1
|
Abstract
The nervous system detects and interprets a wide range of thermal and mechanical stimuli, as well as environmental and endogenous chemical irritants. When intense, these stimuli generate acute pain, and in the setting of persistent injury, both peripheral and central nervous system components of the pain transmission pathway exhibit tremendous plasticity, enhancing pain signals and producing hypersensitivity. When plasticity facilitates protective reflexes, it can be beneficial, but when the changes persist, a chronic pain condition may result. Genetic, electrophysiological, and pharmacological studies are elucidating the molecular mechanisms that underlie detection, coding, and modulation of noxious stimuli that generate pain.
Collapse
|
Review |
16 |
2779 |
2
|
Jordt SE, Bautista DM, Chuang HH, McKemy DD, Zygmunt PM, Högestätt ED, Meng ID, Julius D. Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 2004; 427:260-5. [PMID: 14712238 DOI: 10.1038/nature02282] [Citation(s) in RCA: 1470] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2003] [Accepted: 12/12/2003] [Indexed: 11/08/2022]
Abstract
Wasabi, horseradish and mustard owe their pungency to isothiocyanate compounds. Topical application of mustard oil (allyl isothiocyanate) to the skin activates underlying sensory nerve endings, thereby producing pain, inflammation and robust hypersensitivity to thermal and mechanical stimuli. Despite their widespread use in both the kitchen and the laboratory, the molecular mechanism through which isothiocyanates mediate their effects remains unknown. Here we show that mustard oil depolarizes a subpopulation of primary sensory neurons that are also activated by capsaicin, the pungent ingredient in chilli peppers, and by Delta(9)-tetrahydrocannabinol (THC), the psychoactive component of marijuana. Both allyl isothiocyanate and THC mediate their excitatory effects by activating ANKTM1, a member of the TRP ion channel family recently implicated in the detection of noxious cold. These findings identify a cellular and molecular target for the pungent action of mustard oils and support an emerging role for TRP channels as ionotropic cannabinoid receptors.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
1470 |
3
|
Bautista DM, Jordt SE, Nikai T, Tsuruda PR, Read AJ, Poblete J, Yamoah EN, Basbaum AI, Julius D. TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell 2006; 124:1269-82. [PMID: 16564016 DOI: 10.1016/j.cell.2006.02.023] [Citation(s) in RCA: 1464] [Impact Index Per Article: 77.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Revised: 01/06/2006] [Accepted: 02/08/2006] [Indexed: 12/20/2022]
Abstract
TRPA1 is an excitatory ion channel targeted by pungent irritants from mustard and garlic. TRPA1 has been proposed to function in diverse sensory processes, including thermal (cold) nociception, hearing, and inflammatory pain. Using TRPA1-deficient mice, we now show that this channel is the sole target through which mustard oil and garlic activate primary afferent nociceptors to produce inflammatory pain. TRPA1 is also targeted by environmental irritants, such as acrolein, that account for toxic and inflammatory actions of tear gas, vehicle exhaust, and metabolic byproducts of chemotherapeutic agents. TRPA1-deficient mice display normal cold sensitivity and unimpaired auditory function, suggesting that this channel is not required for the initial detection of noxious cold or sound. However, TRPA1-deficient mice exhibit pronounced deficits in bradykinin-evoked nociceptor excitation and pain hypersensitivity. Thus, TRPA1 is an important component of the transduction machinery through which environmental irritants and endogenous proalgesic agents depolarize nociceptors to elicit inflammatory pain.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
1464 |
4
|
Bautista DM, Siemens J, Glazer JM, Tsuruda PR, Basbaum AI, Stucky CL, Jordt SE, Julius D. The menthol receptor TRPM8 is the principal detector of environmental cold. Nature 2007; 448:204-8. [PMID: 17538622 DOI: 10.1038/nature05910] [Citation(s) in RCA: 989] [Impact Index Per Article: 54.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Accepted: 05/14/2007] [Indexed: 01/29/2023]
Abstract
Sensory nerve fibres can detect changes in temperature over a remarkably wide range, a process that has been proposed to involve direct activation of thermosensitive excitatory transient receptor potential (TRP) ion channels. One such channel--TRP melastatin 8 (TRPM8) or cold and menthol receptor 1 (CMR1)--is activated by chemical cooling agents (such as menthol) or when ambient temperatures drop below approximately 26 degrees C, suggesting that it mediates the detection of cold thermal stimuli by primary afferent sensory neurons. However, some studies have questioned the contribution of TRPM8 to cold detection or proposed that other excitatory or inhibitory channels are more critical to this sensory modality in vivo. Here we show that cultured sensory neurons and intact sensory nerve fibres from TRPM8-deficient mice exhibit profoundly diminished responses to cold. These animals also show clear behavioural deficits in their ability to discriminate between cold and warm surfaces, or to respond to evaporative cooling. At the same time, TRPM8 mutant mice are not completely insensitive to cold as they avoid contact with surfaces below 10 degrees C, albeit with reduced efficiency. Thus, our findings demonstrate an essential and predominant role for TRPM8 in thermosensation over a wide range of cold temperatures, validating the hypothesis that TRP channels are the principal sensors of thermal stimuli in the peripheral nervous system.
