1
|
Bauernfeind FG, Horvath G, Stutz A, Alnemri ES, MacDonald K, Speert D, Fernandes-Alnemri T, Wu J, Monks BG, Fitzgerald KA, Hornung V, Latz E. Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. THE JOURNAL OF IMMUNOLOGY 2009; 183:787-91. [PMID: 19570822 DOI: 10.4049/jimmunol.0901363] [Citation(s) in RCA: 2286] [Impact Index Per Article: 142.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The IL-1 family cytokines are regulated on transcriptional and posttranscriptional levels. Pattern recognition and cytokine receptors control pro-IL-1beta transcription whereas inflammasomes regulate the proteolytic processing of pro-IL-1beta. The NLRP3 inflammasome, however, assembles in response to extracellular ATP, pore-forming toxins, or crystals only in the presence of proinflammatory stimuli. How the activation of gene transcription by signaling receptors enables NLRP3 activation remains elusive and controversial. In this study, we show that cell priming through multiple signaling receptors induces NLRP3 expression, which we identified to be a critical checkpoint for NLRP3 activation. Signals provided by NF-kappaB activators are necessary but not sufficient for NLRP3 activation, and a second stimulus such as ATP or crystal-induced damage is required for NLRP3 activation.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
2286 |
2
|
Smith EE, Buckley DG, Wu Z, Saenphimmachak C, Hoffman LR, D’Argenio DA, Miller SI, Ramsey BW, Speert DP, Moskowitz SM, Burns JL, Kaul R, Olson MV. Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc Natl Acad Sci U S A 2006; 103:8487-92. [PMID: 16687478 PMCID: PMC1482519 DOI: 10.1073/pnas.0602138103] [Citation(s) in RCA: 1025] [Impact Index Per Article: 53.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In many human infections, hosts and pathogens coexist for years or decades. Important examples include HIV, herpes viruses, tuberculosis, leprosy, and malaria. With the exception of intensively studied viral infections such as HIV/AIDs, little is known about the extent to which the clonal expansion that occurs during long-term infection by pathogens involves important genetic adaptations. We report here a detailed, whole-genome analysis of one such infection, that of a cystic fibrosis (CF) patient by the opportunistic bacterial pathogen Pseudomonas aeruginosa. The bacteria underwent numerous genetic adaptations during 8 years of infection, as evidenced by a positive-selection signal across the genome and an overwhelming signal in specific genes, several of which are mutated during the course of most CF infections. Of particular interest is our finding that virulence factors that are required for the initiation of acute infections are often selected against during chronic infections. It is apparent that the genotypes of the P. aeruginosa strains present in advanced CF infections differ systematically from those of "wild-type" P. aeruginosa and that these differences may offer new opportunities for treatment of this chronic disease.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
1025 |
3
|
Hancock RE, Mutharia LM, Chan L, Darveau RP, Speert DP, Pier GB. Pseudomonas aeruginosa isolates from patients with cystic fibrosis: a class of serum-sensitive, nontypable strains deficient in lipopolysaccharide O side chains. Infect Immun 1983; 42:170-7. [PMID: 6413410 PMCID: PMC264539 DOI: 10.1128/iai.42.1.170-177.1983] [Citation(s) in RCA: 330] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Twenty-six Pseudomonas aeruginosa strains from patients with cystic fibrosis were typed by the Fisher immunotyping scheme. Only 6 strains were agglutinated by a single typing serum, whereas 15 strains were agglutinated with more than one serum and 5 were not agglutinated by any serum. Neither the polyagglutinable nor the nonagglutinable strains were typable by hemagglutination inhibition or immunodiffusion, suggesting that these polyagglutinable strains did not express multiple serotype antigens, but were instead being agglutinated by antibody to nonserotype determinants. Four typable isolates were resistant to pooled normal human serum, whereas the 12 polyagglutinable and nonagglutinable isolates studied were very sensitive to normal human serum. The outer membranes of 16 strains were isolated and characterized. The data suggested, in general, strong conservation of outer membrane protein patterns. Lipopolysaccharides (LPS) were purified by a new technique which allowed isolation of both rough and smooth LPS in high yields. Three of four typable, serum-resistant strains examined had amounts of smooth, O-antigen-containing LPS equivalent to our laboratory wild type, P. aeruginosa PAO1 strain H103. In contrast, 10 of 12 polyagglutinable or nonagglutinable, serum-sensitive strains had very little or no smooth, O-antigen-containing LPS, and the other two contained less smooth LPS than our wild-type strain H103. In agreement with this data, five independent, rough, LPS O-antigen-deficient mutants of strain H103 were nontypable and serum sensitive. We suggest that the LPS defects described here represent a significant new property of many P. aeruginosa strains associated with cystic fibrosis.
Collapse
|
research-article |
42 |
330 |
4
|
Hancock REW, Speert DP. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and impact on treatment. Drug Resist Updat 2000; 3:247-255. [PMID: 11498392 DOI: 10.1054/drup.2000.0152] [Citation(s) in RCA: 311] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pseudomonas aeruginosa continues to be a major cause of infections in Western society, in part because of its high intrinsic resistance to antibiotics. It has been demonstrated that this intrinsic resistance arises from the combination of unusually restricted outer-membrane permeability and secondary resistance mechanisms such as energy-dependent multidrug efflux and chromosomally encoded periplasmic beta-lactamase. Given this high level of natural resistance, mutational resistance to most classes of antibiotics can readily arise. In this review we summarize new insights into the mechanisms of resistance, and describe therapeutic approaches that can be used in the face of this continuing resistance threat, as well as new approaches that are being developed to combat resistance. Copyright 2000 Harcourt Publishers Ltd.
