1
|
Hampson DR, Poduslo SE. Purification of proteolipid protein and production of specific antiserum. J Neuroimmunol 1986; 44:1117-27. [PMID: 2419357 DOI: 10.1007/s10803-013-1973-x] [Citation(s) in RCA: 328] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Proteolipid protein, the major protein in CNS myelin, was purified using several chromatographic steps. No detergents were used. Chromatography in organic solvents on lipophilic Sephadex (LH-60) for delipidation, on ion exchange chromatography for protein separation, and again on lipophilic Sephadex (LH-20) for desalting, produced homogeneous preparations of proteolipid protein. Rabbit antibodies to proteolipid protein were produced after 2 injections of a total of 500 micrograms of protein. By immunotransfer and absorption experiments, it was found that the antiserum bound to proteolipid protein and a closely related protein, DM-20; it did not bind to basic protein or other myelin proteins.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
39 |
328 |
2
|
Wang LY, Taverna FA, Huang XP, MacDonald JF, Hampson DR. Phosphorylation and modulation of a kainate receptor (GluR6) by cAMP-dependent protein kinase. Science 1993; 259:1173-5. [PMID: 8382377 DOI: 10.1126/science.8382377] [Citation(s) in RCA: 190] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Ligand-gated ion channels gated by glutamate constitute the major excitatory neurotransmitter system in the mammalian brain. The functional modulation of GluR6, a kainate-activated glutamate receptor, by adenosine 3',5'-monophosphate-dependent protein kinase A (PKA) was examined with receptors expressed in human embryonic kidney cells. Kainate-evoked currents underwent a rapid desensitization that was blocked by lectins. Kainate currents were potentiated by intracellular perfusion of PKA, and this potentiation was blocked by co-application of an inhibitory peptide. Site-directed mutagenesis was used to identify the site or sites of phosphorylation on GluR6. Although mutagenesis of two serine residues, Ser684 and Ser666, was required for complete abolition of the PKA-induced potentiation, Ser684 may be the preferred site of phosphorylation in native GluR6 receptor complexes. These results indicate that glutamate receptor function can be directly modulated by protein phosphorylation and suggest that a dynamic regulation of excitatory receptors could be associated with some forms of learning and memory in the mammalian brain.
Collapse
|
|
32 |
190 |
3
|
Wada K, Dechesne CJ, Shimasaki S, King RG, Kusano K, Buonanno A, Hampson DR, Banner C, Wenthold RJ, Nakatani Y. Sequence and expression of a frog brain complementary DNA encoding a kainate-binding protein. Nature 1989; 342:684-9. [PMID: 2556640 DOI: 10.1038/342684a0] [Citation(s) in RCA: 152] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Excitatory amino acids (EAAs) are important neurotransmitters in the vertebrate central nervous system. Electrophysiological and ligand-binding studies indicate that at least three different receptor subtypes for EAAs exist--N-methyl-D-aspartate, kainate and quisqualate receptor subtypes--on the basis of the preferred agonist of the receptors. We recently purified a kainate-binding protein (KBP) from frog (Rana pipiens berlandieri) brain by domoic acid (a high-affinity kainate analogue) affinity chromatography, and showed that the kainate-binding activity was associated with a protein of relative molecular mass 48,000 (Mr 48 K). The pharmacological properties and the anatomical distribution of KBP were consistent with those of a kainate receptor-ionophore complex. We have now isolated a complementary DNA encoding KBP of Mr 48 K. The deduced amino-acid sequence of the KBP has similar hydrophobic profiles to those found in other ligand-gated ion channel subunits, and shows some amino-acid sequence similarities to the corresponding regions of brain nicotinic acetylcholine receptor subunits. Localization of the KBP messenger RNAs by in situ hybridization histochemistry is compatible with the results of immunohistochemistry and receptor autoradiography studies. COS-7 cells transfected with the cDNA encoding the KBP show high-affinity kainate-binding activity with pharmacological properties similar to those of the biochemically purified KBP. These results provide the first molecular characterization of an EAA-binding site and raise the possibility that the KBP cDNA encodes a ligand-binding subunit of a kainate receptor-ionophore complex.
Collapse
|
Comparative Study |
36 |
152 |
4
|
Hampson DR, Blatt GJ. Autism spectrum disorders and neuropathology of the cerebellum. Front Neurosci 2015; 9:420. [PMID: 26594141 PMCID: PMC4635214 DOI: 10.3389/fnins.2015.00420] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/19/2015] [Indexed: 12/19/2022] Open
Abstract
The cerebellum contains the largest number of neurons and synapses of any structure in the central nervous system. The concept that the cerebellum is solely involved in fine motor function has become outdated; substantial evidence has accumulated linking the cerebellum with higher cognitive functions including language. Cerebellar deficits have been implicated in autism for more than two decades. The computational power of the cerebellum is essential for many, if not most of the processes that are perturbed in autism including language and communication, social interactions, stereotyped behavior, motor activity and motor coordination, and higher cognitive functions. The link between autism and cerebellar dysfunction should not be surprising to those who study its cellular, physiological, and functional properties. Postmortem studies have revealed neuropathological abnormalities in cerebellar cellular architecture while studies on mouse lines with cell loss or mutations in single genes restricted to cerebellar Purkinje cells have also strongly implicated this brain structure in contributing to the autistic phenotype. This connection has been further substantiated by studies investigating brain damage in humans restricted to the cerebellum. In this review, we summarize advances in research on idiopathic autism and three genetic forms of autism that highlight the key roles that the cerebellum plays in this spectrum of neurodevelopmental disorders.