Collapse
|
|
18 |
989 |
5
|
McNamara CR, Mandel-Brehm J, Bautista DM, Siemens J, Deranian KL, Zhao M, Hayward NJ, Chong JA, Julius D, Moran MM, Fanger CM. TRPA1 mediates formalin-induced pain. Proc Natl Acad Sci U S A 2007; 104:13525-30. [PMID: 17686976 PMCID: PMC1941642 DOI: 10.1073/pnas.0705924104] [Citation(s) in RCA: 989] [Impact Index Per Article: 54.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The formalin model is widely used for evaluating the effects of analgesic compounds in laboratory animals. Injection of formalin into the hind paw induces a biphasic pain response; the first phase is thought to result from direct activation of primary afferent sensory neurons, whereas the second phase has been proposed to reflect the combined effects of afferent input and central sensitization in the dorsal horn. Here we show that formalin excites sensory neurons by directly activating TRPA1, a cation channel that plays an important role in inflammatory pain. Formalin induced robust calcium influx in cells expressing cloned or native TRPA1 channels, and these responses were attenuated by a previously undescribed TRPA1-selective antagonist. Moreover, sensory neurons from TRPA1-deficient mice lacked formalin sensitivity. At the behavioral level, pharmacologic blockade or genetic ablation of TRPA1 produced marked attenuation of the characteristic flinching, licking, and lifting responses resulting from intraplantar injection of formalin. Our results show that TRPA1 is the principal site of formalin's pain-producing action in vivo, and that activation of this excitatory channel underlies the physiological and behavioral responses associated with this model of pain hypersensitivity.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
989 |
6
|
Hinman A, Chuang HH, Bautista DM, Julius D. TRP channel activation by reversible covalent modification. Proc Natl Acad Sci U S A 2006; 103:19564-8. [PMID: 17164327 PMCID: PMC1748265 DOI: 10.1073/pnas.0609598103] [Citation(s) in RCA: 716] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Allyl isothiocyanate, the pungent principle of wasabi and other mustard oils, produces pain by activating TRPA1, an excitatory ion channel on sensory nerve endings. Isothiocyanates are membrane-permeable electrophiles that form adducts with thiols and primary amines, suggesting that covalent modification, rather than classical lock-and-key binding, accounts for their agonist properties. Indeed, we show that thiol reactive compounds of diverse structure activate TRPA1 in a manner that relies on covalent modification of cysteine residues within the cytoplasmic N terminus of the channel. These findings suggest an unusual paradigm whereby natural products activate a receptor through direct, reversible, and covalent protein modification.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
716 |
7
|
Wilson SR, Thé L, Batia LM, Beattie K, Katibah GE, McClain SP, Pellegrino M, Estandian DM, Bautista DM. The epithelial cell-derived atopic dermatitis cytokine TSLP activates neurons to induce itch. Cell 2013; 155:285-95. [PMID: 24094650 DOI: 10.1016/j.cell.2013.08.057] [Citation(s) in RCA: 712] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 07/14/2013] [Accepted: 08/23/2013] [Indexed: 12/18/2022]
Abstract
Atopic dermatitis (AD) is a chronic itch and inflammatory disorder of the skin that affects one in ten people. Patients suffering from severe AD eventually progress to develop asthma and allergic rhinitis, in a process known as the "atopic march." Signaling between epithelial cells and innate immune cells via the cytokine thymic stromal lymphopoietin (TSLP) is thought to drive AD and the atopic march. Here, we report that epithelial cells directly communicate to cutaneous sensory neurons via TSLP to promote itch. We identify the ORAI1/NFAT calcium signaling pathway as an essential regulator of TSLP release from keratinocytes, the primary epithelial cells of the skin. TSLP then acts directly on a subset of TRPA1-positive sensory neurons to trigger robust itch behaviors. Our results support a model whereby calcium-dependent TSLP release by keratinocytes activates both primary afferent neurons and immune cells to promote inflammatory responses in the skin and airways.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
12 |
712 |
8
|
Bautista DM, Movahed P, Hinman A, Axelsson HE, Sterner O, Högestätt ED, Julius D, Jordt SE, Zygmunt PM. Pungent products from garlic activate the sensory ion channel TRPA1. Proc Natl Acad Sci U S A 2005; 102:12248-52. [PMID: 16103371 PMCID: PMC1189336 DOI: 10.1073/pnas.0505356102] [Citation(s) in RCA: 635] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Garlic belongs to the Allium family of plants that produce organosulfur compounds, such as allicin and diallyl disulfide (DADS), which account for their pungency and spicy aroma. Many health benefits have been ascribed to Allium extracts, including hypotensive and vasorelaxant activities. However, the molecular mechanisms underlying these effects remain unknown. Intriguingly, allicin and DADS share structural similarities with allyl isothiocyanate, the pungent ingredient in wasabi and other mustard plants that induces pain and inflammation by activating TRPA1, an excitatory ion channel on primary sensory neurons of the pain pathway. Here we show that allicin and DADS excite an allyl isothiocyanate-sensitive subpopulation of sensory neurons and induce vasodilation by activating capsaicin-sensitive perivascular sensory nerve endings. Moreover, allicin and DADS activate the cloned TRPA1 channel when expressed in heterologous systems. These and other results suggest that garlic excites sensory neurons primarily through activation of TRPA1. Thus different plant genera, including Allium and Brassica, have developed evolutionary convergent strategies that target TRPA1 channels on sensory nerve endings to achieve chemical deterrence.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
635 |
9
|
