1
|
Rissin DM, Kan CW, Campbell TG, Howes SC, Fournier DR, Song L, Piech T, Patel PP, Chang L, Rivnak AJ, Ferrell EP, Randall JD, Provuncher GK, Walt DR, Duffy DC. Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations. Nat Biotechnol 2010; 28:595-9. [PMID: 20495550 PMCID: PMC2919230 DOI: 10.1038/nbt.1641] [Citation(s) in RCA: 1443] [Impact Index Per Article: 96.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 04/29/2010] [Indexed: 01/26/2023]
Abstract
The ability to detect single protein molecules in blood could accelerate the discovery and use of more sensitive diagnostic biomarkers. To detect low-abundance proteins in blood, we captured them on microscopic beads decorated with specific antibodies and then labeled the immunocomplexes (one or zero labeled target protein molecules per bead) with an enzymatic reporter capable of generating a fluorescent product. After isolating the beads in 50-fl reaction chambers designed to hold only a single bead, we used fluorescence imaging to detect single protein molecules. Our single-molecule enzyme-linked immunosorbent assay (digital ELISA) approach detected as few as approximately 10-20 enzyme-labeled complexes in 100 microl of sample (approximately 10(-19) M) and routinely allowed detection of clinically relevant proteins in serum at concentrations (<10(-15) M) much lower than conventional ELISA. Digital ELISA detected prostate-specific antigen (PSA) in sera from patients who had undergone radical prostatectomy at concentrations as low as 14 fg/ml (0.4 fM).
Collapse
|
Research Support, N.I.H., Extramural |
15 |
1443 |
2
|
Albert KJ, Lewis NS, Schauer CL, Sotzing GA, Stitzel SE, Vaid TP, Walt DR. Cross-reactive chemical sensor arrays. Chem Rev 2000; 100:2595-626. [PMID: 11749297 DOI: 10.1021/cr980102w] [Citation(s) in RCA: 676] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
|
25 |
676 |
3
|
Blake WJ, Balázsi G, Kohanski MA, Isaacs FJ, Murphy KF, Kuang Y, Cantor CR, Walt DR, Collins JJ. Phenotypic consequences of promoter-mediated transcriptional noise. Mol Cell 2007; 24:853-65. [PMID: 17189188 DOI: 10.1016/j.molcel.2006.11.003] [Citation(s) in RCA: 463] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2006] [Revised: 08/07/2006] [Accepted: 11/01/2006] [Indexed: 01/26/2023]
Abstract
A more complete understanding of the causes and effects of cell-cell variability in gene expression is needed to elucidate whether the resulting phenotypes are disadvantageous or confer some adaptive advantage. Here we show that increased variability in gene expression, affected by the sequence of the TATA box, can be beneficial after an acute change in environmental conditions. We rationally introduce mutations within the TATA region of an engineered Saccharomyces cerevisiae GAL1 promoter and measure promoter responses that can be characterized as being either highly variable and rapid or steady and slow. We computationally illustrate how a stable transcription scaffold can result in "bursts" of gene expression, enabling rapid individual cell responses in the transient and increased cell-cell variability at steady state. We experimentally verify computational predictions that the rapid response and increased cell-cell variability enabled by TATA-containing promoters confer a clear benefit in the face of an acute environmental stress.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
18 |
463 |
4
|
Kelley SO, Mirkin CA, Walt DR, Ismagilov RF, Toner M, Sargent EH. Advancing the speed, sensitivity and accuracy of biomolecular detection using multi-length-scale engineering. NATURE NANOTECHNOLOGY 2014; 9:969-80. [PMID: 25466541 PMCID: PMC4472305 DOI: 10.1038/nnano.2014.261] [Citation(s) in RCA: 278] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 10/13/2014] [Indexed: 05/05/2023]
Abstract
