification of this molecule in liver and kidney demonstrates the existence of this molecule in living organisms. The discovery of this novel hormone points to the key role retinoid metabolism may have in generating new signaling pathways.
Collapse
|
|
33 |
1330 |
9
|
Repa JJ, Liang G, Ou J, Bashmakov Y, Lobaccaro JM, Shimomura I, Shan B, Brown MS, Goldstein JL, Mangelsdorf DJ. Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors, LXRalpha and LXRbeta. Genes Dev 2000; 14:2819-30. [PMID: 11090130 PMCID: PMC317055 DOI: 10.1101/gad.844900] [Citation(s) in RCA: 1328] [Impact Index Per Article: 53.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The liver X receptors (LXRs) are members of the nuclear hormone receptor superfamily that are bound and activated by oxysterols. These receptors serve as sterol sensors to regulate the transcription of gene products that control intracellular cholesterol homeostasis through catabolism and transport. In this report, we describe a novel LXR target, the sterol regulatory element-binding protein-1c gene (SREBP-1c), which encodes a membrane-bound transcription factor of the basic helix-loop-helix-leucine zipper family. SREBP-1c expression was markedly increased in mouse tissues in an LXR-dependent manner by dietary cholesterol and synthetic agonists for both LXR and its heterodimer partner, the retinoid X receptor (RXR). Expression of the related gene products, SREBP-1a and SREBP-2, were not increased. Analysis of the mouse SREBP-1c gene promoter revealed an RXR/LXR DNA-binding site that is essential for this regulation. The transcriptional increase in SREBP-1c mRNA by RXR/LXR was accompanied by a similar increase in the level of the nuclear, active form of the SREBP-1c protein and an increase in fatty acid synthesis. Because this active form of SREBP-1c controls the transcription of genes involved in fatty acid biosynthesis, our results reveal a unique regulatory interplay between cholesterol and fatty acid metabolism.
Collapse
MESH Headings
- Animals
- Base Sequence
- CCAAT-Enhancer-Binding Proteins/genetics
- Cholesterol/metabolism
- Cholesterol, Dietary/metabolism
- DNA-Binding Proteins/genetics
- Dimerization
- Fatty Acids/metabolism
- Lipid Metabolism
- Liver X Receptors
- Male
- Mice
- Mice, Knockout
- Molecular Sequence Data
- Orphan Nuclear Receptors
- Receptors, Cytoplasmic and Nuclear/agonists
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Retinoic Acid/agonists
- Receptors, Retinoic Acid/metabolism
- Receptors, Steroid/agonists
- Receptors, Steroid/metabolism
- Receptors, Thyroid Hormone/agonists
- Receptors, Thyroid Hormone/metabolism
- Response Elements
- Retinoid X Receptors
- Sterol Regulatory Element Binding Protein 1
- Sterols/metabolism
- Transcription Factors/agonists
- Transcription Factors/genetics
- Up-Regulation
Collapse
|
research-article |
25 |
1328 |
10
|
Inagaki T, Dutchak P, Zhao G, Ding X, Gautron L, Parameswara V, Li Y, Goetz R, Mohammadi M, Esser V, Elmquist JK, Gerard RD, Burgess SC, Hammer RE, Mangelsdorf DJ, Kliewer SA. Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21. Cell Metab 2007; 5:415-25. [PMID: 17550777 DOI: 10.1016/j.cmet.2007.05.003] [Citation(s) in RCA: 1226] [Impact Index Per Article: 68.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Revised: 03/28/2007] [Accepted: 05/03/2007] [Indexed: 12/14/2022]
Abstract
Peroxisome proliferator-activated receptor alpha (PPARalpha) regulates the utilization of fat as an energy source during starvation and is the molecular target for the fibrate dyslipidemia drugs. Here, we identify the endocrine hormone fibroblast growth factor 21 (FGF21) as a mediator of the pleiotropic actions of PPARalpha. FGF21 is induced directly by PPARalpha in liver in response to fasting and PPARalpha agonists. FGF21 in turn stimulates lipolysis in white adipose tissue and ketogenesis in liver. FGF21 also reduces physical activity and promotes torpor, a short-term hibernation-like state of regulated hypothermia that conserves energy. These findings demonstrate an unexpected role for the PPARalpha-FGF21 endocrine signaling pathway in regulating diverse metabolic and behavioral aspects of the adaptive response to starvation.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
1226 |
11
|
Peet DJ, Turley SD, Ma W, Janowski BA, Lobaccaro JM, Hammer RE, Mangelsdorf DJ. Cholesterol and bile acid metabolism are impaired in mice lacking the nuclear oxysterol receptor LXR alpha. Cell 1998; 93:693-704. [PMID: 9630215 DOI: 10.1016/s0092-8674(00)81432-4] [Citation(s) in RCA: 1142] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
We demonstrate that mice lacking the oxysterol receptor, LXR alpha, lose their ability to respond normally to dietary cholesterol and are unable to tolerate any amount of cholesterol in excess of that which they synthesize de novo. When fed diets containing cholesterol, LXR alpha (-/-) mice fail to induce transcription of the gene encoding cholesterol 7alpha-hydroxylase (Cyp7a), the rate-limiting enzyme in bile acid synthesis. This defect is associated with a rapid accumulation of large amounts of cholesterol in the liver that eventually leads to impaired hepatic function. The regulation of several other crucial lipid metabolizing genes is also altered in LXR alpha (-/-) mice. These results demonstrate the existence of a physiologically significant feed-forward regulatory pathway for sterol metabolism and establish the role of LXR alpha as the major sensor of dietary cholesterol.