Trevisani M, Siemens J, Materazzi S, Bautista DM, Nassini R, Campi B, Imamachi N, Andrè E, Patacchini R, Cottrell GS, Gatti R, Basbaum AI, Bunnett NW, Julius D, Geppetti P. 4-Hydroxynonenal, an endogenous aldehyde, causes pain and neurogenic inflammation through activation of the irritant receptor TRPA1. Proc Natl Acad Sci U S A 2007; 104:13519-24. [PMID: 17684094 PMCID: PMC1948902 DOI: 10.1073/pnas.0705923104] [Citation(s) in RCA: 588] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Indexed: 11/18/2022] Open
Abstract
TRPA1 is an excitatory ion channel expressed by a subpopulation of primary afferent somatosensory neurons that contain substance P and calcitonin gene-related peptide. Environmental irritants such as mustard oil, allicin, and acrolein activate TRPA1, causing acute pain, neuropeptide release, and neurogenic inflammation. Genetic studies indicate that TRPA1 is also activated downstream of one or more proalgesic agents that stimulate phospholipase C signaling pathways, thereby implicating this channel in peripheral mechanisms controlling pain hypersensitivity. However, it is not known whether tissue injury also produces endogenous proalgesic factors that activate TRPA1 directly to augment inflammatory pain. Here, we report that recombinant or native TRPA1 channels are activated by 4-hydroxy-2-nonenal (HNE), an endogenous alpha,beta-unsaturated aldehyde that is produced when reactive oxygen species peroxidate membrane phospholipids in response to tissue injury, inflammation, and oxidative stress. HNE provokes release of substance P and calcitonin gene-related peptide from central (spinal cord) and peripheral (esophagus) nerve endings, resulting in neurogenic plasma protein extravasation in peripheral tissues. Moreover, injection of HNE into the rodent hind paw elicits pain-related behaviors that are inhibited by TRPA1 antagonists and absent in animals lacking functional TRPA1 channels. These findings demonstrate that HNE activates TRPA1 on nociceptive neurons to promote acute pain, neuropeptide release, and neurogenic inflammation. Our results also provide a mechanism-based rationale for developing novel analgesic or anti-inflammatory agents that target HNE production or TRPA1 activation.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
588 |
10
|
Wilson SR, Gerhold KA, Bifolck-Fisher A, Liu Q, Patel KN, Dong X, Bautista DM. TRPA1 is required for histamine-independent, Mas-related G protein-coupled receptor-mediated itch. Nat Neurosci 2011; 14:595-602. [PMID: 21460831 PMCID: PMC3181150 DOI: 10.1038/nn.2789] [Citation(s) in RCA: 457] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 02/28/2011] [Indexed: 12/28/2022]
Abstract
Itch, the unpleasant sensation that evokes a desire to scratch, accompanies numerous skin and nervous system disorders. In many cases, pathological itch is insensitive to antihistamine treatment. Recent studies have identified members of the Mas-related G protein-coupled receptor (Mrgpr) family that are activated by mast cell mediators and promote histamine-independent itch. MrgprA3 and MrgprC11 act as receptors for the pruritogens chloroquine and BAM8-22, respectively. However, the signaling pathways and transduction channels activated downstream of these pruritogens are largely unknown. We found that TRPA1 is the downstream target of both MrgprA3 and MrgprC11 in cultured sensory neurons and heterologous cells. TRPA1 is required for Mrgpr-mediated signaling, as sensory neurons from TRPA1-deficient mice exhibited markedly diminished responses to chloroquine and BAM8-22. Similarly, TRPA1-deficient mice displayed little to no scratching in response to these pruritogens. Our findings indicate that TRPA1 is an essential component of the signaling pathways that promote histamine-independent itch.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
457 |
11
|
Holsinger LJ, Graef IA, Swat W, Chi T, Bautista DM, Davidson L, Lewis RS, Alt FW, Crabtree GR. Defects in actin-cap formation in Vav-deficient mice implicate an actin requirement for lymphocyte signal transduction. Curr Biol 1998; 8:563-72. [PMID: 9601640 DOI: 10.1016/s0960-9822(98)70225-8] [Citation(s) in RCA: 345] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Antigen-receptor interactions on lymphocytes result in local clustering of actin, receptors and signaling molecules into an asymmetric membrane structure termed a cap. Although actin polymerization is known to be required, the mechanisms underlying cap formation are unclear. We have studied the events underlying cap formation using mice bearing a null mutation in vav (vav-/-), a gene that encodes a guanine-nucleotide exchange factor for the GTPase Rac. RESULTS Lymphocytes from vav-/- mice failed to form T-cell receptor caps following activation and had a defective actin cytoskeleton. The vav-/- T cells were deficient in interleukin-2 (IL-2) production and proliferation, and the peak of Ca2+ mobilization was reduced although of normal duration. Activation of Jun N-terminal kinase or stress-activated kinase (JNK or SAPK) and mitogen-activated protein kinase (MAPK) and the induction of the transcription factor NF-ATc1 and egr-1 genes was normal. Despite the reduced Ca2+ mobilization, translocation of cytoplasmic NF-ATc to the nucleus was normal, reflecting that the lower levels of Ca2+ in vav-/- cells were still sufficient to activate calcineurin. Treatment of lymphocytes with cytochalasin D, which blocks actin polymerization, inhibited cap formation and produced defects in signaling and IL-2 transcriptional induction in response to antigen-receptor signaling that were nearly identical to those seen in vav-/- cells. In transfection studies, either constitutively active Vav or Rac could complement constitutively active calcineurin to activate NF-AT-dependent transcription. CONCLUSIONS These results indicate that Vav is required for cap formation in lymphocytes. Furthermore, the correlation between cap formation, IL-2 production and proliferation supports the hypothesis that an actin-dependent pathway is a source of specialized growth regulatory signals.