Collapse
|
|
25 |
311 |
5
|
Picard C, von Bernuth H, Ghandil P, Chrabieh M, Levy O, Arkwright PD, McDonald D, Geha RS, Takada H, Krause JC, Creech CB, Ku CL, Ehl S, Maŕodi Ĺ, Al-Muhsen S, Al-Hajjar S, Al-Ghonaium A, Day-Good NK, Holland SM, Gallin J, Chapel H, Speert DP, Rodriguez-Gallego C, Colino E, Garty BZ, Roifman C, Hara T, Yoshikawa H, Nonoyama S, Domachowske J, Issekutz AC, Tang M, Smart J, Zitnik SE, Hoarau C, Kumararatne D, Thrasher A, Davies EG, Bethune C, Sirvent N, de Ricaud D, Camcioglu Y, Vasconcelos J, Guedes M, Vitor AB, Rodrigo C, AlmaŸan F, Ḿendez M, Aŕostegui JI, Alsina L, Fortuny C, Reichenbach J, Verbsky JW, Bossuyt X, Doffinger R, Abel L, Puel A, Casanova JL. Clinical features and outcome of patients with IRAK-4 and MyD88 deficiency. Medicine (Baltimore) 2010; 89:403-425. [PMID: 21057262 PMCID: PMC3103888 DOI: 10.1097/md.0b013e3181fd8ec3] [Citation(s) in RCA: 309] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Autosomal recessive interleukin-1 receptor-associated kinase (IRAK)-4 and myeloid differentiation factor (MyD)88 deficiencies impair Toll-like receptor (TLR)- and interleukin-1 receptor-mediated immunity. We documented the clinical features and outcome of 48 patients with IRAK-4 deficiency and 12 patients with MyD88 deficiency, from 37 kindreds in 15 countries.The clinical features of IRAK-4 and MyD88 deficiency were indistinguishable. There were no severe viral, parasitic, and fungal diseases, and the range of bacterial infections was narrow. Noninvasive bacterial infections occurred in 52 patients, with a high incidence of infections of the upper respiratory tract and the skin, mostly caused by Pseudomonas aeruginosa and Staphylococcus aureus, respectively. The leading threat was invasive pneumococcal disease, documented in 41 patients (68%) and causing 72 documented invasive infections (52.2%). P. aeruginosa and Staph. aureus documented invasive infections also occurred (16.7% and 16%, respectively, in 13 and 13 patients, respectively). Systemic signs of inflammation were usually weak or delayed. The first invasive infection occurred before the age of 2 years in 53 (88.3%) and in the neonatal period in 19 (32.7%) patients. Multiple or recurrent invasive infections were observed in most survivors (n = 36/50, 72%).Clinical outcome was poor, with 24 deaths, in 10 cases during the first invasive episode and in 16 cases of invasive pneumococcal disease. However, no death and invasive infectious disease were reported in patients after the age of 8 years and 14 years, respectively. Antibiotic prophylaxis (n = 34), antipneumococcal vaccination (n = 31), and/or IgG infusion (n = 19), when instituted, had a beneficial impact on patients until the teenage years, with no seemingly detectable impact thereafter.IRAK-4 and MyD88 deficiencies predispose patients to recurrent life-threatening bacterial diseases, such as invasive pneumococcal disease in particular, in infancy and early childhood, with weak signs of inflammation. Patients and families should be informed of the risk of developing life-threatening infections; empiric antibacterial treatment and immediate medical consultation are strongly recommended in cases of suspected infection or moderate fever. Prophylactic measures in childhood are beneficial, until spontaneous improvement occurs in adolescence.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
309 |
6
|
Davidson DJ, Currie AJ, Reid GSD, Bowdish DME, MacDonald KL, Ma RC, Hancock REW, Speert DP. The cationic antimicrobial peptide LL-37 modulates dendritic cell differentiation and dendritic cell-induced T cell polarization. THE JOURNAL OF IMMUNOLOGY 2004; 172:1146-56. [PMID: 14707090 DOI: 10.4049/jimmunol.172.2.1146] [Citation(s) in RCA: 301] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Dendritic cells (DC) are instrumental in orchestrating an appropriately polarized Th cell response to pathogens. DC exhibit considerable phenotypic and functional plasticity, influenced by lineage, Ag engagement, and the environment in which they develop and mature. In this study, we identify the human cationic peptide LL-37, found in abundance at sites of inflammation, as a potent modifier of DC differentiation, bridging innate and adaptive immune responses. LL-37-derived DC displayed significantly up-regulated endocytic capacity, modified phagocytic receptor expression and function, up-regulated costimulatory molecule expression, enhanced secretion of Th-1 inducing cytokines, and promoted Th1 responses in vitro. LL-37 may be an attractive therapeutic candidate for manipulating T cell polarization by DC.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
301 |
7
|
Ku CL, von Bernuth H, Picard C, Zhang SY, Chang HH, Yang K, Chrabieh M, Issekutz AC, Cunningham CK, Gallin J, Holland SM, Roifman C, Ehl S, Smart J, Tang M, Barrat FJ, Levy O, McDonald D, Day-Good NK, Miller R, Takada H, Hara T, Al-Hajjar S, Al-Ghonaium A, Speert D, Sanlaville D, Li X, Geissmann F, Vivier E, Maródi L, Garty BZ, Chapel H, Rodriguez-Gallego C, Bossuyt X, Abel L, Puel A, Casanova JL. Selective predisposition to bacterial infections in IRAK-4-deficient children: IRAK-4-dependent TLRs are otherwise redundant in protective immunity. ACTA ACUST UNITED AC 2007; 204:2407-22. [PMID: 17893200 PMCID: PMC2118442 DOI: 10.1084/jem.20070628] [Citation(s) in RCA: 293] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Human interleukin (IL) 1 receptor–associated kinase 4 (IRAK-4) deficiency is a recently discovered primary immunodeficiency that impairs Toll/IL-1R immunity, except for the Toll-like receptor (TLR) 3– and TLR4–interferon (IFN)-a/b pathways. The clinical and immunological phenotype remains largely unknown. We diagnosed up to 28 patients with IRAK-4 deficiency, tested blood TLR responses for individual leukocyte subsets, and TLR responses for multiple cytokines. The patients' peripheral blood mononuclear