Collapse
|
|
27 |
1142 |
12
|
Lu TT, Makishima M, Repa JJ, Schoonjans K, Kerr TA, Auwerx J, Mangelsdorf DJ. Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors. Mol Cell 2000; 6:507-15. [PMID: 11030331 DOI: 10.1016/s1097-2765(00)00050-2] [Citation(s) in RCA: 1127] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The catabolism of cholesterol into bile acids is regulated by oxysterols and bile acids, which induce or repress transcription of the pathway's rate-limiting enzyme cholesterol 7alpha-hydroxylase (CYP7A1). The nuclear receptor LXRalpha binds oxysterols and mediates feed-forward induction. Here, we show that repression is coordinately regulated by a triumvirate of nuclear receptors, including the bile acid receptor, FXR; the promoter-specific activator, LRH-1; and the promoter-specific repressor, SHP. Feedback repression of CYP7A1 is accomplished by the binding of bile acids to FXR, which leads to transcription of SHP. Elevated SHP protein then inactivates LRH-1 by forming a heterodimeric complex that leads to promoter-specific repression of both CYP7A1 and SHP. These results reveal an elaborate autoregulatory cascade mediated by nuclear receptors for the maintenance of hepatic cholesterol catabolism.
Collapse
|
|
25 |
1127 |
13
|
Mangelsdorf DJ, Ong ES, Dyck JA, Evans RM. Nuclear receptor that identifies a novel retinoic acid response pathway. Nature 1990; 345:224-9. [PMID: 2159111 DOI: 10.1038/345224a0] [Citation(s) in RCA: 1107] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Molecular cloning and transcriptional activation studies have revealed a new protein similar to the steroid hormone receptors and which responds specifically to vitamin A metabolites. This protein is substantially different in primary structure and ligand specificity from the products of the previously described retinoic acid receptor gene family. By indicating the existence of an additional pathway through which retinoic acid may exert its effects, these data lead to a re-evaluation of retinoid physiology.
Collapse
|
Comparative Study |
35 |
1107 |
14
|
Kliewer SA, Umesono K, Mangelsdorf DJ, Evans RM. Retinoid X receptor interacts with nuclear receptors in retinoic acid, thyroid hormone and vitamin D3 signalling. Nature 1992; 355:446-9. [PMID: 1310351 PMCID: PMC6159885 DOI: 10.1038/355446a0] [Citation(s) in RCA: 1099] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cellular responsiveness to retinoic acid and its metabolites is conferred through two structurally and pharmacologically distinct families of receptors: the retinoic acid receptors (RAR) and the retinoid X receptors (RXR). Here we report that the transcriptional activity of RAR and RXR can be reciprocally modulated by direct interactions between the two proteins. RAR and RXR have a high degree of cooperativity in binding to target DNA, consistent with previous reports indicating that the binding of either RAR or RXR to their cognate response elements is enhanced by factors present in nuclear extracts. RXR also interacts directly with and enhances the binding of nuclear receptors conferring responsiveness to vitamin D3 and thyroid hormone T3; the DNA-binding activities of these receptors are also stimulated by the presence of nuclear extracts. Together these data indicate that RXR has a central role in multiple hormonal signalling pathways.