Collapse
|
|
27 |
345 |
12
|
Abstract
Tissue damage evokes an inflammatory response that promotes the removal of harmful stimuli, tissue repair, and protective behaviors to prevent further damage and encourage healing. However, inflammation may outlive its usefulness and become chronic. Chronic inflammation can lead to a host of diseases, including asthma, itch, rheumatoid arthritis, and colitis. Primary afferent sensory neurons that innervate target organs release inflammatory neuropeptides in the local area of tissue damage to promote vascular leakage, the recruitment of immune cells, and hypersensitivity to mechanical and thermal stimuli. TRPA1 channels are required for neuronal excitation, the release of inflammatory neuropeptides, and subsequent pain hypersensitivity. TRPA1 is also activated by the release of inflammatory agents from nonneuronal cells in the area of tissue injury or disease. This dual function of TRPA1 as a detector and instigator of inflammatory agents makes TRPA1 a gatekeeper of chronic inflammatory disorders of the skin, airways, and gastrointestinal tract.
Collapse
|
Review |
13 |
302 |
13
|
Bautista DM, Wilson SR, Hoon MA. Why we scratch an itch: the molecules, cells and circuits of itch. Nat Neurosci 2014; 17:175-82. [PMID: 24473265 PMCID: PMC4364402 DOI: 10.1038/nn.3619] [Citation(s) in RCA: 245] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 12/03/2013] [Indexed: 12/17/2022]
Abstract
Itch is described as an irritating sensation that triggers a desire to scratch. However, this definition hardly seems fitting for the millions of people who suffer from intractable itch. Indeed, the Buddhist philosopher Nāgārjuna more aptly stated, "There is pleasure when an itch is scratched. But to be without an itch is more pleasurable still." Chronic itch is widespread and very difficult to treat. In this review we focus on the molecules, cells and circuits in the peripheral and central nervous systems that drive acute and chronic itch transmission. Understanding the itch circuitry is critical to developing new therapies for this intractable disease.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
245 |
14
|
Knowlton WM, Fisher A, Bautista DM, McKemy DD. TRPM8, but not TRPA1, is required for neural and behavioral responses to acute noxious cold temperatures and cold-mimetics in vivo. Pain 2010; 150:340-350. [PMID: 20542379 PMCID: PMC2897947 DOI: 10.1016/j.pain.2010.05.021] [Citation(s) in RCA: 229] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 05/19/2010] [Accepted: 05/20/2010] [Indexed: 02/04/2023]
Abstract
Somatosensory neurons detect environmental stimuli, converting external cues into neural activity that is relayed first to second-order neurons in the spinal cord. The detection of cold is proposed to be mediated by the ion channels TRPM8 and TRPA1. However, there is significant debate regarding the role of each channel in cold-evoked pain, complicating their potential as drug targets for conditions such as cold allodynia and hyperalgesia. To address this debate, we generated mice lacking functional copies of both channels and examined behaviors and neural activity in response to painful cold and noxious cooling compounds. Whereas normal mice display a robust preference for warmth over cold, both TRPM8-null (TRPM8(-/-)) and TRPM8/TRPA1 double-knockout mice (DKO) display no preference until temperatures reach the extreme noxious range. Additionally, in contrast to wildtype mice that avoid touching cold surfaces, mice lacking TRPM8 channels display no such avoidance and explore noxious cold surfaces, even at 5 degrees C. Furthermore, nocifensive behaviors to the cold-mimetic icilin are absent in TRPM8(-/-) and DKO mice, but are retained in TRPA1-nulls (TRPA1(-/-)). Finally, neural activity, measured by expression of the immediate-early gene c-fos, evoked by hindpaw stimulation with noxious cold, menthol, or icilin is reduced in TRPM8(-/-) and DKO mice, but not in TRPA1(-/-) animals. Thus our results show that noxious cold signaling is exclusive to TRPM8, mediating neural and behavioral responses to cold and cold-mimetics, and that TRPA1 is not required for acute cold pain in mammals.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
229 |
15
|
Bautista DM, Sigal YM, Milstein AD, Garrison JL, Zorn JA, Tsuruda PR, Nicoll RA, Julius D. Pungent agents from Szechuan peppers excite sensory neurons by inhibiting two-pore potassium channels. Nat Neurosci 2008; 11:772-9. [PMID: 18568022 PMCID: PMC3072296 DOI: 10.1038/nn.2143] [Citation(s) in RCA: 188] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Accepted: 05/21/2008] [Indexed: 12/28/2022]
Abstract
In traditional folk medicine, Xanthoxylum plants are referred to as 'toothache trees' because their anesthetic or counter-irritant properties render them useful in the treatment of pain. Psychophysical studies have identified hydroxy-alpha-sanshool as the compound most responsible for the unique tingling and buzzing sensations produced by Szechuan peppercorns or other Xanthoxylum preparations. Although it is generally agreed that sanshool elicits its effects by activating somatosensory neurons, the underlying cellular and molecular mechanisms remain a matter of debate. Here we show that hydroxy-alpha-sanshool excites two types of sensory neurons, including small-diameter unmyelinated cells that respond to capsaicin (but not mustard oil) as well as large-diameter myelinated neurons that express the neurotrophin receptor TrkC. We found that hydroxy-alpha-sanshool excites neurons through a unique mechanism involving inhibition of pH- and anesthetic-sensitive two-pore potassium channels (KCNK3, KCNK9 and KCNK18), providing a framework for understanding the unique and complex psychophysical sensations associated with the Szechuan pepper experience.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
