1
|
Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL. An Immunomodulatory Molecule of Symbiotic Bacteria Directs Maturation of the Host Immune System. Cell 2005; 122:107-18. [PMID: 16009137 DOI: 10.1016/j.cell.2005.05.007] [Citation(s) in RCA: 2053] [Impact Index Per Article: 102.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Revised: 02/28/2005] [Accepted: 05/04/2005] [Indexed: 11/28/2022]
Abstract
The mammalian gastrointestinal tract harbors a complex ecosystem consisting of countless bacteria in homeostasis with the host immune system. Shaped by evolution, this partnership has potential for symbiotic benefit. However, the identities of bacterial molecules mediating symbiosis remain undefined. Here we show that, during colonization of animals with the ubiquitous gut microorganism Bacteroides fragilis, a bacterial polysaccharide (PSA) directs the cellular and physical maturation of the developing immune system. Comparison with germ-free animals reveals that the immunomodulatory activities of PSA during B. fragilis colonization include correcting systemic T cell deficiencies and T(H)1/T(H)2 imbalances and directing lymphoid organogenesis. A PSA mutant of B. fragilis does not restore these immunologic functions. PSA presented by intestinal dendritic cells activates CD4+ T cells and elicits appropriate cytokine production. These findings provide a molecular basis for host-bacterial symbiosis and reveal the archetypal molecule of commensal bacteria that mediates development of the host immune system.
Collapse
|
|
20 |
2053 |
2
|
Mazmanian SK, Round JL, Kasper DL. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 2008; 453:620-5. [PMID: 18509436 DOI: 10.1038/nature07008] [Citation(s) in RCA: 1724] [Impact Index Per Article: 101.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Accepted: 04/18/2008] [Indexed: 11/09/2022]
Abstract
Humans are colonized by multitudes of commensal organisms representing members of five of the six kingdoms of life; however, our gastrointestinal tract provides residence to both beneficial and potentially pathogenic microorganisms. Imbalances in the composition of the bacterial microbiota, known as dysbiosis, are postulated to be a major factor in human disorders such as inflammatory bowel disease. We report here that the prominent human symbiont Bacteroides fragilis protects animals from experimental colitis induced by Helicobacter hepaticus, a commensal bacterium with pathogenic potential. This beneficial activity requires a single microbial molecule (polysaccharide A, PSA). In animals harbouring B. fragilis not expressing PSA, H. hepaticus colonization leads to disease and pro-inflammatory cytokine production in colonic tissues. Purified PSA administered to animals is required to suppress pro-inflammatory interleukin-17 production by intestinal immune cells and also inhibits in vitro reactions in cell cultures. Furthermore, PSA protects from inflammatory disease through a functional requirement for interleukin-10-producing CD4+ T cells. These results show that molecules of the bacterial microbiota can mediate the critical balance between health and disease. Harnessing the immunomodulatory capacity of symbiosis factors such as PSA might potentially provide therapeutics for human inflammatory disorders on the basis of entirely novel biological principles.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
1724 |
3
|
Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D, Ward NL, Angiuoli SV, Crabtree J, Jones AL, Durkin AS, Deboy RT, Davidsen TM, Mora M, Scarselli M, Margarit y Ros I, Peterson JD, Hauser CR, Sundaram JP, Nelson WC, Madupu R, Brinkac LM, Dodson RJ, Rosovitz MJ, Sullivan SA, Daugherty SC, Haft DH, Selengut J, Gwinn ML, Zhou L, Zafar N, Khouri H, Radune D, Dimitrov G, Watkins K, O'Connor KJB, Smith S, Utterback TR, White O, Rubens CE, Grandi G, Madoff LC, Kasper DL, Telford JL, Wessels MR, Rappuoli R, Fraser CM. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial "pan-genome". Proc Natl Acad Sci U S A 2005; 102:13950-5. [PMID: 16172379 PMCID: PMC1216834 DOI: 10.1073/pnas.0506758102] [Citation(s) in RCA: 1639] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The development of efficient and inexpensive genome sequencing methods has revolutionized the study of human bacterial pathogens and improved vaccine design. Unfortunately, the sequence of a single genome does not reflect how genetic variability drives pathogenesis within a bacterial species and also limits genome-wide screens for vaccine candidates or for antimicrobial targets. We have generated the genomic sequence of six strains representing the five major disease-causing serotypes of Streptococcus agalactiae, the main cause of neonatal infection in humans. Analysis of these genomes and those available in databases showed that the S. agalactiae species can be described by a pan-genome consisting of a core genome shared by all isolates, accounting for approximately 80% of any single genome, plus a dispensable genome consisting of partially shared and strain-specific genes. Mathematical extrapolation of the data suggests that the gene reservoir available for inclusion in the S. agalactiae pan-genome is vast and that unique genes will continue to be identified even after sequencing hundreds of genomes.