Rapid progress in identifying disease biomarkers has increased the importance of creating high-performance detection technologies. Over the last decade, the design of many detection platforms has focused on either the nano or micro length scale. Here, we review recent strategies that combine nano- and microscale materials and devices to produce large improvements in detection sensitivity, speed and accuracy, allowing previously undetectable biomarkers to be identified in clinical samples. Microsensors that incorporate nanoscale features can now rapidly detect disease-related nucleic acids expressed in patient samples. New microdevices that separate large clinical samples into nanocompartments allow precise quantitation of analytes, and microfluidic systems that utilize nanoscale binding events can detect rare cancer cells in the bloodstream more accurately than before. These advances will lead to faster and more reliable clinical diagnostic devices.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
278 |
5
|
Swank Z, Senussi Y, Manickas-Hill Z, Yu XG, Li JZ, Alter G, Walt DR. Persistent Circulating Severe Acute Respiratory Syndrome Coronavirus 2 Spike Is Associated With Post-acute Coronavirus Disease 2019 Sequelae. Clin Infect Dis 2023; 76:e487-e490. [PMID: 36052466 PMCID: PMC10169416 DOI: 10.1093/cid/ciac722] [Citation(s) in RCA: 269] [Impact Index Per Article: 134.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 02/02/2023] Open
Abstract
The diagnosis of postacute sequelae of coronavirus disease 2019 (PASC) poses an ongoing medical challenge. To identify biomarkers associated with PASC we analyzed plasma samples collected from PASC and coronavirus disease 2019 patients to quantify viral antigens and inflammatory markers. We detect severe acute respiratory syndrome coronavirus 2 spike predominantly in PASC patients up to 12 months after diagnosis.
Collapse
|
Research Support, N.I.H., Extramural |
2 |
269 |
6
|
Michael KL, Taylor LC, Schultz SL, Walt DR. Randomly ordered addressable high-density optical sensor arrays. Anal Chem 1998; 70:1242-8. [PMID: 9553489 DOI: 10.1021/ac971343r] [Citation(s) in RCA: 264] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Array-based sensors provide an architecture for multianalyte sensing. In this paper, we report a new approach for array fabrication. Sensors are made by immobilizing different reactive chemistries on the surfaces of microspheres. Sensor arrays are prepared by randomly distributing a mixture of microsphere sensors on an optical substrate containing thousands of micrometer-scale wells. The sensors occupy a different location from array to array; thus the identity of each sensor is ascertained and registered on the detector using encoding schemes, rather than by a predetermined location in the array. The approach thereby shifts the demand from fabrication to signal processing. The availability of commercial image analysis software makes such a shift both cost-effective and time efficient.
Collapse
|
|
27 |
264 |
7
|
Steemers FJ, Ferguson JA, Walt DR. Screening unlabeled DNA targets with randomly ordered fiber-optic gene arrays. Nat Biotechnol 2000; 18:91-4. [PMID: 10625399 DOI: 10.1038/72006] [Citation(s) in RCA: 226] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have developed a randomly ordered fiber-optic gene array for rapid, parallel detection of unlabeled DNA targets with surface immobilized molecular beacons (MB) that undergo a conformational change accompanied by a fluorescence change in the presence of a complementary DNA target. Microarrays are prepared by randomly distributing MB-functionalized 3-microm diameter microspheres in an array of wells etched in a 500-microm diameter optical imaging fiber. Using several MBs, each designed to recognize a different target, we demonstrate the selective detection of genomic cystic fibrosis related targets. Positional registration and fluorescence response monitoring of the microspheres was performed using an optical encoding scheme and an imaging fluorescence microscope system.