Collapse
|
research-article |
33 |
1099 |
15
|
Kliewer SA, Forman BM, Blumberg B, Ong ES, Borgmeyer U, Mangelsdorf DJ, Umesono K, Evans RM. Differential expression and activation of a family of murine peroxisome proliferator-activated receptors. Proc Natl Acad Sci U S A 1994; 91:7355-9. [PMID: 8041794 PMCID: PMC44398 DOI: 10.1073/pnas.91.15.7355] [Citation(s) in RCA: 1075] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
To gain insight into the function of peroxisome proliferator-activated receptor (PPAR) isoforms in mammals, we have cloned and characterized two PPAR alpha-related cDNAs (designated PPAR gamma and -delta, respectively) from mouse. The three PPAR isoforms display widely divergent patterns of expression during embryogenesis and in the adult. Surprisingly, PPAR gamma and -delta are not activated by pirinixic acid (Wy 14,643), a potent peroxisome proliferator and activator of PPAR alpha. However, PPAR gamma and -delta are activated by the structurally distinct peroxisome proliferator LY-171883 and linoleic acid, respectively, indicating that each of the isoforms can act as a regulated activator of transcription. These data suggest that tissue-specific responsiveness to peroxisome proliferators, including certain fatty acids, is in part a consequence of differential expression of multiple, pharmacologically distinct PPAR isoforms.
Collapse
|
research-article |
31 |
1075 |
16
|
Watanabe M, Houten SM, Wang L, Moschetta A, Mangelsdorf DJ, Heyman RA, Moore DD, Auwerx J. Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c. J Clin Invest 2004; 113:1408-18. [PMID: 15146238 PMCID: PMC406532 DOI: 10.1172/jci21025] [Citation(s) in RCA: 1006] [Impact Index Per Article: 47.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2004] [Accepted: 03/23/2004] [Indexed: 12/11/2022] Open
Abstract
We explored the effects of bile acids on triglyceride (TG) homeostasis using a combination of molecular, cellular, and animal models. Cholic acid (CA) prevents hepatic TG accumulation, VLDL secretion, and elevated serum TG in mouse models of hypertriglyceridemia. At the molecular level, CA decreases hepatic expression of SREBP-1c and its lipogenic target genes. Through the use of mouse mutants for the short heterodimer partner (SHP) and liver X receptor (LXR) alpha and beta, we demonstrate the critical dependence of the reduction of SREBP-1c expression by either natural or synthetic farnesoid X receptor (FXR) agonists on both SHP and LXR alpha and LXR beta. These results suggest that strategies aimed at increasing FXR activity and the repressive effects of SHP should be explored to correct hypertriglyceridemia.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
1006 |
17
|
Joseph SB, Castrillo A, Laffitte BA, Mangelsdorf DJ, Tontonoz P. Reciprocal regulation of inflammation and lipid metabolism by liver X receptors. Nat Med 2003; 9:213-9. [PMID: 12524534 DOI: 10.1038/nm820] [Citation(s) in RCA: 990] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2002] [Accepted: 12/20/2002] [Indexed: 02/08/2023]
Abstract
Macrophages have important roles in both lipid metabolism and inflammation and are central to the pathogenesis of atherosclerosis. The liver X receptors (LXRs) are established mediators of lipid-inducible gene expression, but their role in inflammation and immunity is unknown. We demonstrate here that LXRs and their ligands are negative regulators of macrophage inflammatory gene expression. Transcriptional profiling of lipopolysaccharide (LPS)-induced macrophages reveals reciprocal LXR-dependent regulation of genes involved in lipid metabolism and the innate immune response. In vitro, LXR ligands inhibit the expression of inflammatory mediators such as inducible nitric oxide synthase, cyclooxygenase (COX)-2 and interleukin-6 (IL-6) in response to bacterial infection or LPS stimulation. In vivo, LXR agonists reduce inflammation in a model of contact dermatitis and inhibit inflammatory gene expression in the aortas of atherosclerotic mice. These findings identify LXRs as lipid-dependent regulators of inflammatory gene expression that may serve to link lipid metabolism and immune functions in macrophages.