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
1639 |
4
|
Gensollen T, Iyer SS, Kasper DL, Blumberg RS. How colonization by microbiota in early life shapes the immune system. Science 2016; 352:539-44. [PMID: 27126036 PMCID: PMC5050524 DOI: 10.1126/science.aad9378] [Citation(s) in RCA: 1268] [Impact Index Per Article: 140.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Microbial colonization of mucosal tissues during infancy plays an instrumental role in the development and education of the host mammalian immune system. These early-life events can have long-standing consequences: facilitating tolerance to environmental exposures or contributing to the development of disease in later life, including inflammatory bowel disease, allergy, and asthma. Recent studies have begun to define a critical period during early development in which disruption of optimal host-commensal interactions can lead to persistent and in some cases irreversible defects in the development and training of specific immune subsets. Here, we discuss the role of early-life education of the immune system during this "window of opportunity," when microbial colonization has a potentially critical impact on human health and disease.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
1268 |
5
|
Olszak T, An D, Zeissig S, Vera MP, Richter J, Franke A, Glickman JN, Siebert R, Baron RM, Kasper DL, Blumberg RS. Microbial exposure during early life has persistent effects on natural killer T cell function. Science 2012; 336:489-93. [PMID: 22442383 PMCID: PMC3437652 DOI: 10.1126/science.1219328] [Citation(s) in RCA: 1211] [Impact Index Per Article: 93.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Exposure to microbes during early childhood is associated with protection from immune-mediated diseases such as inflammatory bowel disease (IBD) and asthma. Here, we show that in germ-free (GF) mice, invariant natural killer T (iNKT) cells accumulate in the colonic lamina propria and lung, resulting in increased morbidity in models of IBD and allergic asthma as compared with that of specific pathogen-free mice. This was associated with increased intestinal and pulmonary expression of the chemokine ligand CXCL16, which was associated with increased mucosal iNKT cells. Colonization of neonatal-but not adult-GF mice with a conventional microbiota protected the animals from mucosal iNKT accumulation and related pathology. These results indicate that age-sensitive contact with commensal microbes is critical for establishing mucosal iNKT cell tolerance to later environmental exposures.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
1211 |
6
|
Chung H, Pamp SJ, Hill JA, Surana NK, Edelman SM, Troy EB, Reading NC, Villablanca EJ, Wang S, Mora JR, Umesaki Y, Mathis D, Benoist C, Relman DA, Kasper DL. Gut immune maturation depends on colonization with a host-specific microbiota. Cell 2012; 149:1578-93. [PMID: 22726443 DOI: 10.1016/j.cell.2012.04.037] [Citation(s) in RCA: 875] [Impact Index Per Article: 67.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Revised: 01/03/2012] [Accepted: 04/07/2012] [Indexed: 02/06/2023]
Abstract
Gut microbial induction of host immune maturation exemplifies host-microbe mutualism. We colonized germ-free (GF) mice with mouse microbiota (MMb) or human microbiota (HMb) to determine whether small intestinal immune maturation depends on a coevolved host-specific microbiota. Gut bacterial numbers and phylum abundance were similar in MMb and HMb mice, but bacterial species differed, especially the Firmicutes. HMb mouse intestines had low levels of CD4(+) and CD8(+) T cells, few proliferating T cells, few dendritic cells, and low antimicrobial peptide expression--all characteristics of GF mice. Rat microbiota also failed to fully expand intestinal T cell numbers in mice. Colonizing GF or HMb mice with mouse-segmented filamentous bacteria (SFB) partially restored T cell numbers, suggesting that SFB and other MMb organisms are required for full immune maturation in mice. Importantly, MMb conferred better protection against Salmonella infection than HMb. A host-specific microbiota appears to be critical for a healthy immune system.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