188 |
16
|
Almeida MC, Hew-Butler T, Soriano RN, Rao S, Wang W, Wang J, Tamayo N, Oliveira DL, Nucci TB, Aryal P, Garami A, Bautista D, Gavva NR, Romanovsky AA. Pharmacological blockade of the cold receptor TRPM8 attenuates autonomic and behavioral cold defenses and decreases deep body temperature. J Neurosci 2012; 32:2086-99. [PMID: 22323721 PMCID: PMC3566779 DOI: 10.1523/jneurosci.5606-11.2012] [Citation(s) in RCA: 186] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 12/14/2011] [Indexed: 11/21/2022] Open
Abstract
We studied N-(2-aminoethyl)-N-(4-(benzyloxy)-3-methoxybenzyl)thiophene-2-carboxamide hydrochloride (M8-B), a selective and potent antagonist of the transient receptor potential melastatin-8 (TRPM8) channel. In vitro, M8-B blocked cold-induced and TRPM8-agonist-induced activation of rat, human, and murine TRPM8 channels, including those on primary sensory neurons. In vivo, M8-B decreased deep body temperature (T(b)) in Trpm8(+/+) mice and rats, but not in Trpm8(-/-) mice, thus suggesting an on-target action. Intravenous administration of M8-B was more effective in decreasing T(b) in rats than intrathecal or intracerebroventricular administration, indicating a peripheral action. M8-B attenuated cold-induced c-Fos expression in the lateral parabrachial nucleus, thus indicating a site of action within the cutaneous cooling neural pathway to thermoeffectors, presumably on sensory neurons. A low intravenous dose of M8-B did not affect T(b) at either a constantly high or a constantly low ambient temperature (T(a)), but the same dose readily decreased T(b) if rats were kept at a high T(a) during the M8-B infusion and transferred to a low T(a) immediately thereafter. These data suggest that both a successful delivery of M8-B to the skin (high cutaneous perfusion) and the activation of cutaneous TRPM8 channels (by cold) are required for the hypothermic action of M8-B. At tail-skin temperatures <23°C, the magnitude of the M8-B-induced decrease in T(b) was inversely related to skin temperature, thus suggesting that M8-B blocks thermal (cold) activation of TRPM8. M8-B affected all thermoeffectors studied (thermopreferendum, tail-skin vasoconstriction, and brown fat thermogenesis), thus suggesting that TRPM8 is a universal cold receptor in the thermoregulation system.
Collapse
|
Comparative Study |
13 |
186 |
17
|
Miller MR, Mannowetz N, Iavarone AT, Safavi R, Gracheva EO, Smith JF, Hill RZ, Bautista DM, Kirichok Y, Lishko PV. Unconventional endocannabinoid signaling governs sperm activation via the sex hormone progesterone. Science 2016; 352:555-9. [PMID: 26989199 DOI: 10.1126/science.aad6887] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 03/08/2016] [Indexed: 12/25/2022]
Abstract
Steroids regulate cell proliferation, tissue development, and cell signaling via two pathways: a nuclear receptor mechanism and genome-independent signaling. Sperm activation, egg maturation, and steroid-induced anesthesia are executed via the latter pathway, the key components of which remain unknown. Here, we present characterization of the human sperm progesterone receptor that is conveyed by the orphan enzyme α/β hydrolase domain-containing protein 2 (ABHD2). We show that ABHD2 is highly expressed in spermatozoa, binds progesterone, and acts as a progesterone-dependent lipid hydrolase by depleting the endocannabinoid 2-arachidonoylglycerol (2AG) from plasma membrane. The 2AG inhibits the sperm calcium channel (CatSper), and its removal leads to calcium influx via CatSper and ensures sperm activation. This study reveals that progesterone-activated endocannabinoid depletion by ABHD2 is a general mechanism by which progesterone exerts its genome-independent action and primes sperm for fertilization.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
175 |
18
|
Bermúdez-Silva FJ, Suárez J, Baixeras E, Cobo N, Bautista D, Cuesta-Muñoz AL, Fuentes E, Juan-Pico P, Castro MJ, Milman G, Mechoulam R, Nadal A, Rodríguez de Fonseca F. Presence of functional cannabinoid receptors in human endocrine pancreas. Diabetologia 2008; 51:476-87. [PMID: 18092149 DOI: 10.1007/s00125-007-0890-y] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Accepted: 10/12/2007] [Indexed: 12/31/2022]
Abstract