Collapse
|
|
25 |
226 |
8
|
Walt DR, Agayn VI. The chemistry of enzyme and protein immobilization with glutaraldehyde. Trends Analyt Chem 1994. [DOI: 10.1016/0165-9936(94)85023-2] [Citation(s) in RCA: 218] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
|
31 |
218 |
9
|
Dickinson TA, White J, Kauer JS, Walt DR. A chemical-detecting system based on a cross-reactive optical sensor array. Nature 1996; 382:697-700. [PMID: 8751439 DOI: 10.1038/382697a0] [Citation(s) in RCA: 200] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The vertebrate olfactory system has long been recognized for its extraordinary sensitivity and selectivity for odours. Chemical sensors have been developed recently that are based on analogous distributed sensing properties, but although an association between artificial devices and the olfactory system has been made explicit in some previous studies, none has incorporated comparable mechanisms into the mode of detection. Here we describe a multi-analyte fibre-optic sensor modelled directly on the olfactory system, in the sense that complex, time-dependent signals from an array of sensors provide a 'signature' of each analyte. In our system, polymer-immobilized dye molecules on the fibre tips give different fluorescent response patterns (including spectral shifts, intensity changes, spectral shape variations and temporal responses) on exposure to organic vapours, depending on the physical and chemical nature (for example, polarity, shape and size) of both the vapour and the polymer. We use video images of temporal responses of the multi-fibre tip as the input signals to train a neural network for vapour recognition. The system is able to identify individual vapours at different concentrations with great accuracy. 'Artificial noses' such as this should have wide potential application, most notably in environmental and medical monitoring.
Collapse
|
|
29 |
200 |
10
|
Deiss F, LaFratta CN, Symer M, Blicharz TM, Sojic N, Walt DR. Multiplexed sandwich immunoassays using electrochemiluminescence imaging resolved at the single bead level. J Am Chem Soc 2009; 131:6088-9. [PMID: 19361216 DOI: 10.1021/ja901876z] [Citation(s) in RCA: 197] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new class of bead-based microarray that uses electrogenerated chemiluminescence (ECL) as a readout mechanism to detect multiple antigens simultaneously is presented. This platform demonstrates the possibility of performing highly multiplexed assays using ECL because all the individual sensing beads in the array are simultaneously imaged and individually resolved by ECL. Duplex and triplex assay results are demonstrated as well as a cross reactivity study.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
16 |
197 |
11
|
Yonker LM, Gilboa T, Ogata AF, Senussi Y, Lazarovits R, Boribong BP, Bartsch YC, Loiselle M, Rivas MN, Porritt RA, Lima R, Davis JP, Farkas EJ, Burns MD, Young N, Mahajan VS, Hajizadeh S, Lopez XIH, Kreuzer J, Morris R, Martinez EE, Han I, Griswold K, Barry NC, Thompson DB, Church G, Edlow AG, Haas W, Pillai S, Arditi M, Alter G, Walt DR, Fasano A. Multisystem inflammatory syndrome in children is driven by zonulin-dependent loss of gut mucosal barrier. J Clin Invest 2021; 131:149633. [PMID: 34032635 PMCID: PMC8279585 DOI: 10.1172/jci149633] [Citation(s) in RCA: 177] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/19/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUNDWeeks after SARS-CoV-2 infection or exposure, some children develop a severe, life-threatening illness called multisystem inflammatory syndrome in children (MIS-C). Gastrointestinal (GI) symptoms are common in patients with MIS-C, and a severe hyperinflammatory response ensues with potential for cardiac complications. The cause of MIS-C has not been identified to date.METHODSHere, we analyzed biospecimens from 100 children: 19 with MIS-C, 26 with acute COVID-19, and 55 controls. Stools were assessed for SARS-CoV-2 by reverse transcription PCR (RT-PCR), and plasma was examined for markers of breakdown of mucosal barrier integrity, including zonulin. Ultrasensitive antigen detection was used to probe for SARS-CoV-2 antigenemia in plasma, and immune responses were characterized. As a proof of concept, we treated a patient with MIS-C with larazotide, a zonulin antagonist, and monitored the effect on antigenemia and the patient's clinical response.RESULTSWe showed that in children with MIS-C, a prolonged presence of SARS-CoV-2 in the GI tract led to the release of zonulin, a biomarker of intestinal permeability, with subsequent trafficking of SARS-CoV-2 antigens into the bloodstream, leading to hyperinflammation. The patient with MIS-C treated with larazotide had a coinciding decrease in plasma SARS-CoV-2 spike antigen levels and inflammatory markers and a resultant clinical improvement above that achieved with currently available treatments.CONCLUSIONThese mechanistic data on MIS-C pathogenesis provide insight into targets for diagnosing, treating, and preventing MIS-C, which are urgently needed for this increasingly common severe COVID-19-related disease in children.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
177 |
12
|
Abstract
A fiber-optic biosensor using an aptamer receptor has been developed for the measurement of thrombin. An antithrombin DNA aptamer was immobilized on the surface of silica microspheres, and these aptamer beads were distributed in microwells on the distal tip of an imaging fiber. A different oligonucleotide bead type prepared using the same method as the aptamer beads was also included in the microwells to measure the degree of nonspecific binding. The imaging fiber was coupled to a modified epifluorescence microscope system, and the distal end of the fiber was incubated with a fluorescein-labeled thrombin (F-thrombin) solution. Nonlabeled thrombin could be detected using a competitive binding assay with F-thrombin. The aptamer beads selectively bound to the target and could be reused without any sensitivity change. The fiber-optic microarray system has a detection limit of 1 nM for nonlabeled thrombin, and each test can be performed in ca. 15 min including the regeneration time.