875 |
7
|
Geva-Zatorsky N, Sefik E, Kua L, Pasman L, Tan TG, Ortiz-Lopez A, Yanortsang TB, Yang L, Jupp R, Mathis D, Benoist C, Kasper DL. Mining the Human Gut Microbiota for Immunomodulatory Organisms. Cell 2017; 168:928-943.e11. [PMID: 28215708 DOI: 10.1016/j.cell.2017.01.022] [Citation(s) in RCA: 516] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 12/01/2016] [Accepted: 01/19/2017] [Indexed: 12/16/2022]
Abstract
Within the human gut reside diverse microbes coexisting with the host in a mutually advantageous relationship. Evidence has revealed the pivotal role of the gut microbiota in shaping the immune system. To date, only a few of these microbes have been shown to modulate specific immune parameters. Herein, we broadly identify the immunomodulatory effects of phylogenetically diverse human gut microbes. We monocolonized mice with each of 53 individual bacterial species and systematically analyzed host immunologic adaptation to colonization. Most microbes exerted several specialized, complementary, and redundant transcriptional and immunomodulatory effects. Surprisingly, these were independent of microbial phylogeny. Microbial diversity in the gut ensures robustness of the microbiota's ability to generate a consistent immunomodulatory impact, serving as a highly important epigenetic system. This study provides a foundation for investigation of gut microbiota-host mutualism, highlighting key players that could identify important therapeutics.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
516 |
8
|
An D, Oh SF, Olszak T, Neves JF, Avci FY, Erturk-Hasdemir D, Lu X, Zeissig S, Blumberg RS, Kasper DL. Sphingolipids from a symbiotic microbe regulate homeostasis of host intestinal natural killer T cells. Cell 2014; 156:123-33. [PMID: 24439373 PMCID: PMC3909465 DOI: 10.1016/j.cell.2013.11.042] [Citation(s) in RCA: 440] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 09/02/2013] [Accepted: 11/21/2013] [Indexed: 12/24/2022]
Abstract
Coevolution of beneficial microorganisms with the mammalian intestine fundamentally shapes mammalian physiology. Here, we report that the intestinal microbe Bacteroides fragilis modifies the homeostasis of host invariant natural killer T (iNKT) cells by supplementing the host's endogenous lipid antigen milieu with unique inhibitory sphingolipids. The process occurs early in life and effectively impedes iNKT cell proliferation during neonatal development. Consequently, total colonic iNKT cell numbers are restricted into adulthood, and hosts are protected against experimental iNKT cell-mediated, oxazolone-induced colitis. In studies with neonatal mice lacking access to bacterial sphingolipids, we found that treatment with B. fragilis glycosphingolipids-exemplified by an isolated peak (MW = 717.6) called GSL-Bf717-reduces colonic iNKT cell numbers and confers protection against oxazolone-induced colitis in adulthood. Our results suggest that the distinctive inhibitory capacity of GSL-Bf717 and similar molecules may prove useful in the treatment of autoimmune and allergic disorders in which iNKT cell activation is destructive.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
440 |
9
|
Baker CJ, Kasper DL. Correlation of maternal antibody deficiency with susceptibility to neonatal group B streptococcal infection. N Engl J Med 1976; 294:753-6. [PMID: 768760 DOI: 10.1056/nejm197604012941404] [Citation(s) in RCA: 422] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We investigated the role of maternal antibody in neonatal Group B streptococcal infection with a radioactive antigen-binding assay employing a purified polysaccharide antigen with both Type III and Group B determinants. Serums from seven women who gave birth to infants who had invasive Group B streptococcal infection with Type III strains were all deficient in antibody. In contrast, serums from 22 of 29 pregnant Type III vaginal carriers whose infants were healthy contained antibody with a prevalence significantly different from that in women delivering infants with Type III disease (P less than 0.01). Three healthy neonates born to women with antibody in serums had demonstrable antibody in umbilical-cord serum. These data suggest that transplacental transfer of maternal antibody protects infants from invasive Group B streptococcal infection with Type III strains.
