1
|
Cope WG, Waller DL. Evaluation of freshwater mussel relocation as a conservation and management strategy. ACTA ACUST UNITED AC 1995. [DOI: 10.1002/rrr.3450110204] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
|
30 |
62 |
2
|
Waller DL, Gutreuter S, Rach JJ. Behavioral Responses to Disturbance in Freshwater Mussels with Implications for Conservation and Management. ACTA ACUST UNITED AC 1999. [DOI: 10.2307/1468451] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
|
26 |
47 |
3
|
Waller DL, Fisher SW, Dabrowska H. Prevention of Zebra Mussel Infestation and Dispersal during Aquaculture Operations. ACTA ACUST UNITED AC 1996. [DOI: 10.1577/1548-8640(1996)058<0077:pozmia>2.3.co;2] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
|
29 |
24 |
4
|
|
|
6 |
11 |
5
|
Richard JC, Leis EM, Dunn CD, Harris C, Agbalog RE, Campbell LJ, Knowles S, Waller DL, Putnam JG, Goldberg TL. Freshwater Mussels Show Elevated Viral Richness and Intensity during a Mortality Event. Viruses 2022; 14:v14122603. [PMID: 36560607 PMCID: PMC9785814 DOI: 10.3390/v14122603] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
Freshwater mussels (Unionida) are among the world's most imperiled taxa, but the relationship between freshwater mussel mortality events and infectious disease is largely unstudied. We surveyed viromes of a widespread and abundant species (mucket, Actinonaias ligamentina; syn: Ortmanniana ligamentina) experiencing a mortality event of unknown etiology in the Huron River, Michigan, in 2019-2020 and compared them to viromes from mucket in a healthy population in the St. Croix River, Wisconsin and a population from the Clinch River, Virginia and Tennessee, where a mortality event was affecting the congeneric pheasantshell (Actinonaias pectorosa; syn: Ortmanniana pectorosa) population. We identified 38 viruses, most of which were associated with mussels collected during the Huron River mortality event. Viral richness and cumulative viral read depths were significantly higher in moribund mussels from the Huron River than in healthy controls from each of the three populations. Our results demonstrate significant increases in the number and intensity of viral infections for freshwater mussels experiencing mortality events, whereas individuals from healthy populations have a substantially reduced virome comprising a limited number of species at low viral read depths.
Collapse
|
research-article |
3 |
6 |
6
|
Waller DL, Bartsch MR, Fredricks KT, Bartsch LA, Schleis SM, Lee SH. Effects of carbon dioxide on juveniles of the freshwater mussel (Lampsilis siliquoidea [Unionidae]). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:671-681. [PMID: 27466973 DOI: 10.1002/etc.3567] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/10/2016] [Accepted: 07/27/2016] [Indexed: 06/06/2023]
Abstract
Carbon dioxide (CO2 ) has shown promise as a tool to control movements of invasive Asian carp, but its effects on native freshwater biota have not been well studied. The authors evaluated lethal and sublethal responses of juvenile fatmucket (Lampsilis siliquoidea) mussels to CO2 at levels (43-269 mg/L, mean concentration) that bracket concentrations effective for deterring carp movement. The 28-d lethal concentration to 50% of the mussels was 87.0 mg/L (95% confidence interval [CI] 78.4-95.9) and at 16-d postexposure, 76.0 mg/L (95% CI 62.9-90.3). A proportional hazards regression model predicted that juveniles could not survive CO2 concentrations >160 mg/L for more than 2 wk or >100 mg/L CO2 for more than 30 d. Mean shell growth was significantly lower for mussels that survived CO2 treatments. Growth during the postexposure period did not differ among treatments, indicating recovery of the mussels. Also, CO2 caused shell pitting and erosion. Behavioral effects of CO2 included movement of mussels to the substrate surface and narcotization at the highest concentrations. Mussels in the 110 mg/L mean CO2 treatment had the most movements in the first 3 d of exposure. If CO2 is infused continuously as a fish deterrent, concentrations <76 mg/L are recommended to prevent juvenile mussel mortality and shell damage. Mussels may survive and recover from brief exposure to higher concentrations. Environ Toxicol Chem 2017;36:671-681. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.
Collapse
|
|
8 |
4 |
7
|
Barbour MT, Schueller JR, Severson TJ, Wise JK, Meulemans MJ, Luoma JA, Waller DL. Concentration addition and independent action assessments of the binary mixtures of four toxicants on zebra mussel (Dreissena polymorpha) mortality. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 238:105934. [PMID: 34399323 DOI: 10.1016/j.aquatox.2021.105934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/23/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
Researchers most often focus on individual toxicants when identifying effective chemical control agents for aquatic invasive species; however, toxicant mixtures may elicit synergistic effects. Synergistic effects may decrease required concentrations and shorten exposure durations for treatments. We investigated four toxicants (EarthTec QZ, Clam-Trol CT-2, niclosamide, and potassium chloride) that have been considered to control invasive zebra mussels (Dreissena polymorpha Pallas, 1771). We determined the toxicity of binary mixtures for five different mixture ratios to adult mussels. We compared our observations to predictions made with concentration addition and independent action paradigms, as based on the dose-response relationships of each individual toxicant. We calculated the model deviation ratio for each combination at the LC50 and LC90 and identified three possible interactions: synergy, antagonism, and additivity. We found that mixtures of niclosamide and Clam-Trol CT-2 were the most synergistic while mixtures that included potassium chloride were largely additive to antagonistic. The use of synergistic combinations has potential to decrease the overall volume and concentration of individual toxicants required for dreissenid mussel treatments, thereby decreasing cost.