Collapse
|
|
25 |
161 |
13
|
Ferguson JA, Boles TC, Adams CP, Walt DR. A fiber-optic DNA biosensor microarray for the analysis of gene expression. Nat Biotechnol 1996; 14:1681-4. [PMID: 9634851 DOI: 10.1038/nbt1296-1681] [Citation(s) in RCA: 158] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A fiber-optic biosensor array is described for the simultaneous analysis of multiple DNA sequences. A bundle of optical fibers was assembled with each fiber carrying a different oligonucleotide probe immobilized on its distal end. Hybridization of fluorescently labeled complementary oligonucleotides to the array was monitored by observing the increase in fluorescence that accompanied binding. The approach enables fast (< 10 min) and sensitive (10 nM) detection to multiple DNA sequences simultaneously, with the potential for quantitative hybridization analysis.
Collapse
|
|
29 |
158 |
14
|
Abstract
As analytical chemists, the highest resolution measurement one can make is at the single molecule level; it just does not get any better than that. To determine the concentration of a molecule in solution, the best way is to count the number of molecules in a given volume. As long as the volume contains a statistically large enough number of molecules and is above the Poisson noise limit, molecular counting is the most accurate way to make a measurement. Molecular counting is the method of the future and is beginning to be performed today.
Collapse
|
Review |
13 |
158 |
15
|
Rissin DM, Walt DR. Digital concentration readout of single enzyme molecules using femtoliter arrays and Poisson statistics. NANO LETTERS 2006; 6:520-3. [PMID: 16522055 DOI: 10.1021/nl060227d] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Methods for accurately quantifying the concentration of a particular analyte in solution are all based on ensemble responses in which many analyte molecules give rise to the measured signal. In this paper, single molecules of beta-galactosidase were monitored using a 1 mm diameter fiber optic bundle with 2.4 x 10(5) individually sealed, femtoliter microwell reactors. By observation of the buildup of fluorescent products from single enzyme molecule catalysis over the array of reaction vessels and by application of a Poisson statistical analysis, a digital concentration readout was obtained. This approach should prove useful for single molecule enzymology and ultrasensitive bioassays. More generally, the ability to determine concentration by counting individual molecules offers a new approach to analysis of dilute solutions.