Collapse
|
|
49 |
422 |
10
|
Tettelin H, Masignani V, Cieslewicz MJ, Eisen JA, Peterson S, Wessels MR, Paulsen IT, Nelson KE, Margarit I, Read TD, Madoff LC, Wolf AM, Beanan MJ, Brinkac LM, Daugherty SC, DeBoy RT, Durkin AS, Kolonay JF, Madupu R, Lewis MR, Radune D, Fedorova NB, Scanlan D, Khouri H, Mulligan S, Carty HA, Cline RT, Van Aken SE, Gill J, Scarselli M, Mora M, Iacobini ET, Brettoni C, Galli G, Mariani M, Vegni F, Maione D, Rinaudo D, Rappuoli R, Telford JL, Kasper DL, Grandi G, Fraser CM. Complete genome sequence and comparative genomic analysis of an emerging human pathogen, serotype V Streptococcus agalactiae. Proc Natl Acad Sci U S A 2002; 99:12391-6. [PMID: 12200547 PMCID: PMC129455 DOI: 10.1073/pnas.182380799] [Citation(s) in RCA: 395] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2002] [Accepted: 06/26/2002] [Indexed: 11/18/2022] Open
Abstract
The 2,160,267 bp genome sequence of Streptococcus agalactiae, the leading cause of bacterial sepsis, pneumonia, and meningitis in neonates in the U.S. and Europe, is predicted to encode 2,175 genes. Genome comparisons among S. agalactiae, Streptococcus pneumoniae, Streptococcus pyogenes, and the other completely sequenced genomes identified genes specific to the streptococci and to S. agalactiae. These in silico analyses, combined with comparative genome hybridization experiments between the sequenced serotype V strain 2603 V/R and 19 S. agalactiae strains from several serotypes using whole-genome microarrays, revealed the genetic heterogeneity among S. agalactiae strains, even of the same serotype, and provided insights into the evolution of virulence mechanisms.
Collapse
|
Comparative Study |
23 |
395 |
11
|
Maione D, Margarit I, Rinaudo CD, Masignani V, Mora M, Scarselli M, Tettelin H, Brettoni C, Iacobini ET, Rosini R, D’Agostino N, Miorin L, Buccato S, Mariani M, Galli G, Nogarotto R, Dei VN, Vegni F, Fraser C, Mancuso G, Teti G, Madoff LC, Paoletti LC, Rappuoli R, Kasper DL, Telford JL, Grandi G. Identification of a universal Group B streptococcus vaccine by multiple genome screen. Science 2005; 309:148-50. [PMID: 15994562 PMCID: PMC1351092 DOI: 10.1126/science.1109869] [Citation(s) in RCA: 376] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Group B Streptococcus (GBS) is a multiserotype bacterial pathogen representing a major cause of life-threatening infections in newborns. To develop a broadly protective vaccine, we analyzed the genome sequences of eight GBS isolates and cloned and tested 312 surface proteins as vaccines. Four proteins elicited protection in mice, and their combination proved highly protective against a large panel of strains, including all circulating serotypes. Protection also correlated with antigen accessibility on the bacterial surface and with the induction of opsonophagocytic antibodies. Multigenome analysis and screening described here represent a powerful strategy for identifying potential vaccine candidates against highly variable pathogens.
Collapse
|
Research Support, N.I.H., Extramural |
20 |
376 |
12
|
Tan TG, Sefik E, Geva-Zatorsky N, Kua L, Naskar D, Teng F, Pasman L, Ortiz-Lopez A, Jupp R, Wu HJJ, Kasper DL, Benoist C, Mathis D. Identifying species of symbiont bacteria from the human gut that, alone, can induce intestinal Th17 cells in mice. Proc Natl Acad Sci U S A 2016; 113:E8141-E8150. [PMID: 27911839 PMCID: PMC5167147 DOI: 10.1073/pnas.1617460113] [Citation(s) in RCA: 320] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Th17 cells accrue in the intestine in response to particular microbes. In rodents, segmented filamentous bacteria (SFB) induce intestinal Th17 cells, but analogously functioning microbes in humans remain undefined. Here, we identified human symbiont bacterial species, in particular Bifidobacterium adolescentis, that could, alone, induce Th17 cells in the murine intestine. Similar to SFB, B. adolescentis was closely associated with the gut epithelium and engendered cognate Th17 cells without attendant inflammation. However, B. adolescentis elicited a transcriptional program clearly distinct from that of SFB, suggesting an alternative mechanism of promoting Th17 cell accumulation. Inoculation of mice with B. adolescentis exacerbated autoimmune arthritis in the K/BxN mouse model. Several off-the-shelf probiotic preparations that include Bifidobacterium strains also drove intestinal Th17 cell accumulation.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
320 |
13
|