AIMS/HYPOTHESIS We examined the presence of functional cannabinoid receptors 1 and 2 (CB1, CB2) in isolated human islets, phenotyped the cells producing cannabinoid receptors and analysed the actions of selective cannabinoid receptor agonists on insulin, glucagon and somatostatin secretion in vitro. We also described the localisation on islet cells of: (1) the endocannabinoid-producing enzymes N-acyl-phosphatidyl ethanolamine-hydrolysing phospholipase D and diacylglycerol lipase; and (2) the endocannabinoid-degrading enzymes fatty acid amidohydrolase and monoacyl glycerol lipase. METHODS Real-time PCR, western blotting and immunocytochemistry were used to analyse the presence of endocannabinoid-related proteins and genes. Static secretion experiments were used to examine the effects of activating CB1 or CB2 on insulin, glucagon and somatostatin secretion and to measure changes in 2-arachidonoylglycerol (2-AG) levels within islets. Analyses were performed in isolated human islets and in paraffin-embedded sections of human pancreas. RESULTS Human islets of Langerhans expressed CB1 and CB2 (also known as CNR1 and CNR2) mRNA and CB1 and CB2 proteins, and also the machinery involved in synthesis and degradation of 2-AG (the most abundant endocannabinoid, levels of which were modulated by glucose). Immunofluorescence revealed that CB1 was densely located in glucagon-secreting alpha cells and less so in insulin-secreting beta cells. CB2 was densely present in somatostatin-secreting delta cells, but absent in alpha and beta cells. In vitro experiments revealed that CB1 stimulation enhanced insulin and glucagon secretion, while CB2 agonism lowered glucose-dependent insulin secretion, showing these cannabinoid receptors to be functional. CONCLUSIONS/INTERPRETATION Together, these results suggest a role for endogenous endocannabinoid signalling in regulation of endocrine secretion in the human pancreas.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
145 |
19
|
Aparisi L, Farre A, Gomez-Cambronero L, Martinez J, De Las Heras G, Corts J, Navarro S, Mora J, Lopez-Hoyos M, Sabater L, Ferrandez A, Bautista D, Perez-Mateo M, Mery S, Sastre J. Antibodies to carbonic anhydrase and IgG4 levels in idiopathic chronic pancreatitis: relevance for diagnosis of autoimmune pancreatitis. Gut 2005; 54:703-9. [PMID: 15831920 PMCID: PMC1774474 DOI: 10.1136/gut.2004.047142] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 10/05/2004] [Accepted: 10/12/2004] [Indexed: 12/17/2022]
Abstract
BACKGROUND Increased serum antibodies against carbonic anhydrase II (CA-II Ab) or IgG4 levels have been reported in cases of autoimmune chronic pancreatitis (ACP). AIM To assess the relevance of serum CA-II Ab and IgG4 levels for the diagnosis of ACP in idiopathic CP (ICP) versus alcoholic CP and Sjogren's syndrome (SS). SUBJECTS This was a multicentre study involving 227 subjects divided into four groups: ICP (n = 54), normal controls (n = 54, paired by age and sex with ICP patients), alcoholic CP (n = 86), and SS (n = 33). METHODS CA-II Ab was measured by ELISA and confirmed by western blotting. A score of easy clinical use with major clinical, morphological, and biochemical parameters for the diagnosis of ACP was applied. RESULTS The percentage of patients with increased serum CA-II Ab was higher in the ICP group (28%) than in controls (1.9%) and in patients with alcoholic CP (10.5%), but lower than in patients with SS (64%). The proportion with elevated IgG4 levels was higher in the ICP group (15%) compared with controls (1.9%) and SS (0%) but not significantly different from alcoholic CP (8%). Most ICP patients (7/8) with high IgG4 levels exhibited increased CA-II Ab and a compatible ACP score. A definitive diagnosis of ACP by histological analysis was associated with other autoimmune disorders, an increase in both serum IgG4 and CA-II Ab levels, and IgG4 positive plasma cells. CONCLUSIONS The increase in serum IgG4 levels was strongly associated with elevated CA-II Ab levels, manifestations compatible with ACP, and lymphoplasmacytic infiltration when surgical specimens were available.
Collapse
|
Multicenter Study |
20 |
141 |
20
|
Escudero JV, Sancho J, Bautista D, Escudero M, López-Trigo J. Prognostic value of motor evoked potential obtained by transcranial magnetic brain stimulation in motor function recovery in patients with acute ischemic stroke. Stroke 1998; 29:1854-9. [PMID: 9731608 DOI: 10.1161/01.str.29.9.1854] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE The early prognostic application of transcranial magnetic brain stimulation (TMS) for assessing motor and functional recovery in ischemic stroke patients has yielded contradictory results. We performed a prospective study of patients with acute ischemic stroke and motor deficit to evaluate the early prognostic value of TMS in motor and functional recovery. METHODS Fifty patients with different degrees of hemiparesis were studied in the first week after ischemic stroke and evaluated by clinical scales (Medical Research Council Scale, Canadian Neurological Scale, Barthel Index), with clinical follow-up over 6 months. TMS (Magstim 200) was performed at the same time, recording the motor evoked potential (MEP) in the thenar eminence muscles, with facilitation by voluntary contraction. RESULTS Of the total group of 50 patients, MEP was absent in 20 and present in 30 (17 with normal and 13 with delayed central conduction time [CCT]). The patients with MEP showed better motor and functional recovery than those without. The MEP provided information on patient recovery, regardless of the initial strength and/or Barthel values. The degree of recovery was better in those patients with normal CCT than in those with delayed CCT. CONCLUSIONS MEP obtained by TMS in patients with hemiparesis after acute ischemic stroke is useful as an early prognostic indicator of motor and functional recovery. This technique would allow the early identification of those patients who will have a good recovery, particularly among those with severe initial paresis.