Collapse
|
Review |
10 |
143 |
5
|
Abstract
The neurotoxins kainic acid and domoic acid are potent agonists at the kainate and alphaamino-5-methyl-3-hydroxyisoxazolone-4-propionate (AMPA) subclasses of ionotropic glutamate receptors. Although it is well established that AMPA receptors mediate fast excitatory synaptic transmission at most excitatory synapses in the central nervous system, the role of the high affinity kainate receptors in synaptic transmission and neurotoxicity is not entirely clear. Kainate and domoate differ from the natural transmitter, L-glutamate, in their mode of activation of glutamate receptors; glutamate elicits rapidly desensitizing responses while the two neurotoxins elicit non-desensitizing or slowly desensitizing responses at AMPA receptors and some kainate receptors. The inability to produce desensitizing currents and the high affinity for AMPA and kainate receptors are undoubtedly important factors in kainate and domoate-mediated neurotoxicity. Mutagenesis studies on cloned glutamate receptors have provided insight into the molecular mechanisms responsible for these unique properties of kainate and domoate.
Collapse
|
Review |
25 |
114 |
6
|
Kuang D, Yao Y, Lam J, Tsushima RG, Hampson DR. Cloning and characterization of a family C orphan G-protein coupled receptor. J Neurochem 2005; 93:383-91. [PMID: 15816861 DOI: 10.1111/j.1471-4159.2005.03025.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Members of the family C receptors within the G-protein coupled receptor superfamily include the metabotropic glutamate receptors, GABA(B) receptors, the calcium-sensing receptor (CaSR), the V2R pheromone receptors, the T1R taste receptors, and a small group of uncharacterized orphan receptors. We have cloned and studied the mouse GPRC6A family C orphan receptor. The open reading frame codes for a protein with highest sequence identity to the fish 5.24 odorant receptor and the mammalian CaSR. The gene structure shows a striking resemblance to that of the CaSR. Results from RT-PCR analyses showed that mouse GPRC6A mRNA is expressed in mouse brain, skeletal muscle, heart, lung, spleen, kidney, liver, and in the early stage mouse embryo. Immunocytochemical analysis of the cloned mouse GPRC6A cDNA expressed in human embryonic kidney 293 cells demonstrated that GPRC6A was present on the plasma membrane, as well as in the endoplasmic reticulum and nuclear envelope membranes of transfected cells. A chimeric cDNA construct in which the extracellular ligand binding domain of the fish 5.24 amino acid-activated odorant receptor was ligated to the complementary downstream sequence of the mouse GPRC6A receptor indicated that GPRC6A is coupled to phosphoinositol turnover and release of intracellular calcium. Further studies with mouse GPRC6A expressed in Xenopus laevis oocytes demonstrated that this receptor possesses a pharmacological profile resembling that of the fish 5.24 odorant receptor. These findings suggest that GPRC6A may function as the receptor component of a novel cellular transmitter system in mammals.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
108 |
7
|
Adusei DC, Pacey LKK, Chen D, Hampson DR. Early developmental alterations in GABAergic protein expression in fragile X knockout mice. Neuropharmacology 2010; 59:167-71. [PMID: 20470805 DOI: 10.1016/j.neuropharm.2010.05.002] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 03/26/2010] [Accepted: 05/05/2010] [Indexed: 11/19/2022]
Abstract
Fragile X syndrome is the most common heritable form of mental retardation. It is caused by silencing of the Fmr1 gene and the absence of the encoded protein. The purpose of this study was to examine global protein expression levels of GABA(A) and GABA(B) receptors, and GABAergic enzymes and trafficking proteins in fragile X knockout mice during brain maturation. Quantitative western blotting of homogenates of forebrain revealed that the levels of GABA(A) beta1 and beta3, GABA(B)-R1, NKCC1, KCC2, gephyrin and ubiquilin were not significantly different from wild-type mice at any of the postnatal time points examined. In contrast, the GABA(A) receptor alpha1, beta2, and delta subunits, and the GABA enzymes GABA transaminase and succinic semialdehyde dehydrogenase were down-regulated during postnatal development, while GAD65 was up-regulated in the adult knockout mouse brain. The GABA(A) receptor alpha1 and beta2 subunits displayed a divergent pattern of developmental expression whereby alpha1 was reduced in the immature brain but regained a level of expression similar to wild-type mice by adulthood, while the expression of beta2 was similar to wild-types at postnatal day 5 but reduced at day 12 and in the adult brain. The GABA(A) receptor delta subunit and the GABA catabolic enzymes GABA transaminase and succinic semialdehyde dehydrogenase were simultaneously but transiently decreased only at postnatal day 12. Our results demonstrate that GABA(A) receptor subunits and GABA enzymes display complex patterns of changes during brain development suggesting that dynamic interactions may occur between GABA transmitter levels and GABA receptors in fragile X syndrome.