Wyle FA, Artenstein MS, Brandt BL, Tramont EC, Kasper DL, Altieri PL, Berman SL, Lowenthal JP. Immunologic response of man to group B meningococcal polysaccharide vaccines. J Infect Dis 1972; 126:514-21. [PMID: 4197754 DOI: 10.1093/infdis/126.5.514] [Citation(s) in RCA: 308] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
Clinical Trial |
53 |
308 |
14
|
Ochoa-Repáraz J, Mielcarz DW, Ditrio LE, Burroughs AR, Begum-Haque S, Dasgupta S, Kasper DL, Kasper LH. Central nervous system demyelinating disease protection by the human commensal Bacteroides fragilis depends on polysaccharide A expression. THE JOURNAL OF IMMUNOLOGY 2010; 185:4101-8. [PMID: 20817872 DOI: 10.4049/jimmunol.1001443] [Citation(s) in RCA: 289] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The importance of gut commensal bacteria in maintaining immune homeostasis is increasingly understood. We recently described that alteration of the gut microflora can affect a population of Foxp3(+)T(reg) cells that regulate demyelination in experimental autoimmune encephalomyelitis (EAE), the experimental model of human multiple sclerosis. We now extend our previous observations on the role of commensal bacteria in CNS demyelination, and we demonstrate that Bacteroides fragilis producing a bacterial capsular polysaccharide Ag can protect against EAE. Recolonization with wild type B. fragilis maintained resistance to EAE, whereas reconstitution with polysaccharide A-deficient B. fragilis restored EAE susceptibility. Enhanced numbers of Foxp3(+)T(reg) cells in the cervical lymph nodes were observed after intestinal recolonization with either strain of B. fragilis. Ex vivo, CD4(+)T cells obtained from mice reconstituted with wild type B. fragilis had significantly enhanced rates of conversion into IL-10-producing Foxp3(+)T(reg) cells and offered greater protection against disease. Our results suggest an important role for commensal bacterial Ags, in particular B. fragilis expressing polysaccharide A, in protecting against CNS demyelination in EAE and perhaps human multiple sclerosis.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
289 |
15
|
Avci FY, Li X, Tsuji M, Kasper DL. A mechanism for glycoconjugate vaccine activation of the adaptive immune system and its implications for vaccine design. Nat Med 2011; 17:1602-9. [PMID: 22101769 PMCID: PMC3482454 DOI: 10.1038/nm.2535] [Citation(s) in RCA: 272] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 09/22/2011] [Indexed: 11/09/2022]
Abstract
Although glycoconjugate vaccines have provided enormous health benefits globally, they have been less successful in significant high-risk populations. Exploring novel approaches to the enhancement of glycoconjugate effectiveness, we investigated molecular and cellular mechanisms governing the immune response to a prototypical glycoconjugate vaccine. In antigen-presenting cells, a carbohydrate epitope is generated upon endolysosomal processing of group B streptococcal type III polysaccharide coupled to a carrier protein. In conjunction with a carrier protein-derived peptide, this carbohydrate epitope binds to major histocompatibility class II (MHCII) and stimulates carbohydrate-specific CD4+ T-cell clones to produce interleukins 2 and 4—cytokines essential for providing T-cell help to antibody-producing B cells. An archetypical glycoconjugate vaccine constructed to maximize the presentation of carbohydrate epitopes recognized by T cells is 50–100 times more potent and significantly more protective in an animal model of infection than is a currently used vaccine construct.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
272 |
16
|
Bartlett JG, Onderdonk AB, Cisneros RL, Kasper DL. Clindamycin-associated colitis due to a toxin-producing species of Clostridium in hamsters. J Infect Dis 1977; 136:701-5. [PMID: 915343 DOI: 10.1093/infdis/136.5.701] [Citation(s) in RCA: 263] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Clindamycin-associated enterocolitis in hamsters was studied to detect and characterize a transmissible agent. It was found that the disease could be transferred by cecal contents and filtrates of cecal contents (pore size of filter, 0.02 micron) obtained from animals after administration of clindamycin. Subsequent work showed that enterocolitis could be produced with broth cultures of a species of Clostridium recovered from cecal contents of animals with clindamycin-induced disease. The cell-free supernatant of this strain also caused enterocolitis. Cecal contents from animals with clindamycin-induced disease incubated with gas gangrene antitoxin failed to cause intestinal lesions. These experiments indicate that clindamycin-associated colitis in hamsters is due to a clindamycin-resistant, toxin-producing strain of Clostridium.