Collapse
|
|
22 |
990 |
18
|
Repa JJ, Turley SD, Lobaccaro JA, Medina J, Li L, Lustig K, Shan B, Heyman RA, Dietschy JM, Mangelsdorf DJ. Regulation of absorption and ABC1-mediated efflux of cholesterol by RXR heterodimers. Science 2000; 289:1524-9. [PMID: 10968783 DOI: 10.1126/science.289.5484.1524] [Citation(s) in RCA: 973] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Several nuclear hormone receptors involved in lipid metabolism form obligate heterodimers with retinoid X receptors (RXRs) and are activated by RXR agonists such as rexinoids. Animals treated with rexinoids exhibited marked changes in cholesterol balance, including inhibition of cholesterol absorption and repressed bile acid synthesis. Studies with receptor-selective agonists revealed that oxysterol receptors (LXRs) and the bile acid receptor (FXR) are the RXR heterodimeric partners that mediate these effects by regulating expression of the reverse cholesterol transporter, ABC1, and the rate-limiting enzyme of bile acid synthesis, CYP7A1, respectively. Thus, these RXR heterodimers serve as key regulators of cholesterol homeostasis by governing reverse cholesterol transport from peripheral tissues, bile acid synthesis in liver, and cholesterol absorption in intestine.
Collapse
MESH Headings
- ATP Binding Cassette Transporter 1
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/metabolism
- Animals
- Bile Acids and Salts/biosynthesis
- Biological Transport/drug effects
- Cholesterol/metabolism
- Cholesterol 7-alpha-Hydroxylase/metabolism
- Cholesterol, Dietary/administration & dosage
- Cricetinae
- DNA-Binding Proteins/metabolism
- Dimerization
- Gene Expression Regulation/drug effects
- Glycoproteins/genetics
- Glycoproteins/metabolism
- Homeostasis/drug effects
- Intestinal Absorption/drug effects
- Intestine, Small/metabolism
- Ligands
- Liver/metabolism
- Liver X Receptors
- Macrophages, Peritoneal/metabolism
- Male
- Mesocricetus
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Orphan Nuclear Receptors
- Receptors, Cytoplasmic and Nuclear
- Receptors, Retinoic Acid/agonists
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Receptors, Thyroid Hormone/agonists
- Receptors, Thyroid Hormone/genetics
- Receptors, Thyroid Hormone/metabolism
- Retinoid X Receptors
- Transcription Factors/agonists
- Transcription Factors/metabolism
Collapse
|
|
25 |
973 |
19
|
Mangelsdorf DJ, Borgmeyer U, Heyman RA, Zhou JY, Ong ES, Oro AE, Kakizuka A, Evans RM. Characterization of three RXR genes that mediate the action of 9-cis retinoic acid. Genes Dev 1992; 6:329-44. [PMID: 1312497 DOI: 10.1101/gad.6.3.329] [Citation(s) in RCA: 900] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
An understanding of the differences and similarities of the retinoid X receptor (RXR) and retinoic acid receptor (RAR) systems requires knowledge of the diversity of their family members, their patterns of expression, and their pharmacological response to ligands. In this paper we report the isolation of a family of mouse RXR genes encoding three distinct receptors (RXR alpha, beta, and gamma). They are closely related to each other in their DNA- and ligand-binding domains but are quite divergent from the RAR subfamily in both structure and ligand specificity. Recently, we demonstrated that all-trans retinoic acid (RA) serves as a "pro-hormone" to the isomer 9-cis RA, which is a high-affinity ligand for the human RXR alpha. We extend those findings to show that 9-cis RA is also "retinoid X" for mouse RXR alpha, beta, and gamma. Trans-activation analyses show that although all three RXRs respond to a variety of endogenous retinoids, 9-cis RA is their most potent ligand and is up to 40-fold more active than all-trans RA. Northern blot and in situ hybridization analyses define a broad spectrum of expression for the RXRs, which display unique patterns and only partially overlap themselves and the RARs. This study suggests that the RXR family plays critical roles in diverse aspects of development, from embryo implantation to organogenesis and central nervous system differentiation, as well as in adult physiology.