Collapse
|
|
19 |
151 |
16
|
Munkholm C, Walt DR, Milanovich FP, Klainer SM. Polymer modification of fiber optic chemical sensors as a method of enhancing fluorescence signal for pH measurement. Anal Chem 2008. [DOI: 10.1021/ac00298a034] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
|
17 |
141 |
17
|
|
|
25 |
140 |
18
|
Epstein JR, Walt DR. Fluorescence-based fibre optic arrays: a universal platform for sensing. Chem Soc Rev 2003; 32:203-14. [PMID: 12875026 DOI: 10.1039/b300617d] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Optical fibres provide a universal sensing platform as they are easily integrated with a multitude of different sensing schemes. Such schemes enable the preparation of a multitude of sensors from relatively straightforward pH sensors, to more complex ones, including artificial olfaction sensors, high-density oligonucleotide arrays, and high-throughput cell-based arrays. Imaging fibre bundles comprised of thousands of fused optical fibres are the basis for an optically connected, individually addressable parallel sensing platform. Fibre optic imaging bundles possess miniature feature sizes (3-10 micron diameter fibres), allowing high-density sensor packing (approximately 2 x 10(7) sensors per cm2). Imaging fibre bundles transmit coherent images enabling combined imaging and sensing, relating the responses monitored by the sensor to observable physical changes. The individual fibre cores can also be selectively etched to form a high-density microwell array capable of housing complementary sized microsensors. The miniature feature sizes facilitate a faster response and more sensitive measurement capabilities. The platform is extremely versatile in its sensing design, allowing the sensing scheme to be tailored to fit the experimental design, whether for monitoring single analytes or more complex multiplexed assays. A number of sensing schemes and applications are described in this review.
Collapse
|
Review |
22 |
140 |
19
|
White J, Kauer JS, Dickinson TA, Walt DR. Rapid analyte recognition in a device based on optical sensors and the olfactory system. Anal Chem 2012; 68:2191-202. [PMID: 21619305 DOI: 10.1021/ac9511197] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report here the development of a new vapor sensing device that is designed as an array of optically based chemosensors providing input to a pattern recognition system incorporating artificial neural networks. Distributed sensors providing inputs to an integrative circuit is a principle derived from studies of the vertebrate olfactory system. In the present device, primary chemosensing input is provided by an array of fiber-optic sensors. The individual fiber sensors, which are broadly yet differentially responsive, were constructed by immobilizing molecules of the fluorescent indicator dye Nile Red in polymer matrices of varying polarity, hydrophobicity, pore size, elasticity, and swelling tendency, creating unique sensing regions that interact differently with vapor molecules. The fluorescent signals obtained from each fiber sensor in response to 2-s applications of different analyte vapors have unique temporal characteristics. Using signals from the fiber array as inputs, artificial neural networks were trained to identify both single analytes and binary mixtures, as well as relative concentrations. Networks trained with integrated response data from the array or with temporal data from a single fiber made numerous errors in analyte identification across concentrations. However, when trained with temporal information from the fiber array, networks using "name" or "characteristic" output codes performed well in identifying test analytes.
Collapse
|
Journal Article |
13 |
139 |
20
|
|
Review |
17 |
138 |
21
|
Ogata AF, Maley AM, Wu C, Gilboa T, Norman M, Lazarovits R, Mao CP, Newton G, Chang M, Nguyen K, Kamkaew M, Zhu Q, Gibson TE, Ryan ET, Charles RC, Marasco WA, Walt DR. Ultra-Sensitive Serial Profiling of SARS-CoV-2 Antigens and Antibodies in Plasma to Understand Disease Progression in COVID-19 Patients with Severe Disease. Clin Chem 2020; 66:1562-1572. [PMID: 32897389 PMCID: PMC7499543 DOI: 10.1093/clinchem/hvaa213] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 09/01/2020] [Indexed: 01/21/2023]