Collapse
|
|
27 |
139 |
21
|
Morita T, McClain SP, Batia LM, Pellegrino M, Wilson SR, Kienzler MA, Lyman K, Olsen ASB, Wong JF, Stucky CL, Brem RB, Bautista DM. HTR7 Mediates Serotonergic Acute and Chronic Itch. Neuron 2015; 87:124-38. [PMID: 26074006 DOI: 10.1016/j.neuron.2015.05.044] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 03/31/2015] [Accepted: 05/18/2015] [Indexed: 12/13/2022]
Abstract
Chronic itch is a prevalent and debilitating condition for which few effective therapies are available. We harnessed the natural variation across genetically distinct mouse strains to identify transcripts co-regulated with itch behavior. This survey led to the discovery of the serotonin receptor HTR7 as a key mediator of serotonergic itch. Activation of HTR7 promoted opening of the ion channel TRPA1, which in turn triggered itch behaviors. In addition, acute itch triggered by serotonin or a selective serotonin reuptake inhibitor required both HTR7 and TRPA1. Aberrant serotonin signaling has long been linked to a variety of human chronic itch conditions, including atopic dermatitis. In a mouse model of atopic dermatitis, mice lacking HTR7 or TRPA1 displayed reduced scratching and skin lesion severity. These data highlight a role for HTR7 in acute and chronic itch and suggest that HTR7 antagonists may be useful for treating a variety of pathological itch conditions.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
138 |
22
|
Walsh CM, Hill RZ, Schwendinger-Schreck J, Deguine J, Brock EC, Kucirek N, Rifi Z, Wei J, Gronert K, Brem RB, Barton GM, Bautista DM. Neutrophils promote CXCR3-dependent itch in the development of atopic dermatitis. eLife 2019; 8:48448. [PMID: 31631836 PMCID: PMC6884397 DOI: 10.7554/elife.48448] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/17/2019] [Indexed: 12/12/2022] Open
Abstract
Chronic itch remains a highly prevalent disorder with limited treatment options. Most chronic itch diseases are thought to be driven by both the nervous and immune systems, but the fundamental molecular and cellular interactions that trigger the development of itch and the acute-to-chronic itch transition remain unknown. Here, we show that skin-infiltrating neutrophils are key initiators of itch in atopic dermatitis, the most prevalent chronic itch disorder. Neutrophil depletion significantly attenuated itch-evoked scratching in a mouse model of atopic dermatitis. Neutrophils were also required for several key hallmarks of chronic itch, including skin hyperinnervation, enhanced expression of itch signaling molecules, and upregulation of inflammatory cytokines, activity-induced genes, and markers of neuropathic itch. Finally, we demonstrate that neutrophils are required for induction of CXCL10, a ligand of the CXCR3 receptor that promotes itch via activation of sensory neurons, and we find that that CXCR3 antagonism attenuates chronic itch. Chronic itch is a debilitating disorder that can last for months or years. Eczema, or atopic dermatitis, is the most common cause for chronic itch, affecting one in ten people worldwide. Many treatments for the condition are ineffective, and the exact cause of the disease is unknown, but many different types of cells are likely involved. These include skin cells and inflammation-promoting immune cells, as well as nerve cells that detect inflammation, relay itch and pain information to the brain, and regulate the immune system. Learning more about how these cells interact in eczema may help scientists find better treatments for the condition. So far, a lot of research has focused on static ‘snapshots’ of mature eczema lesions from human skin or animal models. These studies have identified abnormalities in genes or cells, but have not revealed how these genes and cells interact over time to cause chronic itch and inflammation. Now, Walsh et al. reveal that immune cells called neutrophils trigger chronic itch in eczema. The experiments involved mice with a condition that mimics eczema, and showed that removing the neutrophils in these mice alleviated their itching. They also showed that dramatic and rapid changes occur in the nervous system of mice suffering from the eczema-like condition. For example, excess nerves grow in the animals’ damaged skin, genes in the nerves that detect sensations become hyperactive, and changes occur in the spinal cord that have been linked to nerve pain. When neutrophils are absent, these changes do not take place. These findings show that neutrophils play a key role in chronic itch and inflammation in eczema. Drugs that target neutrophils, which are already used to treat other diseases, might help with chronic itch, but they would need to be tested before they can be used on people with eczema.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
114 |
23
|
Bautista DM, Hoth M, Lewis RS. Enhancement of calcium signalling dynamics and stability by delayed modulation of the plasma-membrane calcium-ATPase in human T cells. J Physiol 2002; 541:877-94. [PMID: 12068047 PMCID: PMC2290354 DOI: 10.1113/jphysiol.2001.016154] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
In addition to its homeostatic role of maintaining low resting levels of intracellular calcium ([Ca2+](i)), the plasma-membrane calcium-ATPase (PMCA) may actively contribute to the generation of complex Ca2+ signals. We have investigated the role of the PMCA in shaping Ca2+ signals in Jurkat human leukaemic T cells using single-cell voltage-clamp and calcium-imaging techniques. Crosslinking the T-cell receptor with the monoclonal antibody OKT3 induces a biphasic elevation in [Ca2+](i) consisting of a rapid overshoot to a level > 1 microM, followed by a slow decay to a plateau of approximately 0.5 microM. A similar overshoot was triggered by a constant level of Ca2+ influx through calcium-release-activated Ca2+ (CRAC) channels in thapsigargin-treated cells, due to a delayed increase in the rate of Ca2+ clearance by the PMCA. Following a rise in [Ca2+](i), PMCA activity increased in two phases: a rapid increase followed by a further calcium-dependent increase of up to approximately fivefold over 10-60 s, termed modulation. After the return of [Ca2+](i) to baseline levels, the PMCA recovered slowly from modulation (tau approximately 4 min), effectively retaining a 'memory' of the previous [Ca2+](i) elevation. Using a Michaelis-Menten model with appropriate corrections for cytoplasmic Ca2+ buffering, we found that modulation extended the dynamic range of PMCA activity by increasing both the maximal pump rate and Ca2+ sensitivity (reduction of K(M)). A simple flux model shows how pump modulation and its reversal produce the initial overshoot of the biphasic [Ca2+](i) response. The modulation of PMCA activity enhanced the stability of Ca2+ signalling by adjusting the efflux rate to match influx through CRAC channels, even at high [Ca2+](i) levels that saturate the transport sites and would otherwise render the cell defenceless against additional Ca2+ influx. At the same time, the delay in modulation enables small Ca2+ fluxes to transiently elevate [Ca2+](i), thus enhancing Ca2+ signalling dynamics.