Collapse
|
|
33 |
900 |
20
|
Inagaki T, Moschetta A, Lee YK, Peng L, Zhao G, Downes M, Yu RT, Shelton JM, Richardson JA, Repa JJ, Mangelsdorf DJ, Kliewer SA. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. Proc Natl Acad Sci U S A 2006; 103:3920-5. [PMID: 16473946 PMCID: PMC1450165 DOI: 10.1073/pnas.0509592103] [Citation(s) in RCA: 867] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Obstruction of bile flow results in bacterial proliferation and mucosal injury in the small intestine that can lead to the translocation of bacteria across the epithelial barrier and systemic infection. These adverse effects of biliary obstruction can be inhibited by administration of bile acids. Here we show that the farnesoid X receptor (FXR), a nuclear receptor for bile acids, induces genes involved in enteroprotection and inhibits bacterial overgrowth and mucosal injury in ileum caused by bile duct ligation. Mice lacking FXR have increased ileal levels of bacteria and a compromised epithelial barrier. These findings reveal a central role for FXR in protecting the distal small intestine from bacterial invasion and suggest that FXR agonists may prevent epithelial deterioration and bacterial translocation in patients with impaired bile flow.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
867 |
21
|
Makishima M, Lu TT, Xie W, Whitfield GK, Domoto H, Evans RM, Haussler MR, Mangelsdorf DJ. Vitamin D receptor as an intestinal bile acid sensor. Science 2002; 296:1313-6. [PMID: 12016314 DOI: 10.1126/science.1070477] [Citation(s) in RCA: 852] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The vitamin D receptor (VDR) mediates the effects of the calcemic hormone 1alpha,25-dihydroxyvitamin D3 [1,25(OH)2D3]. We show that VDR also functions as a receptor for the secondary bile acid lithocholic acid (LCA), which is hepatotoxic and a potential enteric carcinogen. VDR is an order of magnitude more sensitive to LCA and its metabolites than are other nuclear receptors. Activation of VDR by LCA or vitamin D induced expression in vivo of CYP3A, a cytochrome P450 enzyme that detoxifies LCA in the liver and intestine. These studies offer a mechanism that may explain the proposed protective effects of vitamin D and its receptor against colon cancer.
Collapse
MESH Headings
- Animals
- Aryl Hydrocarbon Hydroxylases
- Binding, Competitive
- COS Cells
- Cell Line
- Colonic Neoplasms/prevention & control
- Cytochrome P-450 CYP3A
- Cytochrome P-450 Enzyme System/genetics
- Cytochrome P-450 Enzyme System/metabolism
- DNA-Binding Proteins/metabolism
- Dimerization
- Gene Expression Regulation, Enzymologic
- Histone Acetyltransferases
- Humans
- Intestine, Small/metabolism
- Ligands
- Lithocholic Acid/analogs & derivatives
- Lithocholic Acid/metabolism
- Lithocholic Acid/pharmacology
- Male
- Mice
- Nuclear Receptor Coactivator 1
- Oxidoreductases, N-Demethylating/genetics
- Oxidoreductases, N-Demethylating/metabolism
- Pregnane X Receptor
- Promoter Regions, Genetic
- Rats
- Receptors, Calcitriol/agonists
- Receptors, Calcitriol/genetics
- Receptors, Calcitriol/metabolism
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Steroid/metabolism
- Transcription Factors/metabolism
- Transfection
Collapse
|
|
23 |
852 |
22
|
Willy PJ, Umesono K, Ong ES, Evans RM, Heyman RA, Mangelsdorf DJ. LXR, a nuclear receptor that defines a distinct retinoid response pathway. Genes Dev 1995; 9:1033-45. [PMID: 7744246 DOI: 10.1101/gad.9.9.1033] [Citation(s) in RCA: 852] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have identified a new retinoid response pathway through which 9-cis retinoic acid (9cRA) activates transcription in the presence of LXR alpha, a member of the nuclear receptor superfamily. LXR alpha shows a specific pattern of expression in visceral organs, thereby restricting the response to certain tissues. Retinoid trans-activation occurs selectively on a distinct response element termed an LXRE. Significantly, neither RXR homodimers nor RXR/RAR heterodimers are able to substitute for LXR alpha in mediating this retinoid response. We provide evidence that the retinoid response on the LXRE is the result of a unique interaction between LXR alpha and endogenous RXR, which, unlike in the RXR/RAR heterodimer, makes RXR competent to respond to retinoids. Thus, the interaction with LXR alpha shifts RXR from its role described previously as a silent, DNA-binding partner to an active ligand-binding subunit in mediating retinoid responses through target genes defined by LXREs.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Binding Sites
- Cloning, Molecular
- DNA/metabolism
- DNA-Binding Proteins
- Gene Expression Regulation, Developmental
- Humans
- Ligands
- Liver X Receptors
- Mice
- Molecular Sequence Data
- Nuclear Proteins/metabolism
- Organ Specificity
- Orphan Nuclear Receptors
- Promoter Regions, Genetic/genetics
- RNA, Messenger/analysis
- Rats
- Receptors, Cytoplasmic and Nuclear/chemistry
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Retinoic Acid/metabolism
- Repetitive Sequences, Nucleic Acid/genetics
- Retinoid X Receptors
- Sequence Analysis, DNA
- Signal Transduction/physiology
- Transcription Factors/metabolism
- Transcriptional Activation/physiology
- Tretinoin/metabolism
Collapse
|
|
30 |
852 |
23
|
Evans RM, Mangelsdorf DJ. Nuclear Receptors, RXR, and the Big Bang. Cell 2014; 157:255-66. [PMID: 24679540 DOI: 10.1016/j.cell.2014.03.012] [Citation(s) in RCA: 847] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 03/11/2014] [Indexed: 12/15/2022]
Abstract
Isolation of genes encoding the receptors for steroids, retinoids, vitamin D, and thyroid hormone and their structural and functional analysis revealed an evolutionarily conserved template for nuclear hormone receptors. This discovery sparked identification of numerous genes encoding related proteins, termed orphan receptors. Characterization of these orphan receptors and, in particular, of the retinoid X receptor (RXR) positioned nuclear receptors at the epicenter of the "Big Bang" of molecular endocrinology. This Review provides a personal perspective on nuclear receptors and explores their integrated and coordinated signaling networks that are essential for multicellular life, highlighting the RXR heterodimer and its associated ligands and transcriptional mechanism.