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected over 21 million people worldwide since August 16, 2020. Compared to PCR and serology tests, SARS-CoV-2 antigen assays are underdeveloped, despite their potential to identify active infection and monitor disease progression. METHODS We used Single Molecule Array (Simoa) assays to quantitatively detect SARS-CoV-2 spike, S1 subunit, and nucleocapsid antigens in the plasma of patients with coronavirus disease (COVID-19). We studied plasma from 64 patients who were COVID-19 positive, 17 who were COVID-19 negative, and 34 prepandemic patients. Combined with Simoa anti-SARS-CoV-2 serological assays, we quantified changes in 31 SARS-CoV-2 biomarkers in 272 longitudinal plasma samples obtained for 39 patients with COVID-19. Data were analyzed by hierarchical clustering and were compared to longitudinal RT-PCR test results and clinical outcomes. RESULTS SARS-CoV-2 S1 and N antigens were detectable in 41 out of 64 COVID-19 positive patients. In these patients, full antigen clearance in plasma was observed a mean ± 95% CI of 5 ± 1 days after seroconversion and nasopharyngeal RT-PCR tests reported positive results for 15 ± 5 days after viral-antigen clearance. Correlation between patients with high concentrations of S1 antigen and ICU admission (77%) and time to intubation (within 1 day) was statistically significant. CONCLUSIONS The reported SARS-CoV-2 Simoa antigen assay is the first to detect viral antigens in the plasma of patients who were COVID-19 positive to date. These data show that SARS-CoV-2 viral antigens in the blood are associated with disease progression, such as respiratory failure, in COVID-19 cases with severe disease.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
137 |
22
|
Dickinson TA, Michael KL, Kauer JS, Walt DR. Convergent, self-encoded bead sensor arrays in the design of an artificial nose. Anal Chem 1999; 71:2192-8. [PMID: 10366892 DOI: 10.1021/ac981457i] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report a new approach to designing an artificial nose based on high-density optical arrays that directly incorporate a number of structural and operational features of the olfactory system. The arrays are comprised of thousands of microsphere (bead) sensors, each belonging to a discrete class, randomly dispersed across the face of an etched optical imaging fiber. Beads are recognized and classified after array assembly by their unique, "self-encoded" response pattern to a selected vapor pulse. The high degree of redundancy built into the array parallels that found in nature and affords new opportunities for chemical-sensor signal amplification. Since each bead is independently addressable through its own light channel, it is possible to combine responses from same-type beads randomly distributed throughout the array in a manner reminiscent of the sensory-neuron convergence observed in the mammalian olfactory system. Signal-to-noise improvements of approximately n1/2 have been achieved using this method.
Collapse
|
|
26 |
135 |
23
|
Abstract
A high-density fiber-optic DNA microarray sensor was developed to monitor multiple DNA sequences in parallel. Microarrays were prepared by randomly distributing DNA probe-functionalized 3.1-microm-diameter microspheres in an array of wells etched in a 500-microm-diameter optical imaging fiber. Registration of the microspheres was performed using an optical encoding scheme and a custom-built imaging system. Hybridization was visualized using fluorescent-labeled DNA targets with a detection limit of 10 fM. Hybridization times of seconds are required for nanomolar target concentrations, and analysis is performed in minutes.
Collapse
|
|
25 |
132 |
24
|
Ogata AF, Cheng CA, Desjardins M, Senussi Y, Sherman AC, Powell M, Novack L, Von S, Li X, Baden LR, Walt DR. Circulating SARS-CoV-2 Vaccine Antigen Detected in the Plasma of mRNA-1273 Vaccine Recipients. Clin Infect Dis 2021; 74:715-718. [PMID: 34015087 PMCID: PMC8241425 DOI: 10.1093/cid/ciab465] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Indexed: 01/16/2023] Open
Abstract
SARS-CoV-2 proteins were measured in longitudinal plasma samples collected from
13 participants who received two doses of mRNA-1273 vaccine. 11 of 13
participants showed detectable levels of SARS-CoV-2 protein as early as day one
after first vaccine injection. Clearance of detectable SARS-CoV-2 protein
correlated with production of IgG and IgA.
Collapse
|
Journal Article |
4 |
131 |
25
|
Abstract
In this communication, we describe the integration of microarray sensor technology with logic capability for screening combinations of proteins and DNA in a biological sample. In this system, we have demonstrated the use of a single platform amenable to both protein detection and protein-DNA detection using molecular logic gates. The pattern of protein and DNA inputs results in fluorescence outputs according to a truth table for AND and INHIBIT gates, thereby demonstrating the feasibility of performing medical diagnostics using a logic gate design. One possible application of this technique would be direct screening of various medical conditions that are dependent on combinations of diagnostic markers.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
129 |