Collapse
MESH Headings
- 4-Aminobutyrate Transaminase/genetics
- 4-Aminobutyrate Transaminase/metabolism
- Adaptor Proteins, Signal Transducing
- Adaptor Proteins, Vesicular Transport/genetics
- Adaptor Proteins, Vesicular Transport/metabolism
- Age Factors
- Animals
- Animals, Newborn
- Autophagy-Related Proteins
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Fragile X Mental Retardation Protein/genetics
- Gene Expression Regulation, Developmental/genetics
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Receptors, GABA-A/genetics
- Receptors, GABA-A/metabolism
- Receptors, GABA-B/genetics
- Receptors, GABA-B/metabolism
- Sodium-Potassium-Chloride Symporters/genetics
- Sodium-Potassium-Chloride Symporters/metabolism
- Solute Carrier Family 12, Member 2
- Symporters/genetics
- Symporters/metabolism
- gamma-Aminobutyric Acid/genetics
- gamma-Aminobutyric Acid/metabolism
- K Cl- Cotransporters
Collapse
|
Research Support, N.I.H., Extramural |
15 |
107 |
8
|
Hampson DR, Huang XP, Wells JW, Walter JA, Wright JL. Interaction of domoic acid and several derivatives with kainic acid and AMPA binding sites in rat brain. Eur J Pharmacol 1992; 218:1-8. [PMID: 1383007 DOI: 10.1016/0014-2999(92)90140-y] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We have determined the inhibitory potencies of domoic acid and a series of derivatives of domoic acid at kainic acid and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) binding sites in rat forebrain membranes. These derivatives of domoic acid differed in the configuration, stereochemistry, and degree of saturation of the side chain attached to C-4 of the prolyl ring. The binding data were analyzed in terms of one or two classes of sites as appropriate. Domoic acid and kainic acid displayed similar inhibition constants at [3H]kainic acid sites (IC50 = 5 and 7 nM, respectively). At both kainic acid and AMPA binding sites, all of the compounds tested were less potent than domoic acid itself. At high affinity [3H]kainic acid sites, the derivatives could be categorized into two groups; those with nanomolar affinity and those with micromolar affinity. All members of the former group possessed a side chain with the first double bond intact and in the Z (cis) configuration. The more distal atoms present in the extended side chain of domoic acid did not appear to contribute to the high affinity interaction with the kainic acid receptor. Although all the compounds tested were weaker inhibitors of [3H]AMPA binding compared to [3H]kainic acid binding, there was a high correlation between the rank order of potency of the seven domoic acid derivatives at [3H]kainic acid and at [3H]AMPA binding sites. The inhibition data for kainic acid at [3H]AMPA binding sites were described adequately in terms of a 1-site model, whereas the data for domoic acid required two classes of sites.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
|
33 |
99 |
9
|
Pacey LKK, Heximer SP, Hampson DR. Increased GABA(B) receptor-mediated signaling reduces the susceptibility of fragile X knockout mice to audiogenic seizures. Mol Pharmacol 2009; 76:18-24. [PMID: 19351745 DOI: 10.1124/mol.109.056127] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
Mice lacking the gene encoding fragile X mental retardation protein (FMR1) are susceptible to audiogenic seizures, and antagonists of the group I metabotropic glutamate receptors (mGluRs) have been shown to block seizures in FMR1 knockout mice. We investigated whether the G-protein-inhibitory activity of the regulator of G-protein signaling protein, RGS4, could also alter the susceptibility to audiogenic seizures in FMR1 mice. We were surprised to find that male FMR1/RGS4 double-knockout mice showed reduced susceptibility to audiogenic seizures compared with age-matched FMR1 mice. These data raised the intriguing possibility that loss of RGS4 increased signaling through another G-protein pathway that reduces seizure susceptibility in FMR1 mice. Indeed, administration of the GABA(B) receptor agonist baclofen to FMR1 mice inhibited seizures, whereas the GABA(B) receptor antagonist (3-aminopropyl)(cyclohexylmethyl)phosphinic acid (CGP 46381) increased seizure incidence in double-knockout mice but not in wild-type mice. Finally, audiogenic seizures could be induced in wild-type mice by coadministering CGP 46381 and the mGluR5-positive allosteric modulator 3-cyano-N-(1,2 diphenyl-1H-pyrazol-5-yl) benzamide. These data show for the first time that GABA(B) receptor-mediated signaling antagonizes the seizure-promoting effects of the mGluRs in FMR1 knockout mice and point to the potential therapeutic benefit of GABA(B) agonists for the treatment of fragile X syndrome.