cells (PBMCs) did not induce the 11 non-IFN cytokines tested upon activation with TLR agonists other than the nonspecific TLR3 agonist poly(I:C). The patients' individual cell subsets from both myeloid (granulocytes, monocytes, monocyte-derived dendritic cells [MDDCs], myeloid DCs [MDCs], and plasmacytoid DCs) and lymphoid (B, T, and NK cells) lineages did not respond to the TLR agonists that stimulated control cells, with the exception of residual responses to poly(I:C) and lipopolysaccharide in MDCs and MDDCs. Most patients (22 out of 28; 79%) suffered from invasive pneumococcal disease, which was often recurrent (13 out of 22; 59%). Other infections were rare, with the exception of severe staphylococcal disease (9 out of 28; 32%). Almost half of the patients died (12 out of 28; 43%). No death and no invasive infection occurred in patients older than 8 and 14 yr, respectively. The IRAK-4–dependent TLRs and IL-1Rs are therefore vital for childhood immunity to pyogenic bacteria, particularly Streptococcus pneumoniae. Conversely, IRAK-4–dependent human TLRs appear to play a redundant role in protective immunity to most infections, at most limited to childhood immunity to some pyogenic bacteria.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
293 |
8
|
Mahenthiralingam E, Campbell ME, Speert DP. Nonmotility and phagocytic resistance of Pseudomonas aeruginosa isolates from chronically colonized patients with cystic fibrosis. Infect Immun 1994; 62:596-605. [PMID: 8300217 PMCID: PMC186146 DOI: 10.1128/iai.62.2.596-605.1994] [Citation(s) in RCA: 287] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Although Pseudomonas aeruginosa chronically colonizes most older patients with cystic fibrosis (CF), bacterial features responsible for its persistence are understood poorly. We observed that many P. aeruginosa isolates from chronically colonized patients were nonmotile and resistant to phagocytosis by macrophages. P. aeruginosa isolates were collected from 20 CF patients for up to 10 years. Isolates from early colonization were highly motile and expressed both flagellin and pilin. However, many isolates from chronically colonized patients lacked flagellin expression and were nonmotile; a total of 1,030 P. aeruginosa CF isolates were examined, of which 39% were nonmotile. Moreover, sequential isolates recovered from several of the CF patients were consistently nonmotile for up to 10 years. Lack of motility was rare among environmental isolates (1.4%) and other clinical isolates (3.7%) of P. aeruginosa examined. Partial complementation of motility in nonmotile P. aeruginosa isolates was achieved by introduction of extra copies of the rpoN locus carried on plasmid pPT212, indicating that the alternate sigma factor, RpoN, may be involved in the coordinate regulation of virulence factors during CF infection. We hypothesize that the nonmotile phenotype may provide P. aeruginosa a survival advantage in chronic CF infection by enabling it to resist phagocytosis and conserve energy.
Collapse
|
research-article |
31 |
287 |
9
|
Mahenthiralingam E, Coenye T, Chung JW, Speert DP, Govan JR, Taylor P, Vandamme P. Diagnostically and experimentally useful panel of strains from the Burkholderia cepacia complex. J Clin Microbiol 2000; 38:910-3. [PMID: 10655415 PMCID: PMC86244 DOI: 10.1128/jcm.38.2.910-913.2000] [Citation(s) in RCA: 283] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two new species, Burkholderia multivorans and Burkholderia vietnamiensis, and three genomovars (genomovars I, III, and IV) currently constitute the Burkholderia cepacia complex. A panel of 30 well-characterized strains representative of each genomovar and new species was assembled to assist with identification, epidemiological analysis, and virulence studies on this important group of opportunistic pathogens.
Collapse
|
research-article |
25 |
283 |
10
|
Mahenthiralingam E, Campbell ME, Foster J, Lam JS, Speert DP. Random amplified polymorphic DNA typing of Pseudomonas aeruginosa isolates recovered from patients with cystic fibrosis. J Clin Microbiol 1996; 34:1129-35. [PMID: 8727889 PMCID: PMC228968 DOI: 10.1128/jcm.34.5.1129-1135.1996] [Citation(s) in RCA: 260] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Pseudomonas aeruginosa isolates recovered from chronically colonized patients with cystic fibrosis (CF) are phenotypically different from those collected from other patients or from the environment. To assess whether alterations in motility, mucoidy, and serum susceptibility represented an adaptation to chronic infection or replacement by a new strain, sequential P. aeruginosa isolates of known phenotype collected from 20 CF patients were typed by random amplified polymorphic DNA (RAPD) analysis. A total of 35 RAPD strain types were found among 385 isolates from 20 patients, and only two patients had P. aeruginosa strains of the same RAPD fingerprint. Eight strain pairs representative of the first eight RAPD types were also analyzed by SpeI macrorestriction followed by pulsed-field gel electrophoresis (PFGE); the strain types found by both fingerprinting techniques correlated exactly. In 11 of 20 patients, the RAPD types of serial P. aeruginosa isolates remained stable despite alterations in isolate motility, colonial morphology, and lipopolysaccharide phenotype. However, in isolates collected from one CF patient, a single band change in RAPD fingerprint and CeuI PFGE profile correlated with the appearance of an RpoN mutant phenotype, suggesting that the altered phenotype may have been due to a stable genomic rearrangement. Secretion of mucoid exopolysaccharide, loss of expression of RpoN-dependent surface factors, and acquisition of a serum-susceptible phenotype in P. aeruginosa appear to evolve during chronic colonization in CF patients from specific adaptation to infection rather than from acquisition of new bacterial strains.