Collapse
|
|
48 |
263 |
17
|
Cobb BA, Wang Q, Tzianabos AO, Kasper DL. Polysaccharide Processing and Presentation by the MHCII Pathway. Cell 2004; 117:677-87. [PMID: 15163414 PMCID: PMC2917993 DOI: 10.1016/j.cell.2004.05.001] [Citation(s) in RCA: 262] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2003] [Revised: 04/13/2004] [Accepted: 04/22/2004] [Indexed: 10/26/2022]
Abstract
The adaptive immune system functions through the combined action of antigen-presenting cells (APCs) and T cells. Specifically, class I major histocompatibility complex antigen presentation to CD8(+) T cells is limited to proteosome-generated peptides from intracellular pathogens while the class II (MHCII) endocytic pathway presents only proteolytic peptides from extracellular pathogens to CD4(+) T cells. Carbohydrates have been thought to stimulate immune responses independently of T cells; however, zwitterionic polysaccharides (ZPSs) from the capsules of some bacteria can activate CD4(+) T cells. Here we show that ZPSs are processed to low molecular weight carbohydrates by a nitric oxide-mediated mechanism and presented to T cells through the MHCII endocytic pathway. Furthermore, these carbohydrates bind to MHCII inside APCs for presentation to T cells. Our observations begin to elucidate the mechanisms by which some carbohydrates induce important immunologic responses through T cell activation, suggesting a fundamental shift in the MHCII presentation paradigm.
Collapse
|
|
21 |
262 |
18
|
Mazmanian SK, Kasper DL. The love-hate relationship between bacterial polysaccharides and the host immune system. Nat Rev Immunol 2006; 6:849-58. [PMID: 17024229 DOI: 10.1038/nri1956] [Citation(s) in RCA: 250] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This article explores the fascinating relationship between the mammalian immune system and the bacteria that are present in the mammalian gut. Every human is an ecosystem that hosts 10(13)-10(14) bacteria. We review the evidence that immunomodulatory molecules produced by commensal bacteria in the gut have a beneficial influence on the development of certain immune responses, through eliciting the clonal expansion of CD4(+) T-cell populations. This process seems to contribute to the overall health of the host by offering protection against various diseases and might provide supporting evidence at a molecular level for the 'hygiene hypothesis' of allergic immune disorders.
Collapse
|
Review |
19 |
250 |
19
|
Baker CJ, Rench MA, Edwards MS, Carpenter RJ, Hays BM, Kasper DL. Immunization of pregnant women with a polysaccharide vaccine of group B streptococcus. N Engl J Med 1988; 319:1180-5. [PMID: 3050524 DOI: 10.1056/nejm198811033191802] [Citation(s) in RCA: 228] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Immunization of pregnant women with a polysaccharide vaccine of group B streptococcus is a promising strategy for the prevention of perinatal infections caused by group B streptococci. To explore the feasibility of this strategy, we vaccinated 40 pregnant women at a mean gestation of 31 weeks with a single 50-microgram dose of the Type III capsular polysaccharide of group B streptococcus. The only adverse effect detected was a mild local reaction in nine women (22 percent). Of the 35 women with low or unprotective antibody levels before immunization (less than 2 micrograms per milliliter), 20 (57 percent) responded to the vaccine. The geometric mean antibody level rose from 1.3 to 7.1 micrograms per milliliter four weeks after vaccination (P less than 0.02), and these levels persisted at delivery and three months post partum. Sixty-two percent of the vaccine-induced immunoglobulin in the mothers was IgG, which readily crosses the placenta. Infant antibody levels in cord serum correlated directly with maternal antibody levels at delivery (r = 0.913, P less than 0.001). Of the 25 infants born to women who responded to the vaccine, 80 percent continued to have protective levels of antibody at one month of age and 64 percent had protective levels at three months. Serum samples from infants with greater than or equal to 2 micrograms of antibody to Type III group B streptococcus per milliliter uniformly promoted efficient opsonization, phagocytosis, and bacterial killing in vitro of Type III strains. This effect could be mediated exclusively by the alternative complement pathway. Although this vaccine with an overall response rate of 63 percent is not optimally immunogenic, we conclude that maternal immunization is feasible and can provide passive immunity against systemic infection with Type III group B streptococcus in the majority of newborns. Larger trials with better vaccines will be required to evaluate the safety and clinical effectiveness of this strategy.