Collapse
|
|
16 |
99 |
10
|
Wang M, Yao Y, Kuang D, Hampson DR. Activation of family C G-protein-coupled receptors by the tripeptide glutathione. J Biol Chem 2006; 281:8864-70. [PMID: 16455645 DOI: 10.1074/jbc.m512865200] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Family C G-protein-coupled receptors include the metabotropic glutamate receptors, the gamma-aminobutyric acid, type B (GABAB) receptor, the calcium-sensing receptor (CaSR), which participates in the regulation of calcium homeostasis in the body, and a diverse group of sensory receptors that encompass the amino acid-activated fish 5.24 chemosensory receptor, the mammalian T1R taste receptors, and the V2R pheromone receptors. A common feature of Family C receptors is the presence of an amino acid binding site. In this study, a preliminary in silico analysis of the size and shape of the amino acid binding pocket in selected Family C receptors suggested that some members of this family could accommodate larger ligands such as peptides. Subsequent screening and docking experiments identified GSH as a potential ligand or co-ligand at the fish 5.24 receptor and the rat CaSR. These in silico predictions were confirmed using an [3H]GSH radioligand binding assay and a fluorescence-based functional assay performed on wild-type and chimeric receptors. Glutathione was shown to act as an orthosteric agonist at the 5.24 receptor and as a potent enhancer of calcium-induced activation of the CaSR. Within the mammalian receptors, this effect was specific to the CaSR because GSH neither directly activated nor potentiated other Family C receptors including GPRC6A (the putative mammalian homolog of the fish 5.24 receptor), the metabotropic glutamate receptors, or the GABAB receptor. Our findings reveal a potential new role for GSH and suggest that this peptide may act as an endogenous modulator of the CaSR in the parathyroid gland where this receptor is known to control the release of parathyroid hormone, and in other tissues such as the brain and gastrointestinal tract where the role of the calcium receptor appears to subserve other, as yet unknown, physiological functions.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
98 |
11
|
Ellegood J, Pacey LK, Hampson DR, Lerch JP, Henkelman RM. Anatomical phenotyping in a mouse model of fragile X syndrome with magnetic resonance imaging. Neuroimage 2010; 53:1023-9. [PMID: 20304074 DOI: 10.1016/j.neuroimage.2010.03.038] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 03/11/2010] [Accepted: 03/12/2010] [Indexed: 10/19/2022] Open
Abstract
Fragile X Syndrome (FXS) is the most common single gene cause of inherited mental impairment, and cognitive deficits can range from simple learning disabilities to mental retardation. Human FXS is caused by a loss of the Fragile X Mental Retardation Protein (FMRP). The fragile X knockout (FX KO) mouse also shows a loss of FMRP, as well as many of the physical and behavioural characteristics of human FXS. This work aims to characterize the anatomical changes between the FX KO and a corresponding wild type mouse. Significant volume decreases were found in two regions within the deep cerebellar nuclei, namely the nucleus interpositus and the fastigial nucleus, which may be caused by a loss of neurons as indicated by histological analysis. Well-known links between these nuclei and previously established behavioural and physical characteristics of FXS are discussed. The loss of FMRP has a significant effect on these two nuclei, and future studies of FXS should evaluate the biochemical, physiological, and behavioral consequences of alterations in these key nuclei.
Collapse
|
Journal Article |
15 |
85 |
12
|
Pickering DS, Thomsen C, Suzdak PD, Fletcher EJ, Robitaille R, Salter MW, MacDonald JF, Huang XP, Hampson DR. A comparison of two alternatively spliced forms of a metabotropic glutamate receptor coupled to phosphoinositide turnover. J Neurochem 1993; 61:85-92. [PMID: 8390570 DOI: 10.1111/j.1471-4159.1993.tb03540.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A comparison of the pharmacological and physiological properties of the metabotropic glutamate 1 alpha and 1 beta receptors (mGluR1 alpha and mGluR1 beta) expressed in baby hamster kidney (BHK 570) cells was performed. The mGluR1 beta receptor is an alternatively spliced form of mGluR1 alpha with a modified carboxy terminus. Immunoblots of membranes from the two cell lines probed with receptor-specific antipeptide antibodies showed that mGluR1 alpha migrated with an M(r) = 154,000, whereas mGluR1 beta migrated with an M(r) = 96,000. Immunofluorescence imaging of receptors expressed in BHK 570 cells revealed that the mGluR1 alpha receptor was localized to patches along the plasmalemma and on intracellular membranes surrounding the nucleus, whereas mGluR1 beta was distributed diffusely throughout the cell. Agonist activation of the mGluR1 alpha and the mGluR1 beta receptors stimulated phosphoinositide hydrolysis. At both receptors, glutamate, quisqualate, and ibotenate were full agonists, whereas trans-(+)-1-aminocyclopentane-1,3-dicarboxylate appeared to act as a partial agonist. The stimulation of phosphoinositide hydrolysis by mGluR1 alpha showed pertussis toxin-sensitive and insensitive components, whereas the mGluR1 beta response displayed only the toxin-insensitive component. The mGluR1 alpha and mGluR1 beta receptors also increased intracellular calcium levels by inducing release from intracellular stores. These results indicate that the different carboxy terminal sequences of the two receptors directly influences G protein coupling and subcellular deposition of the receptor polypeptides and suggest that the two receptors may subserve different roles in the nervous system.