Collapse
|
research-article |
29 |
260 |
11
|
Vanlaere E, Baldwin A, Gevers D, Henry D, De Brandt E, LiPuma JJ, Mahenthiralingam E, Speert DP, Dowson C, Vandamme P. Taxon K, a complex within the Burkholderia cepacia complex, comprises at least two novel species, Burkholderia contaminans sp. nov. and Burkholderia lata sp. nov. Int J Syst Evol Microbiol 2009; 59:102-11. [PMID: 19126732 DOI: 10.1099/ijs.0.001123-0] [Citation(s) in RCA: 223] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The aim of the present study was to re-examine the taxonomic position and structure of taxon K (also known as group K) within the Burkholderia cepacia complex (Bcc). For this purpose, a representative set of strains was examined by a traditional polyphasic taxonomic approach, by multilocus sequence typing (MLST) analysis and by analysis of available whole-genome sequences. Analysis of the recA gene sequence revealed three different lineages, designated recA-I, recA-II and recA-III. DNA-DNA hybridization experiments demonstrated that recA-I and recA-II isolates each represented a single novel species. However, DNA-DNA hybridization values of recA-II strains towards recA-III strains and among recA-III strains were at the threshold level for species delineation. By MLST, recA-I isolates were clearly distinguished from the others and represented a distinct lineage referred to as MLST-I, whereas recA-II and recA-III isolates formed a second MLST lineage referred to as MLST-II. A divergence value of 3.5 % was obtained when MLST-I was compared with MLST-II. The internal level of concatenated sequence divergence within MLST-I and MLST-II was 1.4 and 2.7 %, respectively; by comparison with the level of concatenated sequence divergence in established Bcc species, these data demonstrate that the MLST-I and MLST-II lineages represent two distinct species within the Bcc. The latter conclusion was supported by comparison of the whole-genome average nucleotide identity (ANI) level of MLST-I and MLST-II strains with strains of established Bcc species and by a whole-genome-based phylogenetic analysis. We formally propose to classify taxon K bacteria from the MLST-I and MLST-II lineages as Burkholderia contaminans sp. nov. (with strain J2956T =LMG 23361T =CCUG 55526T as the type strain) and Burkholderia lata sp. nov. (with strain 383T =ATCC 17760T =LMG 22485T =CCUG 55525T as the type strain), respectively. The MLST approach was confirmed as a valuable instrument in polyphasic taxonomic studies; more importantly, the cumulative data for about 1000 Bcc isolates analysed demonstrate that the 3 % concatenated sequence divergence level correlates with the 70 % DNA-DNA hybridization or 95 % whole-genome ANI threshold levels for species delineation.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
223 |
12
|
Yang K, Puel A, Zhang S, Eidenschenk C, Ku CL, Casrouge A, Picard C, von Bernuth H, Senechal B, Plancoulaine S, Al-Hajjar S, Al-Ghonaium A, Maródi L, Davidson D, Speert D, Roifman C, Garty BZ, Ozinsky A, Barrat FJ, Coffman RL, Miller RL, Li X, Lebon P, Rodriguez-Gallego C, Chapel H, Geissmann F, Jouanguy E, Casanova JL. Human TLR-7-, -8-, and -9-mediated induction of IFN-alpha/beta and -lambda Is IRAK-4 dependent and redundant for protective immunity to viruses. Immunity 2005; 23:465-78. [PMID: 16286015 PMCID: PMC7111074 DOI: 10.1016/j.immuni.2005.09.016] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Revised: 09/16/2005] [Accepted: 09/22/2005] [Indexed: 12/11/2022]
Abstract
Five TLRs are thought to play an important role in antiviral immunity, sensing viral products and inducing IFN-alpha/beta and -lambda. Surprisingly, patients with a defect of IRAK-4, a critical kinase downstream from TLRs, are resistant to common viruses. We show here that IFN-alpha/beta and -lambda induction via TLR-7, TLR-8, and TLR-9 was abolished in IRAK-4-deficient blood cells. In contrast, IFN-alpha/beta and -lambda were induced normally by TLR-3 and TLR-4 agonists. Moreover, IFN-beta and -lambda were normally induced by TLR-3 agonists and viruses in IRAK-4-deficient fibroblasts. We further show that IFN-alpha/beta and -lambda production in response to 9 of 11 viruses tested was normal or weakly affected in IRAK-4-deficient blood cells. Thus, IRAK-4-deficient patients may control viral infections by TLR-3- and TLR-4-dependent and/or TLR-independent production of IFNs. The TLR-7-, TLR-8-, and TLR-9-dependent induction of IFN-alpha/beta and -lambda is strictly IRAK-4 dependent and paradoxically redundant for protective immunity to most viruses in humans.
Collapse
|
research-article |
20 |
198 |
13
|
Speert DP, Henry D, Vandamme P, Corey M, Mahenthiralingam E. Epidemiology of Burkholderia cepacia complex in patients with cystic fibrosis, Canada. Emerg Infect Dis 2002; 8:181-7. [PMID: 11897071 PMCID: PMC3369581 DOI: 10.3201/eid0802.010163] [Citation(s) in RCA: 196] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The Burkholderia cepacia complex is an important group of pathogens in patients with cystic fibrosis (CF). Although evidence for patient-to-patient spread is clear, microbial factors facilitating transmission are poorly understood. To identify microbial clones with enhanced transmissibility, we evaluated B. cepacia complex isolates from patients with CF from throughout Canada. A total of 905 isolates from the B. cepacia complex were recovered from 447 patients in 8 of the 10 provinces; 369 (83%) of these patients had genomovar III and 43 (9.6%) had B. multivorans (genomovar II). Infection prevalence differed substantially by region (22% of patients in Ontario vs. 5% in Quebec). Results of typing by random amplified polymorphic DNA analysis or pulsed-field gel electrophoresis indicated that strains of B. cepacia complex from genomovar III are the most potentially transmissible and that the B. cepacia epidemic strain marker is a robust marker for transmissibility.