Collapse
|
|
37 |
228 |
20
|
Krinos CM, Coyne MJ, Weinacht KG, Tzianabos AO, Kasper DL, Comstock LE. Extensive surface diversity of a commensal microorganism by multiple DNA inversions. Nature 2001; 414:555-8. [PMID: 11734857 DOI: 10.1038/35107092] [Citation(s) in RCA: 222] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The dynamic interactions between a host and its intestinal microflora that lead to commensalism are unclear. Bacteria that colonize the intestinal tract do so despite the development of a specific immune response by the host. The mechanisms used by commensal organisms to circumvent this immune response have yet to be established. Here we demonstrate that the human colonic microorganism, Bacteroides fragilis, is able to modulate its surface antigenicity by producing at least eight distinct capsular polysaccharides-a number greater than any previously reported for a bacterium-and is able to regulate their expression in an on-off manner by the reversible inversion of DNA segments containing the promoters for their expression. This means of generating surface diversity allows the organism to exhibit a wide array of distinct surface polysaccharide combinations, and may have broad implications for how the predominant human colonic microorganisms, the Bacteroides species, maintain an ecological niche in the intestinal tract.
Collapse
|
|
24 |
222 |
21
|
Dasgupta S, Erturk-Hasdemir D, Ochoa-Reparaz J, Reinecker HC, Kasper DL. Plasmacytoid dendritic cells mediate anti-inflammatory responses to a gut commensal molecule via both innate and adaptive mechanisms. Cell Host Microbe 2015; 15:413-23. [PMID: 24721570 DOI: 10.1016/j.chom.2014.03.006] [Citation(s) in RCA: 218] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 01/13/2014] [Accepted: 02/27/2014] [Indexed: 02/07/2023]
Abstract
Polysaccharide A (PSA), the archetypical immunomodulatory molecule of the gut commensal Bacteroides fragilis, induces regulatory T cells to secrete the anti-inflammatory cytokine interleukin-10 (IL-10). The cellular mediators of PSA's immunomodulatory properties are incompletely understood. In a mouse model of colitis, we find that PSA requires both innate and adaptive immune mechanisms to generate protection. Plasmacytoid DCs (PDCs) exposed to PSA do not produce proinflammatory cytokines, but instead they specifically stimulate IL-10 secretion by CD4+ T cells and efficiently mediate PSA-afforded immunoprotection. PSA induces and preferentially ligates Toll-like receptor 2 on PDCs but not on conventional DCs. Compared with other TLR2 ligands, PSA is better at enhancing PDC expression of costimulatory molecules required for protection against colitis. PDCs can thus orchestrate the beneficial immunoregulatory interaction of commensal microbial molecules, such as PSA, through both innate and adaptive immune mechanisms.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
218 |
22
|
Tzianabos AO, Onderdonk AB, Rosner B, Cisneros RL, Kasper DL. Structural features of polysaccharides that induce intra-abdominal abscesses. Science 1993; 262:416-9. [PMID: 8211161 DOI: 10.1126/science.8211161] [Citation(s) in RCA: 211] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The capsular polysaccharide complex from Bacteroides fragilis promotes the formation of intra-abdominal abscesses--a pathologic host response to infecting microorganisms. This complex consists of two distinct polysaccharides, each with repeating units that have positively charged amino groups and negatively charged carboxyl or phosphate groups. Analysis of these polysaccharides as well as other charged carbohydrates before and after chemical modification revealed that these oppositely charged groups are required for the induction of intra-abdominal abscesses in a rat model.