Collapse
|
Comparative Study |
32 |
85 |
13
|
Thomsen C, Mulvihill ER, Haldeman B, Pickering DS, Hampson DR, Suzdak PD. A pharmacological characterization of the mGluR1 alpha subtype of the metabotropic glutamate receptor expressed in a cloned baby hamster kidney cell line. Brain Res 1993; 619:22-8. [PMID: 7690672 DOI: 10.1016/0006-8993(93)91592-g] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The pharmacological specificity of the mGluR1 alpha subtype of the metabotropic glutamate receptor (mGluR) was examined in a cloned baby hamster kidney cell line (BHK-ts13) measuring [3H]glutamate binding and inositol phosphate (PI) hydrolysis. PI-hydrolysis was maximally stimulated by quisqualate (1112 +/- 105% of basal), glutamate (1061 +/- 70% of basal), ibotenate (1097 +/- 115% of basal) and beta-N-methylamino-L-alanine (BMAA) (1010 +/- 104% of basal). In contrast, the maximal stimulation of PI-hydrolysis by (1S,3R)-1-amino-cyclopentane-1,3-dicarboxylic acid (t-ACPD) was only 673 +/- 78% of the basal level. The relative order of potency was quisqualate > glutamate > ibotenate > t-ACPD > BMAA. Agonist-stimulated PI-hydrolysis was attenuated (25 +/- 4% inhibition) by L-2-amino-3-phosphonopropionic acid and partially blocked (44 +/- 7%) by pertussis toxin treatment. Saturation binding studies with [3H]glutamate on membranes prepared from BHK-ts13 cells expressing the mGluR1 alpha subtype showed that glutamate binds to a single affinity state of this receptor with a limited capacity (Kd = 296 nM, Bmax = 0.8 pmol/mg protein). In competition experiments, [3H]glutamate was displaced by quisqualate, glutamate, ibotenate, t-ACPD and BMAA with a rank order of potency similar to that found for stimulation of PI-hydrolysis.
Collapse
|
|
32 |
81 |
14
|
Pacey LKK, Xuan ICY, Guan S, Sussman D, Henkelman RM, Chen Y, Thomsen C, Hampson DR. Delayed myelination in a mouse model of fragile X syndrome. Hum Mol Genet 2013; 22:3920-30. [PMID: 23740941 DOI: 10.1093/hmg/ddt246] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Fragile X Syndrome is the most common inherited cause of autism. Fragile X mental retardation protein (FMRP), which is absent in fragile X, is an mRNA binding protein that regulates the translation of hundreds of different mRNA transcripts. In the adult brain, FMRP is expressed primarily in the neurons; however, it is also expressed in developing glial cells, where its function is not well understood. Here, we show that fragile X (Fmr1) knockout mice display abnormalities in the myelination of cerebellar axons as early as the first postnatal week, corresponding roughly to the equivalent time in human brain development when symptoms of the syndrome first become apparent (1-3 years of age). At postnatal day (PND) 7, diffusion tensor magnetic resonance imaging showed reduced volume of the Fmr1 cerebellum compared with wild-type mice, concomitant with an 80-85% reduction in the expression of myelin basic protein, fewer myelinated axons and reduced thickness of myelin sheaths, as measured by electron microscopy. Both the expression of the proteoglycan NG2 and the number of PDGFRα+/NG2+ oligodendrocyte precursor cells were reduced in the Fmr1 cerebellum at PND 7. Although myelin proteins were still depressed at PND 15, they regained wild-type levels by PND 30. These findings suggest that impaired maturation or function of oligodendrocyte precursor cells induces delayed myelination in the Fmr1 mouse brain. Our results bolster an emerging recognition that white matter abnormalities in early postnatal brain development represent an underlying neurological deficit in Fragile X syndrome.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
77 |
15
|
Pickering DS, Taverna FA, Salter MW, Hampson DR. Palmitoylation of the GluR6 kainate receptor. Proc Natl Acad Sci U S A 1995; 92:12090-4. [PMID: 8618850 PMCID: PMC40302 DOI: 10.1073/pnas.92.26.12090] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The G-protein-coupled metabotropic glutamate receptor mGluR1 alpha and the ionotropic glutamate receptor GluR6 were examined for posttranslational palmitoylation. Recombinant receptors were expressed in baculovirus-infected insect cells or in human embryonic kidney cells and were metabolically labeled with [3H]palmitic acid. The metabotropic mGluR1 alpha receptor was not labeled whereas the GluR6 kainate receptor was labeled after incubation with [3H]palmitate. The [3H]palmitate labeling of GluR6 was eliminated by treatment with hydroxylamine, indicating that the labeling was due to palmitoylation at a cysteine residue via a thioester bond. Site-directed mutagenesis was used to demonstrate that palmitoylation of GluR6 occurs at two cysteine residues, C827 and C840, located in the carboxyl-terminal domain of the molecule. A comparison of the electrophysiological properties of the wild-type and unpalmitoylated mutant receptor (C827A, C840A) showed that the kainate-gated currents produced by the unpalmitoylated mutant receptor were indistinguishable from those of the wild-type GluR6. The unpalmitoylated mutant was a better substrate for protein kinase C than the wild-type GluR6 receptor. These data indicate that palmitoylation may not modulate kainate channel function directly but instead affect function indirectly by regulating the phosphorylation state of the receptor.