Collapse
|
research-article |
23 |
196 |
14
|
Mena A, Smith EE, Burns JL, Speert DP, Moskowitz SM, Perez JL, Oliver A. Genetic adaptation of Pseudomonas aeruginosa to the airways of cystic fibrosis patients is catalyzed by hypermutation. J Bacteriol 2008; 190:7910-7. [PMID: 18849421 PMCID: PMC2593214 DOI: 10.1128/jb.01147-08] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Accepted: 10/01/2008] [Indexed: 11/20/2022] Open
Abstract
In previous work (E. E. Smith, D. G. Buckley, Z. Wu, C. Saenphimmachack, L. R. Hoffman, D. A. D'Argenio, S. I. Miller, B. W. Ramsey, D. P. Speert, S. M. Moskowitz, J. L. Burns, R. Kaul, and M. V. Olson, Proc. Natl. Acad. Sci. USA 103:8487-8492, 2006) it was shown that Pseudomonas aeruginosa undergoes intense genetic adaptation during chronic respiratory infection (CRI) in cystic fibrosis (CF) patients. We used the same collection of isolates to explore the role of hypermutation in this process, since one of the hallmarks of CRI is the high prevalence of DNA mismatch repair (MMR) system-deficient mutator strains. The presence of mutations in 34 genes (many of them positively linked to adaptation in CF patients) in the study collection of 90 P. aeruginosa isolates obtained longitudinally from 29 CF patients was not homogeneous; on the contrary, mutations were significantly concentrated in the mutator lineages, which represented 17% of the isolates (87% MMR deficient). While sequential nonmutator lineages acquired a median of only 0.25 mutation per year of infection, mutator lineages accumulated more than 3 mutations per year. On the whole-genome scale, data for the first fully sequenced late CF isolate, which was also shown to be an MMR-deficient mutator, also support these findings. Moreover, for the first time the predicted amplification of mutator populations due to hitchhiking with adaptive mutations in the course of natural human infections is clearly documented. Interestingly, increased accumulation of mutations in mutator lineages was not a consequence of overrepresentation of mutations in genes involved in antimicrobial resistance, the only adaptive trait linked so far to hypermutation in CF patients, demonstrating that hypermutation also plays a major role in P. aeruginosa genome evolution and adaptation during CRI.
Collapse
|
research-article |
17 |
183 |
15
|
Hirakata Y, Srikumar R, Poole K, Gotoh N, Suematsu T, Kohno S, Kamihira S, Hancock REW, Speert DP. Multidrug efflux systems play an important role in the invasiveness of Pseudomonas aeruginosa. J Exp Med 2002; 196:109-18. [PMID: 12093875 PMCID: PMC2194012 DOI: 10.1084/jem.20020005] [Citation(s) in RCA: 177] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Pseudomonas aeruginosa is an important opportunistic human pathogen. Certain strains can transmigrate across epithelial cells, and their invasive phenotype is correlated with capacity to cause invasive human disease and fatal septicemia in mice. Four multidrug efflux systems have been described in P. aeruginosa, however, their contribution to virulence is unclear. To clarify the role of efflux systems in invasiveness, P. aeruginosa PAO1 wild-type (WT) and its efflux mutants were evaluated in a Madin-Darby canine kidney (MDCK) epithelial cell monolayer system and in a murine model of endogenous septicemia. All efflux mutants except a deltamexCD-oprJ deletion demonstrated significantly reduced invasiveness compared with WT. In particular, a deltamexAB-oprM deletion strain was compromised in its capacity to invade or transmigrate across MDCK cells, and could not kill mice, in contrast to WT which was highly invasive (P < 0.0006) and caused fatal infection (P < 0.0001). The other mutants, including deltamexB and deltamexXY mutants, were intermediate between WT and the deltamexAB-oprM mutant in invasiveness and murine virulence. Invasiveness was restored to the deltamexAB-oprM mutant by complementation with mexAB-oprM or by addition of culture supernatant from MDCK cells infected with WT. We conclude that the P. aeruginosa MexAB-OprM efflux system exports virulence determinants that contribute to bacterial virulence.