Collapse
|
|
32 |
211 |
23
|
Wang Q, McLoughlin RM, Cobb BA, Charrel-Dennis M, Zaleski KJ, Golenbock D, Tzianabos AO, Kasper DL. A bacterial carbohydrate links innate and adaptive responses through Toll-like receptor 2. ACTA ACUST UNITED AC 2006; 203:2853-63. [PMID: 17178920 PMCID: PMC2118167 DOI: 10.1084/jem.20062008] [Citation(s) in RCA: 211] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Commensalism is critical to a healthy Th1/Th2 cell balance. Polysaccharide A (PSA), which is produced by the intestinal commensal Bacteroides fragilis, activates CD4+ T cells, resulting in a Th1 response correcting the Th2 cell skew of germ-free mice. We identify Toll-like receptors as crucial to the convergence of innate and adaptive responses stimulated by PSA. Optimization of the Th1 cytokine interferon-γ in PSA-stimulated dendritic cell–CD4+ T cell co-cultures depends on both Toll-like receptor (TLR) 2 and antigen presentation. Synergy between the innate and adaptive responses was also shown when TLR2−/− mice exhibited impaired intraabdominal abscess formation in response to B. fragilis. Commensal bacteria, using molecules like PSA, potentially modulate the Th1/Th2 cell balance and the response to infection by coordinating both the innate and adaptive pathways.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
211 |
24
|
Onderdonk AB, Kasper DL, Cisneros RL, Bartlett JG. The capsular polysaccharide of Bacteroides fragilis as a virulence factor: comparison of the pathogenic potential of encapsulated and unencapsulated strains. J Infect Dis 1977; 136:82-9. [PMID: 886206 DOI: 10.1093/infdis/136.1.82] [Citation(s) in RCA: 211] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The pathogenic potentials of encapsulated and unencapsulated strains of Bacteroides fragilis were compared by use of a rat model of intraabdominal sepsis. Implantation of encapsulated B. fragilis alone resulted in abscesses in most recipients, whereas unencapsulated strains seldom produced this effect unless they were combined with another organism. Implants of heat-killed, encapsulated B. fragilis also resulted in abscess formation. Subsequent experiments suggested that the abscess-potentiating ability of encapsulated B. fragilis is related to the capsular polysaccharide. Implantation of 200 microgram of the purified capsular material alone or in conjuction with unencapsulated strains caused abscess formation in a majority of animals. Comparable results were not obtained with capsular polysaccharide from Escherichia coli O7:K1(L)"NM or with heat-killed Streptococcus pneumoniae type III. The capsular polysaccharide of B. fragilis appears to potentiate abscess formation and may represent a virulence factor for this species.
Collapse
|
Comparative Study |
48 |
211 |
25
|
Chung DR, Kasper DL, Panzo RJ, Chitnis T, Grusby MJ, Sayegh MH, Tzianabos AO, Chtinis T. CD4+ T cells mediate abscess formation in intra-abdominal sepsis by an IL-17-dependent mechanism. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:1958-63. [PMID: 12574364 DOI: 10.4049/jimmunol.170.4.1958] [Citation(s) in RCA: 191] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Abscess formation associated with intra-abdominal sepsis causes severe morbidity and can be fatal. Previous studies have implicated T cells in the pathogenesis of abscess formation, and we have recently shown that CD4(+) T cells activated in vitro by zwitterionic capsular polysaccharides from abscess-inducing bacteria such as Staphylococcus aureus and Bacteroides fragilis initiate this host response when transferred to naive rats. In this study, we show that mice deficient in alphabetaTCR-bearing T cells or CD4(+) T cells fail to develop abscesses following challenge with B. fragilis or abscess-inducing zwitterionic polysaccharides, compared with CD8(-/-) or wild-type animals. Transfer of CD4(+) T cells from wild-type mice to alphabetaTCR(-/-) animals reconstituted this ability. The induction of abscesses required T cell costimulation via the CD28-B7 pathway, and T cell transfer experiments with STAT4(-/-) and STAT6(-/-) mice demonstrated that this host response is dependent on STAT4 signaling. Significantly higher levels of IL-17, a proinflammatory cytokine produced almost exclusively by activated CD4(+) T cells, were associated with abscess formation in Th2-impaired (STAT6(-/-)) mice, while STAT4(-/-) mice had significantly lower levels of this cytokine than control animals. The formation of abscesses was preceded by an increase in the number of activated CD4(+) T cells in the peritoneal cavity 24 h following bacterial challenge. Confocal laser-scanning microscopy analysis revealed that CD4(+) T cells comprise the abscess wall in these animals and produce IL-17 at this site. Administration of a neutralizing Ab specific for IL-17 prevented abscess formation following bacterial challenge in mice. These data delineate the specific T cell response necessary for the development of intra-abdominal abscesses and underscore the role of IL-17 in this disease process.
Collapse
|
|
22 |
191 |