Collapse
MESH Headings
- Alanine
- Animals
- Autoradiography/methods
- Base Sequence
- Cell Line
- Cysteine
- DNA, Complementary
- Embryo, Mammalian
- Embryo, Nonmammalian
- Humans
- Kidney
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Oligodeoxyribonucleotides
- Open Reading Frames
- Palmitic Acid
- Palmitic Acids/metabolism
- Phosphorylation
- Point Mutation
- Protein Kinase C/metabolism
- Protein Processing, Post-Translational
- Receptors, Kainic Acid/biosynthesis
- Receptors, Kainic Acid/metabolism
- Receptors, Kainic Acid/physiology
- Receptors, Metabotropic Glutamate/biosynthesis
- Receptors, Metabotropic Glutamate/metabolism
- Receptors, Metabotropic Glutamate/physiology
- Recombinant Proteins/biosynthesis
- Recombinant Proteins/metabolism
- Spodoptera
- Transfection
- Tritium
- GluK2 Kainate Receptor
Collapse
|
Comparative Study |
30 |
75 |
16
|
Conigrave AD, Hampson DR. Broad-spectrum L-amino acid sensing by class 3 G-protein-coupled receptors. Trends Endocrinol Metab 2006; 17:398-407. [PMID: 17085057 DOI: 10.1016/j.tem.2006.10.012] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Revised: 10/04/2006] [Accepted: 10/24/2006] [Indexed: 01/24/2023]
Abstract
The sensing of nutrients is essential to the control of growth and metabolism. Although the sensing mechanisms responsible for the detection and coordination of metabolic responses to some nutrients, most notably glucose, are well understood, the molecular basis of amino acid sensing by cells and tissues is only now emerging. In this article, we consider evidence that some members of G-protein-coupled receptor class 3 are broad-spectrum amino acid sensors that couple changes in extracellular amino acid levels to the activation of intracellular signaling pathways. In particular, we consider both the molecular basis of specific and broad-spectrum amino acid sensing by different members of class 3 and the physiological significance of broad spectrum amino acid sensing by the extracellular calcium-sensing receptor, heterodimeric taste receptors and the recently "deorphanized" receptor GPRC6A and its goldfish homolog, the 5.24 chemoreceptor.
Collapse
|
Review |
19 |
73 |
17
|
Grant SL, Shulman Y, Tibbo P, Hampson DR, Baker GB. Determination of d-serine and related neuroactive amino acids in human plasma by high-performance liquid chromatography with fluorimetric detection. J Chromatogr B Analyt Technol Biomed Life Sci 2006; 844:278-82. [DOI: 10.1016/j.jchromb.2006.07.022] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Revised: 07/07/2006] [Accepted: 07/15/2006] [Indexed: 10/24/2022]
|
|
19 |
72 |
18
|
Hampson DR, Wenthold RJ. A kainic acid receptor from frog brain purified using domoic acid affinity chromatography. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)69234-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
|
37 |
67 |
19
|
Notenboom RGE, Hampson DR, Jansen GH, van Rijen PC, van Veelen CWM, van Nieuwenhuizen O, de Graan PNE. Up-regulation of hippocampal metabotropic glutamate receptor 5 in temporal lobe epilepsy patients. ACTA ACUST UNITED AC 2005; 129:96-107. [PMID: 16311265 DOI: 10.1093/brain/awh673] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Metabotropic glutamate receptors (mGluRs) are G protein-coupled receptors involved in the regulation of glutamatergic transmission. Recent studies indicate that excitatory group I mGluRs (mGluR1 and mGluR5) contribute to neurotoxicity and hyperexcitability during epileptogenesis. In this study, we examined the distribution of mGluR1alpha and mGluR5 immunoreactivity (IR) in hippocampal resection tissue from pharmaco-resistant temporal lobe epilepsy (TLE) patients. IR was detected with panels of receptor subtype specific antisera in hippocampi from TLE patients without (non-HS group) and with hippocampal sclerosis (HS group) and was compared with that of non-epileptic autopsy controls (control group). By immunohistochemistry and immunoblot analysis, we found a marked increase of mGluR5 IR in hippocampi from the non-HS compared with the control group. High mGluR5 IR was most prominent in the cell bodies and apical dendrites of hippocampal principal neurons and in the dentate gyrus molecular layer. In the HS group, this increase in neuronal mGluR5 IR was even more pronounced, but owing to neuronal loss the number of mGluR5-immunoreactive neurons was reduced compared with the non-HS group. IR for mGluR1alpha was found in the cell bodies of principal neurons in all hippocampal subfields and in stratum oriens and hilar interneurons. No difference in mGluR1alpha IR was observed between neurons in both TLE groups and the control group. However, owing to neuronal loss, the number of mGluR1alpha-positive neurons was markedly reduced in the HS group. The up-regulation of mGluR5 in surviving neurons is probably a consequence rather than a cause of the epileptic seizures and may contribute to the hyperexcitability of the hippocampus in pharmaco-resistant TLE patients. Thus, our data point to a prominent role of mGluR5 in human TLE and indicate mGluR5 signalling as potential target for new anti-epileptic drugs.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
66 |
20
|
Hampson DR, Huang XP, Oberdorfer MD, Goh JW, Auyeung A, Wenthold RJ. Localization of AMPA receptors in the hippocampus and cerebellum of the rat using an anti-receptor monoclonal antibody. Neuroscience 1992; 50:11-22. [PMID: 1328932 DOI: 10.1016/0306-4522(92)90378-f] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The primary amino acid sequences of the kainate binding proteins from the amphibian and avian central nervous systems are homologous with the functional alpha-amino-3-hydroxyl-5-methyl-isoxazole-4-propionate receptors that have been cloned from rat brain. In this study, we have analysed the anatomical and subcellular distribution of the alpha-amino-3-hydroxyl-5-methyl-isoxazole-4-propionate receptors in the rat hippocampus and cerebellum, using a monoclonal antibody that was raised against a kainate binding protein purified from frog brain. Immunoblots of rat hippocampus and cerebellum, and membranes from COS cells transfected with rat brain alpha-amino-3-hydroxyl-5-methyl-isoxazole-4-propionate receptor cDNAs (GluR1, GluR2, or GluR3) showed a major immunoreactive band migrating at a relative molecular weight of 107,000. In the cerebellum, an additional immunoreactive protein of approximately 128,000 mol. wt was also seen on immunoblots probed with the antibody. The distribution of this protein is apparently restricted to the cerebellum since the 128,000 mol. wt band was not present in other brain areas examined. The identity of the 128,000 mol. wt cerebellar protein is not known. Immunocytochemical analyses of the hippocampus demonstrated that alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionate receptor subunits are present in the cell bodies and dendrites of pyramidal cells. The granule cells were also immunostained. All of the pyramidal cell subfields were heavily labeled. In the pyramidal cell bodies, a high level of immunoreactivity was observed throughout the cytoplasm. In the cerebellum, the Purkinje cell bodies and dendrites also displayed very high levels of immunoreactivity. In addition to the Purkinje neurons, the Bergmann glia and some Golgi neurons were clearly immunostained. Subcellular fractionation and lesioning experiments using the excitotoxin domoic acid indicated that the alpha-amino-3-hydroxyl-5-methyl-isoxazole-4-propionate receptor subunits were associated with postsynaptic membranes. Direct visualization of the immunoreactivity using electron microscopy confirmed the postsynaptic localization of the staining in the dendritic areas in both the hippocampus and the cerebellum. Thus, unlike the kainate binding proteins, which are found primarily extrasynaptically in the frog and on glial cells in the chicken cerebellum, the GluR1, GluR2, and GluR3 receptor subunits are localized to the postsynaptic membrane in the dendrites of neurons in the rat central nervous system.