Collapse
|
research-article |
23 |
177 |
16
|
Yoon SS, Coakley R, Lau GW, Lymar SV, Gaston B, Karabulut AC, Hennigan RF, Hwang SH, Buettner G, Schurr MJ, Mortensen JE, Burns JL, Speert D, Boucher RC, Hassett DJ. Anaerobic killing of mucoid Pseudomonas aeruginosa by acidified nitrite derivatives under cystic fibrosis airway conditions. J Clin Invest 2006; 116:436-46. [PMID: 16440061 PMCID: PMC1350997 DOI: 10.1172/jci24684] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2005] [Accepted: 11/29/2005] [Indexed: 11/17/2022] Open
Abstract
Mucoid, mucA mutant Pseudomonas aeruginosa cause chronic lung infections in cystic fibrosis (CF) patients and are refractory to phagocytosis and antibiotics. Here we show that mucoid bacteria perish during anaerobic exposure to 15 mM nitrite (NO2) at pH 6.5, which mimics CF airway mucus. Killing required a pH lower than 7, implicating formation of nitrous acid (HNO2) and NO, that adds NO equivalents to cellular molecules. Eighty-seven percent of CF isolates possessed mucA mutations and were killed by HNO2 (3-log reduction in 4 days). Furthermore, antibiotic-resistant strains determined were also equally sensitive to HNO2. More importantly, HNO2 killed mucoid bacteria (a) in anaerobic biofilms; (b) in vitro in ultrasupernatants of airway secretions derived from explanted CF patient lungs; and (c) in mouse lungs in vivo in a pH-dependent fashion, with no organisms remaining after daily exposure to HNO2 for 16 days. HNO2 at these levels of acidity and NO2 also had no adverse effects on cultured human airway epithelia in vitro. In summary, selective killing by HNO2 may provide novel insights into the important clinical goal of eradicating mucoid P. aeruginosa from the CF airways.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
175 |
17
|
Mahenthiralingam E, Vandamme P, Campbell ME, Henry DA, Gravelle AM, Wong LT, Davidson AG, Wilcox PG, Nakielna B, Speert DP. Infection with Burkholderia cepacia complex genomovars in patients with cystic fibrosis: virulent transmissible strains of genomovar III can replace Burkholderia multivorans. Clin Infect Dis 2001; 33:1469-75. [PMID: 11588691 DOI: 10.1086/322684] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2001] [Revised: 04/04/2001] [Indexed: 11/03/2022] Open
Abstract
Infection with Burkholderia cepacia complex in patients with cystic fibrosis (CF) results in highly variable clinical outcomes. The purpose of this study was to determine if there are genomovar-specific disparities in transmission and disease severity. B. cepacia complex was recovered from 62 patients with CF on > or =1 occasions (genomovar III, 46 patients; genomovar II [B. multivorans], 19 patients; genomovar IV [B. stabilis], 1 patient; genomovar V [B. vietnamiensis], 1 patient; and an unclassified B. cepacia complex strain, 1 patient). Patient-to-patient spread was observed with B. cepacia genomovar III, but not with B. multivorans. Genomovar III strains replaced B. multivorans in 6 patients. Genomovar III strains were also associated with a poor clinical course and high mortality. Infection control practices should be designed with knowledge about B. cepacia complex genomovar status; patients infected with transmissible genomovar III strains should not be cohorted with patients infected with B. multivorans and other B. cepacia genomovars.
Collapse
|
|
24 |
171 |
18
|
Bowdish DME, Davidson DJ, Speert DP, Hancock REW. The human cationic peptide LL-37 induces activation of the extracellular signal-regulated kinase and p38 kinase pathways in primary human monocytes. THE JOURNAL OF IMMUNOLOGY 2004; 172:3758-65. [PMID: 15004180 DOI: 10.4049/jimmunol.172.6.3758] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
LL-37 is a cationic peptide that is found in the granules of neutrophils and is secreted by epithelial cells from a variety of tissues. Levels of LL-37 in vivo increase upon infection, and its production and secretion are increased upon stimulation with proinflammatory mediators. It has been postulated that LL-37 modulates the immune response by interacting with the effector cells of innate immunity; however, the mechanism of this interaction is unknown. LL-37 induced phosphorylation and activation of the mitogen-activated protein kinases, extracellular signal-regulated kinase 1/2 (ERK1/2) and p38, in human peripheral blood-derived monocytes and a human bronchial epithelial cell line, but not in B or T lymphocytes. Phosphorylation was not dependent on the G protein-coupled formyl peptide-like receptor 1, which was previously proposed to be the receptor for LL-37-induced chemotaxis on human monocytes and T cells. Activation of ERK1/2 and p38 was markedly increased by the presence of GM-CSF, but not M-CSF. Exposure to LL-37 also led to the activation of Elk-1, a transcription factor that is downstream of and activated by phosphorylated ERK1/2, the up-regulation of various Elk-1-controlled genes, and the transcription and secretion of IL-8. Inhibition of either p38 or ERK1/2 kinases led to a reduction in LL-37-induced IL-8 secretion and inhibition of the transcription of various chemokine genes. The ability of LL-37 to signal through these pathways has broad implications in immunity, monocyte activation, proliferation, and differentiation.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
168 |
19
|
Aaron SD, Ferris W, Henry DA, Speert DP, Macdonald NE. Multiple combination bactericidal antibiotic testing for patients with cystic fibrosis infected with Burkholderia cepacia. Am J Respir Crit Care Med 2000; 161:1206-12. [PMID: 10764313 DOI: 10.1164/ajrccm.161.4.9907147] [Citation(s) in RCA: 167] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Most Burkholderia cepacia strains are resistant to many, or all, of the antibacterial agents commonly used in cystic fibrosis (CF), and selection of appropriate antibiotics for treatment of pulmonary exacerbations is therefore difficult. We developed a technique for rapid in vitro testing of multiple antibiotic combinations for B. cepacia isolates. For each of 119 multi-drug-resistant isolates of B. cepacia, our multiple combination bactericidal test (MCBT) studied the bactericidal activity of 10 to 15 antimicrobial agents using 225 +/- 97 single, double, and triple antibiotic combinations. Of the 119 isolates, 50% were resistant to all single antibiotics tested, 8% were resistant to all two-drug antibiotic combinations, but all were inhibited by at least one bactericidal triple-drug combination. When used alone, meropenem, ceftazidime and high-dose tobramycin (200 microg/ml) were bactericidal against only 47, 15, and 14% of in vitro isolates, respectively. Using a double antibiotic combination improved bactericidal activity; meropenem-minocycline, meropenem-amikacin, and meropenem-ceftazidime combinations were bactericidal against 76, 73, and 73% of isolates, respectively. However, 47% of isolates demonstrated antagonism (growth of an organism when a second antibiotic was added to a bactericidal single antibiotic). Triple antibiotic combinations that contained tobramycin, meropenem, and an additional antibiotic were most effective, and were bactericidal against 81 to 93% of isolates. We conclude that triple-antibiotic combinations are more likely than double and single antibiotic combinations to be bactericidal against B. cepacia in vitro. MCBT testing is a useful technique to help clinicians decide on appropriate nonantagonistic combination antibiotic therapy for patients with CF infected with B. cepacia.