Collapse
|
Review |
11 |
847 |
24
|
Bookout AL, Jeong Y, Downes M, Yu RT, Evans RM, Mangelsdorf DJ. Anatomical profiling of nuclear receptor expression reveals a hierarchical transcriptional network. Cell 2006; 126:789-99. [PMID: 16923397 PMCID: PMC6211849 DOI: 10.1016/j.cell.2006.06.049] [Citation(s) in RCA: 781] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Revised: 03/30/2006] [Accepted: 06/09/2006] [Indexed: 01/11/2023]
Abstract
In multicellular organisms, the ability to regulate reproduction, development, and nutrient utilization coincided with the evolution of nuclear receptors (NRs), transcription factors that utilize lipophilic ligands to mediate their function. Studying the expression profile of NRs offers a simple, powerful way to obtain highly relational information about their physiologic functions as individual proteins and as a superfamily. We surveyed the expression of all 49 mouse NR mRNAs in 39 tissues, representing diverse anatomical systems. The resulting data set uncovers several NR clades whose patterns of expression indicate their ability to coordinate the transcriptional programs necessary to affect distinct physiologic pathways. Remarkably, this regulatory network divides along the following two physiologic paradigms: (1) reproduction, development, and growth and (2) nutrient uptake, metabolism, and excretion. These data reveal a hierarchical transcriptional circuitry that extends beyond individual tissues to form a meganetwork governing physiology on an organismal scale.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
781 |
25
|
Janowski BA, Grogan MJ, Jones SA, Wisely GB, Kliewer SA, Corey EJ, Mangelsdorf DJ. Structural requirements of ligands for the oxysterol liver X receptors LXRalpha and LXRbeta. Proc Natl Acad Sci U S A 1999; 96:266-71. [PMID: 9874807 PMCID: PMC15128 DOI: 10.1073/pnas.96.1.266] [Citation(s) in RCA: 751] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
LXRalpha and -beta are nuclear receptors that regulate the metabolism of several important lipids, including cholesterol and bile acids. Previously, we have proposed that LXRs regulate these pathways through their interaction with specific, naturally occurring oxysterols, including 22(R)-hydroxycholesterol, 24(S)-hydroxycholesterol, and 24(S),25-epoxycholesterol. Using a ligand binding assay that incorporates scintillation proximity technology to circumvent many of the problems associated with assaying extremely hydrophobic ligands, we now demonstrate that these oxysterols bind directly to LXRs at concentrations that occur in vivo. To characterize further the structural determinants required for potent LXR ligands, we synthesized and tested a series of related compounds for binding to LXRs and activation of transcription. These studies revealed that position-specific monooxidation of the sterol side chain is requisite for LXR high-affinity binding and activation. Enhanced binding and activation can also be achieved through the use of 24-oxo ligands that act as hydrogen bond acceptors in the side chain. In addition, introduction of an oxygen on the sterol B-ring results in a ligand with LXRalpha-subtype selectivity. These results support the hypothesis that naturally occurring oxysterols are physiological ligands for LXRs and show that a rational, structure-based approach can be used to design potent LXR ligands for pharmacologic use.
Collapse
|
research-article |
26 |
751 |