Collapse
|
|
33 |
65 |
21
|
Han G, Hampson DR. Ligand binding to the amino-terminal domain of the mGluR4 subtype of metabotropic glutamate receptor. J Biol Chem 1999; 274:10008-13. [PMID: 10187777 DOI: 10.1074/jbc.274.15.10008] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The metabotropic glutamate receptor (mGluR) 4 subtype of metabotropic glutamate receptor is a presynaptic receptor that modulates neurotransmitter release. We have characterized the properties of a truncated, epitope-tagged construct containing part of the extracellular amino-terminal domain of mGluR4. The truncated receptor was secreted into the cell culture medium of transfected human embryonic kidney cells. The oligomeric structure of the soluble truncated receptor was assessed by gel electrophoresis. In the presence of high concentrations of a reducing agent, the truncated receptor migrated as a monomer; at lower concentrations of the reducing agent, only higher molecular weight oligomers were observed. Competition binding experiments using the radiolabeled agonist [3H]L-2-amino-4-phosphonobutyric acid revealed that the rank order of potency of metabotropic ligands at the truncated receptor was similar to that of the full-length membrane-bound receptor. However, the truncated receptor displayed higher affinities for agonists and lower affinities for antagonists compared with the full-length receptor. Deglycosylation produced a shift in the relative molecular weight of the soluble protein from Mr = 71,000 to Mr = 63,000; deglycosylation had no effect on the binding of [3H]L-2-amino-4-phosphonobutyric acid, indicating that the asparagine-linked carbohydrates are not necessary for agonist binding. These results demonstrate that although the primary determinants of ligand binding to mGluR4 are contained within the first 548 amino acids of the receptor, additional amino acids located downstream of this region may influence the affinity of ligands for the binding site.
Collapse
|
|
26 |
65 |
22
|
Hampson DR, Theriault E, Huang XP, Kristensen P, Pickering DS, Franck JE, Mulvihill ER. Characterization of two alternatively spliced forms of a metabotropic glutamate receptor in the central nervous system of the rat. Neuroscience 1994; 60:325-36. [PMID: 8072687 DOI: 10.1016/0306-4522(94)90246-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Amplification of complementary DNA by the polymerase chain reaction and anti-peptide antibodies were used to characterize the expression of two alternatively spliced forms of a metabotropic glutamate receptor (mGluR1 alpha and mGluR1 beta) in the central nervous system of the rat. Polymerase chain reaction analysis showed that mGluR1 alpha was the predominate of the two forms in the cerebellum, diencephalon, mesencephalon, olfactory bulb and brainstem, while mGluR1 beta was the major form present in the hippocampus. Approximately equal amounts of the two receptors were expressed in the cerebral cortex, septum and striatum. Immunochemical analyses of the two receptors were conducted in the rat cerebellum and hippocampus. An mGluR1 alpha-specific antibody labelled a protein with a relative molecular weight of 146,000 on immunoblots of the hippocampus and cerebellum. Immunoblot analysis of the developmental expression of mGluR1 alpha in the hippocampus and cerebellum demonstrated that in both structures, the levels of mGluR1 alpha were at or near their maximum levels in the adult brain. In contrast, two mGluR1 beta-specific antibodies failed to detect mGluR1 beta on immunoblots of brain tissue, thus precluding an immunocytochemical analysis of this receptor. Although low levels of a higher-molecular weight protein, possibly a dimeric form of mGluR1 beta were seen with one of the mGluR1 beta-specific antibodies, we hypothesize that some of the mGluR1 beta present in brain tissue may undergo proteolytic cleavage of the carboxy terminus. Immunocytochemical analysis of mGluR1 alpha showed that very high levels of this receptor were expressed in Purkinje cell bodies and dendrites. In the granule cell layer, some Golgi neurons were immunostained. The granule cells were not labelled. In the hippocampus, mGluR1 alpha immunoreactivity was present in interneurons of the stratum oriens and the dentate hilar region. Double-labelling studies demonstrated that these interneurons were also immunopositive for the neuropeptide somatostatin. The presence of mGluR1 alpha in cells of the hippocampus that are associated with the release of somatostatin, suggest that this receptor could play a role in regulating hippocampal excitability in both normal and epileptic tissues.