Collapse
|
|
25 |
167 |
20
|
Baldwin A, Mahenthiralingam E, Thickett KM, Honeybourne D, Maiden MCJ, Govan JR, Speert DP, Lipuma JJ, Vandamme P, Dowson CG. Multilocus sequence typing scheme that provides both species and strain differentiation for the Burkholderia cepacia complex. J Clin Microbiol 2005; 43:4665-73. [PMID: 16145124 PMCID: PMC1234123 DOI: 10.1128/jcm.43.9.4665-4673.2005] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A single multilocus sequence typing (MLST) scheme was developed for precise characterization of the opportunistic pathogens of Burkholderia cepacia complex (BCC), a group composed of at least nine closely related species. Seven conserved housekeeping genes were selected after a comparison of five Burkholderia species, and a collection of strains was subjected to nucleotide sequence analysis using a nested PCR amplification approach for each gene. MLST differentiated all nine current BCC species and identified 114 sequence types within a collection of 119 strains. No differentiation was found between strains recovered from environmental or clinical sources. The improved resolution in strain identification offered by MLST was able to identify previously characterized epidemic strain lineages and also demonstrated the presence of four novel potential species groups within the complex. There was also evidence for recombination having an important role in the recent evolution of individual BCC species. This highly transferable, validated, MLST scheme provides a new means to assist in species identification as well as unambiguous strain discrimination of the BCC by a single approach. It is also the first MLST scheme designed at the outset to incorporate multiple species and should facilitate global epidemiological investigations of the BCC.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
166 |
21
|
Vanlaere E, Lipuma JJ, Baldwin A, Henry D, De Brandt E, Mahenthiralingam E, Speert D, Dowson C, Vandamme P. Burkholderia latens sp. nov., Burkholderia diffusa sp. nov., Burkholderia arboris sp. nov., Burkholderia seminalis sp. nov. and Burkholderia metallica sp. nov., novel species within the Burkholderia cepacia complex. Int J Syst Evol Microbiol 2008; 58:1580-90. [PMID: 18599699 DOI: 10.1099/ijs.0.65634-0] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The taxonomic position of five recA gene clusters of Burkholderia cepacia complex (Bcc) isolates was determined using a polyphasic taxonomic approach. The levels of 16S rRNA and recA gene sequence similarity, multilocus sequence typing (MLST) data and the intermediate DNA-DNA binding values demonstrated that these five clusters represented five novel species within the Bcc. Biochemical identification of these species is difficult, as is the case for most Bcc species. However, identification of these novel species can be accomplished through recA gene sequence analysis, MLST and BOX-PCR profiling and by recA RFLP analysis. For diagnostic laboratories, recA gene sequence analysis offers the best combination of accuracy and simplicity. Based on these results, we propose five novel Bcc species, Burkholderia latens sp. nov. (type strain FIRENZE 3(T) =LMG 24064(T) =CCUG 54555(T)), Burkholderia diffusa sp. nov. (type strain AU1075(T) =LMG 24065(T) =CCUG 54558(T)), Burkholderia arboris sp. nov. (type strain ES0263A(T) =LMG 24066(T) =CCUG 54561(T)), Burkholderia seminalis sp. nov. (type strain AU0475(T) =LMG 24067(T) =CCUG 54564(T)) and Burkholderia metallica sp. nov. (type strain AU0553(T) =LMG 24068(T) =CCUG 54567(T)). In the present study, we also demonstrate that Burkholderia ubonensis should be considered a member of the Bcc.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
165 |
22
|
Coenye T, Mahenthiralingam E, Henry D, LiPuma JJ, Laevens S, Gillis M, Speert DP, Vandamme P. Burkholderia ambifaria sp. nov., a novel member of the Burkholderia cepacia complex including biocontrol and cystic fibrosis-related isolates. Int J Syst Evol Microbiol 2001; 51:1481-1490. [PMID: 11491349 DOI: 10.1099/00207713-51-4-1481] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A polyphasic taxonomic study, including amplified fragment length polymorphism (AFLP) fingerprinting, DNA-DNA hybridizations, DNA base-ratio determinations, phylogenetic analysis, whole-cell fatty acid analyses and an extensive biochemical characterization, was performed on 19 Burkholderia cepacia-like isolates from the environment and cystic fibrosis (CF) patients. Several of the environmental isolates have attracted considerable interest due to their biocontrol properties. The polyphasic taxonomic data showed that the strains represent a new member of the B. cepacia complex, for which the name Burkholderia ambifaria sp. nov. is proposed. The type strain is strain LMG 19182T. B. ambifaria can be differentiated from the other members of the B. cepacia complex by means of AFLP fingerprinting, whole-cell fatty acid analysis, biochemical tests (including ornithine and lysine decarboxylase activity, acidification of sucrose and beta-haemolysis) and a newly developed recA gene-based PCR assay. 16S rDNA-based RFLP analysis and PCR tests allowed differentiation of B. ambifaria from Burkholderia multivorans, Burkholderia vietnamiensis and B. cepacia genomovar VI, but not from B. cepacia genomovars I and III and Burkholderia stabilis. The finding that this new taxon includes both strains isolated from CF patients and potentially useful biocontrol strains supports the general consensus that the large-scale use of biocontrol strains belonging to the B. cepacia complex would be ill-advised until more is known about their potential pathogenic mechanisms.