Collapse
|
research-article |
23 |
107 |
24
|
Ward SL, Bautista D, Chan L, Derry M, Lisbin A, Durfee MJ, Mills KS, Keens TG. Sudden infant death syndrome in infants of substance-abusing mothers. J Pediatr 1990; 117:876-81. [PMID: 2246684 DOI: 10.1016/s0022-3476(05)80125-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A population-based study was performed to determine whether substance abuse during the perinatal period may be a risk factor for sudden infant death syndrome (SIDS). The incidence of SIDS was studied in 2143 infants of substance-abusing mothers (ISAM) born in Los Angeles County during 1986 and 1987 who were reported to the Los Angeles County Department of Health Services because of a history of drug exposure or positive urine test results in the mother, infant, or both. By comparing the ISAM birth reports with records of autopsy-proven SIDS in Los Angeles County, we found 19 SIDS cases in the population of 2143 ISAM, a SIDS rate of 8.87 cases per 1000 ISAM (95% confidence interval 5.3 to 13.8). This was significantly higher than the SIDS rate for the non-ISAM general population: 396 SIDS deaths among 325,372 live births, an incidence rate of 1.22 cases per 1000 births, p less than 0.00001. The age of ISAM at death was 99 +/- 63 (mean +/- SD) days compared with 91 +/- 52 days for the non-ISAM population (not significant). The incidence of SIDS was significantly greater in male infants, during the winter months, in black infants, and in non-Hispanic white infants in the non-ISAM population. Such differences were not observed in the ISAM group. A greater incidence of symptomatic apnea was reported before SIDS for the ISAM than for the non-ISAM population (22% vs 5.4%, p = 0.022). We conclude that ISAM have a higher incidence of SIDS than the non-ISAM general population. However, it was not possible to separate maternal substance abuse from other confounding variables that may also have had an impact on SIDS risk in the ISAM group.
Collapse
|
|
35 |
84 |
25
|
Bautista DM, Lewis RS. Modulation of plasma membrane calcium-ATPase activity by local calcium microdomains near CRAC channels in human T cells. J Physiol 2004; 556:805-17. [PMID: 14966303 PMCID: PMC1665005 DOI: 10.1113/jphysiol.2003.060004] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The spatial distribution of Ca(2+) signalling molecules is critical for establishing specific interactions that control Ca(2+) signal generation and transduction. In many cells, close physical coupling of Ca(2+) channels and their targets enables precise and robust activation of effector molecules through local [Ca(2+)](i) elevation in microdomains. In T cells, the plasma membrane Ca(2+)-ATPase (PMCA) is a major target of Ca(2+) influx through Ca(2+) release-activated Ca(2+) (CRAC) channels. Elevation of [Ca(2+)](i) slowly modulates pump activity to ensure the stability and enhance the dynamic nature of Ca(2+) signals. In this study we probed the functional organization of PMCA and CRAC channels in T cells by manipulating Ca(2+) microdomains near CRAC channels and measuring the resultant modulation of PMCAs. The amplitude and spatial extent of microdomains was increased by elevating the rate of Ca(2+) entry, either by raising extracellular [Ca(2+)], by increasing the activity of CRAC channels with 2-aminoethoxyborane (2-APB), or by hyperpolarizing the plasma membrane. Surprisingly, doubling the rate of Ca(2+) influx does not further increase global [Ca(2+)](i) in a substantial fraction of cells, due to a compensatory increase in PMCA activity. The enhancement of PMCA activity without changes in global [Ca(2+)](i) suggests that local [Ca(2+)](i) microdomains near CRAC channels effectively promote PMCA modulation. These results reveal an intimate functional association between CRAC channels and Ca(2+) pumps in the plasma membrane which may play an important role in governing the time course and magnitude of Ca(2+) signals in T cells.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
81 |