Collapse
|
Comparative Study |
31 |
61 |
23
|
Abstract
Kainic acid binding sites were solubilized from rat brain using a combination of Triton X-100 and digitonin. The highest percentage of solubilized binding sites (45%) was obtained by treating brain membranes with 1% Triton-X-100 and 0.2% digitonin in 0.5 M potassium phosphate containing 20% glycerol. The solubilized binding sites were stable and amenable to analysis by gel filtration and lectin affinity chromatography. Computer assisted analyses demonstrated that the solubilized sites displayed high- and low-affinity binding constants similar to the membrane-bound sites. Competition experiments further supported the pharmacological similarities of the solubilized and membrane-bound sites. Gel filtration chromatography of the solubilized binding site indicated that the detergent-bound complex had a Stokes radius of 82.7 A. The [3H]kainic acid binding site appears to be glycosylated based on its capability to bind to lectins. The lectin, wheatgerm agglutinin, proved to be a potentially useful tool for characterization because the solubilized binding sites were bound and eluted in relatively high yield.
Collapse
|
|
38 |
58 |
24
|
Hampson DR, Huang XP, Pekhletski R, Peltekova V, Hornby G, Thomsen C, Thøgersen H. Probing the ligand-binding domain of the mGluR4 subtype of metabotropic glutamate receptor. J Biol Chem 1999; 274:33488-95. [PMID: 10559233 DOI: 10.1074/jbc.274.47.33488] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Metabotropic glutamate receptors (mGluRs) are G-protein-coupled glutamate receptors that subserve a number of diverse functions in the central nervous system. The large extracellular amino-terminal domains (ATDs) of mGluRs are homologous to the periplasmic binding proteins in bacteria. In this study, a region in the ATD of the mGluR4 subtype of mGluR postulated to contain the ligand-binding pocket was explored by site-directed mutagenesis using a molecular model of the tertiary structure of the ATD as a guiding tool. Although the conversion of Arg(78), Ser(159), or Thr(182) to Ala did not affect the level of protein expression or cell-surface expression, all three mutations severely impaired the ability of the receptor to bind the agonist L-[(3)H]amino-4-phosphonobutyric acid. Mutation of other residues within or in close proximity to the proposed binding pocket produced either no effect (Ser(157) and Ser(160)) or a relatively modest effect (Ser(181)) on ligand affinity compared with the Arg(78), Ser(159), and Thr(182) mutations. Based on these experimental findings, together with information obtained from the model in which the glutamate analog L-serine O-phosphate (L-SOP) was "docked" into the binding pocket, we suggest that the hydroxyl groups on the side chains of Ser(159) and Thr(182) of mGluR4 form hydrogen bonds with the alpha-carboxyl and alpha-amino groups on L-SOP, respectively, whereas Arg(78) forms an electrostatic interaction with the acidic side chains of L-SOP or glutamate. The conservation of Arg(78), Ser(159), and Thr(182) in all members of the mGluR family indicates that these amino acids may be fundamental recognition motifs for the binding of agonists to this class of receptors.
Collapse
|
|
26 |
56 |
25
|
Tharmalingam S, Daulat AM, Antflick JE, Ahmed SM, Nemeth EF, Angers S, Conigrave AD, Hampson DR. Calcium-sensing receptor modulates cell adhesion and migration via integrins. J Biol Chem 2011; 286:40922-33. [PMID: 21969374 DOI: 10.1074/jbc.m111.265454] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The calcium-sensing receptor (CaSR) is a family C G protein-coupled receptor that is activated by elevated levels of extracellular divalent cations. The CaSR couples to members of the G(q) family of G proteins, and in the endocrine system this receptor is instrumental in regulating the release of parathyroid hormone from the parathyroid gland and calcitonin from thyroid cells. Here, we demonstrate that in medullary thyroid carcinoma cells, the CaSR promotes cellular adhesion and migration via coupling to members of the integrin family of extracellular matrix-binding proteins. Immunopurification and mass spectrometry, co-immunoprecipitation, and co-localization studies showed that the CaSR and β1-containing integrins are components of a macromolecular protein complex. In fibronectin-based cell adhesion and migration assays, the CaSR-positive allosteric modulator NPS R-568 induced a concentration-dependent increase in cell adhesion and migration; both of these effects were blocked by a specific CaSR-negative allosteric modulator. These effects were mediated by integrins because they were blocked by a peptide inhibitor of integrin binding to fibronectin and β1 knockdown experiments. An analysis of intracellular signaling pathways revealed a key role for CaSR-induced phospholipase C activation and the release of intracellular calcium. These results demonstrate for the first time that an ion-sensing G protein-coupled receptor functionally couples to the integrins and, in conjunction with intracellular calcium release, promotes cellular adhesion and migration in tumor cells. The significance of this interaction is further highlighted by studies implicating the CaSR in cancer metastasis, axonal growth, and stem cell attachment, functions that rely on integrin-mediated cell adhesion.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
54 |