Collapse
|
Comparative Study |
24 |
163 |
23
|
Henry DA, Campbell ME, LiPuma JJ, Speert DP. Identification of Burkholderia cepacia isolates from patients with cystic fibrosis and use of a simple new selective medium. J Clin Microbiol 1997; 35:614-9. [PMID: 9041399 PMCID: PMC229637 DOI: 10.1128/jcm.35.3.614-619.1997] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We evaluated 819 isolates referred to us as "Burkholderia cepacia" from cystic fibrosis (CF) clinics and research laboratories from five countries; 28 (3.4%) were not B. cepacia. A further 12 (1.5%) organisms appeared to be other Burkholderia species, but identification could not be confirmed by conventional means. The most prevalently misidentified organisms were Stenotrophomonas maltophilia, Alcaligenes xylosoxidans, and Comamonas acidovorans. Many of these organisms grew on oxidation-fermentation polymyxin-bacitracin-lactose (OFPBL) and Pseudomonas cepacia agars, selective media currently used for B. cepacia isolation. We developed a new medium, B. cepacia selective agar (BCSA), which is more enriched for the growth of B. cepacia yet which is more selective against other organisms than currently available selective agars. A total of 190 of 191 (99.5%) isolates of B. cepacia from patients with CF grew on BCSA without vancomycin, whereas 100% grew on OFPBL agar and 179 (94.2%) grew on P. cepacia agar. Of 189 other gram-negative and gram-positive organisms tested, 10 (5.3%) grew on BCSA without vancomycin. The addition of vancomycin to BCSA lowered the false positivity rate to 3.7% without further inhibition of B. cepacia. The false positivity rates for OFPBL and P. cepacia agars were 19.6 and 13.8%, respectively. Isolates of B. cepacia from CF patients grew most quickly on BCSA, with 201 of 205 (98.0%) being readily visible within 24 h, whereas 182 (88.8%) grew on OFPBL agar and 162 (79.0%) grew on P. cepacia agar within 24 h. We propose that the use of BCSA will allow investigators to overcome many of the difficulties associated with the identification of B. cepacia and should be considered for use as a primary isolation agar for specimens from patients with CF.
Collapse
|
research-article |
28 |
148 |
24
|
Mahenthiralingam E, Simpson DA, Speert DP. Identification and characterization of a novel DNA marker associated with epidemic Burkholderia cepacia strains recovered from patients with cystic fibrosis. J Clin Microbiol 1997; 35:808-16. [PMID: 9157133 PMCID: PMC229681 DOI: 10.1128/jcm.35.4.808-816.1997] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Burkholderia cepacia is a problematic pathogen that may spread among patients with cystic fibrosis (CF). One highly infectious CF strain that causes epidemics in both the United Kingdom and eastern Canada has been shown to possess both the cable pilin subunit gene (cblA) and a unique combination of insertion sequences. However, no genetic markers linking this strain type with other types epidemic at various centers have been identified. Using a randomly amplified polymorphic DNA (RAPD) typing scheme, we identified an apparently conserved 1.4-kb fragment in the DNA fingerprint of epidemic B. cepacia strains. Conservation of the DNA marker among epidemic strains was demonstrated by Southern hybridization, and its prevalence was assessed in a collection of chromosomal DNAs extracted from 627 isolates representative of 132 RAPD-defined B. cepacia strain types. The marker was specifically associated with seven epidemic CF strains, was absent among nonepidemic strains infecting individual patients with CF, and rare among strains recovered from the natural environment. Only one of the seven epidemic CF strain types possessed DNA homologous to cblA. The RAPD marker was designated the "B. cepacia epidemic strain marker" (BCESM). Sequence analysis of chromosomal DNA corresponding to the 1.4-kb RAPD marker revealed the presence of a putative open reading frame (ORF) with significant homology to several negative transcriptional regulators; the ORF was designated the "epidemic strain marker regulator," or esmR. The BCESM DNA is the first genetic marker that has been identified to be specifically associated with and conserved among several epidemic B. cepacia strains which infect multiple patients with CF.
Collapse
|
research-article |
28 |
146 |
25
|
Vandamme P, Mahenthiralingam E, Holmes B, Coenye T, Hoste B, De Vos P, Henry D, Speert DP. Identification and population structure of Burkholderia stabilis sp. nov. (formerly Burkholderia cepacia genomovar IV). J Clin Microbiol 2000; 38:1042-7. [PMID: 10698993 PMCID: PMC86333 DOI: 10.1128/jcm.38.3.1042-1047.2000] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/1999] [Accepted: 11/07/1999] [Indexed: 11/20/2022] Open
Abstract
The Burkholderia cepacia complex currently comprises five genomic species, i.e., B. cepacia genomovar I, B. multivorans (formerly known as B. cepacia genomovar II), B. cepacia genomovar III, B. cepacia genomovar IV, and B. vietnamiensis (also known as B. cepacia genomovar V). In the absence of straightforward diagnostic tests for the identification of B. cepacia genomovars I, III, and IV, the last two genomic species were not formally classified as novel Burkholderia species (genomovar I contains the type strain and therefore retains the name B. cepacia). In the present study, we describe differential biochemical tests and a recA gene-based PCR assay for the routine identification of strains currently known as B. cepacia genomovar IV and propose formal classification of this organism as Burkholderia stabilis sp. nov. B. stabilis can indeed be differentiated from all other B. cepacia complex strains by the absence of beta-galactosidase activity, from strains of B. cepacia genomovars I and III and B. vietnamiensis by the inability to oxidize sucrose, and from B. multivorans by the lack of growth at 42 degrees C. In addition, analysis with the recA gene-derived primers BCRG41 (5'-ACCGGCGAGCAGGCGCTT-3') and BCRG42 (5'-ACGCCATCGGGCATGGCA-3') specifically allows the detection of B. stabilis strains in a conventional PCR assay. Examination of a set of 21 B. stabilis strains by means of random amplified polymorphic DNA analysis and pulsed-field gel electrophoresis typing suggested that the genome of this organism is highly conserved, which is in sharp contrast to the generally accepted genomic diversity, variability, and plasticity among B. cepacia strains.
Collapse
|
research-article |
25 |
140 |