Collapse
|
|
4 |
3 |
8
|
Waller DL, Bartsch MR, Lord EG, Erickson RA. Temperature-Related Responses of an Invasive Mussel and 2 Unionid Mussels to Elevated Carbon Dioxide. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:1546-1557. [PMID: 32367522 PMCID: PMC7496913 DOI: 10.1002/etc.4743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/03/2020] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
Zebra mussels (Dreissena polymorpha) have exacerbated the decline of native freshwater mussels (order Unionida) in North America since their arrival in the 1980s. Options for controlling invasive mussels, particularly in unionid mussel habitats, are limited. Previously, carbon dioxide (CO2 ) showed selective toxicity for zebra mussels, relative to unionids, when applied in cool water (12 °C). We first determined 96-h lethal concentrations of CO2 at 5 and 20 °C to zebra mussels and responses of juvenile plain pocketbook (Lampsilis cardium). Next, we compared the time to lethality for zebra mussels at 5, 12, and 20 °C during exposure to partial pressure of CO2 (PCO2 ) values of 110 to 120 atm (1 atm = 101.325 kPa) and responses of juvenile plain pocketbook and fragile papershell (Leptodea fragilis). We found efficacious CO2 treatment regimens at each temperature that were minimally lethal to unionids. At 5 °C, plain pocketbook survived 96-h exposure to the highest PCO2 treatment (139 atm). At 20 °C, the 96-h lethal concentration to 10% of animals (LC10) for plain pocketbook (173 atm PCO2 , 95% CI 147-198 atm) was higher than the LC99 for zebra mussels (118 atm PCO2 , 95% CI 109-127 atm). Lethal time to 99% mortality (LT99) of zebra mussels in 110 to 120 atm PCO2 ranged from 100 h at 20 °C to 300 h at 5 °C. Mean survival of both plain pocketbook and fragile papershell juveniles exceeded 85% in LT99 CO2 treatments at all temperatures. Short-term infusion of 100 to 200 atm PCO2 at a range of water temperatures could reduce biofouling by zebra mussels with limited adverse effects on unionid mussels. Environ Toxicol Chem 2020;39:1546-1557. Published 2020. This article is a U.S. Government work and is in the public domain in the USA. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
|
research-article |
5 |
3 |
9
|
Cupp AR, Smerud JR, Thomas LM, Waller DL, Smith DL, Erickson RA, Gaikowski MP. Toxicity of Carbon Dioxide to Freshwater Fishes: Implications for Aquatic Invasive Species Management. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:2247-2255. [PMID: 32813922 DOI: 10.1002/etc.4855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/18/2020] [Accepted: 08/16/2020] [Indexed: 06/11/2023]
Abstract
Carbon dioxide (CO2 ) has been approved by the US Environmental Protection Agency as a new aquatic pesticide to control invasive Asian carps and other aquatic nuisance species in the United States. However, limited CO2 toxicity data could make it challenging for resource managers to characterize the potential risk to nontarget species during CO2 applications. The present study quantified the toxicity of CO2 to 2 native riverine fishes, bluegill (Lepomis macrochirus) and fathead minnow (Pimephales promelas), using 12-h continuous flow-through CO2 exposure at 5, 15, and 25 °C water temperatures. Resulting survival indicated that bluegill (median lethal concentration [LC50] range 91-140 mg/L CO2 ) were more sensitive to CO2 than fathead minnow (LC50 range 235-306 mg/L CO2 ) across all water temperatures. Bluegill were also more sensitive to CO2 at 5 °C (LC50 91 mg/L CO2 , 95% CI 85-96 mg/L CO2 ) than at 25 °C (LC50 140 mg/L CO2 , 95% CI 135-146 mg/L CO2 ). Fathead minnow showed an opposite response and were less sensitive at 5 °C (LC50 306 mg/L CO2 , 95% CI 286-327 mg/L CO2 ) relative to 25 °C (LC50 235 mg/L CO2 , 95% CI 224-246 mg/L CO2 ). Our results show that CO2 toxicity can differ by species and water temperature. Data from the present study may inform decisions related to the use of CO2 as a control tool. Environ Toxicol Chem 2020;39:2247-2255. Published 2020. This article is a U.S. government work and is in the public domain in the USA.
Collapse
|
|
5 |
2 |
10
|
Hernández Elizárraga VH, Ballantyne S, O'Brien LG, Americo JA, Suhr ST, Senut MC, Minerich B, Merkes CM, Edwards TM, Klymus K, Richter CA, Waller DL, Passamaneck YJ, Rebelo MF, Gohl DM. Toward invasive mussel genetic biocontrol: Approaches, challenges, and perspectives. iScience 2023; 26:108027. [PMID: 37860763 PMCID: PMC10583111 DOI: 10.1016/j.isci.2023.108027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023] Open
Abstract
Invasive freshwater mussels, such as the zebra (Dreissena polymorpha), quagga (Dreissena rostriformis bugensis), and golden (Limnoperna fortunei) mussel have spread outside their native ranges throughout many regions of the North American, South American, and European continents in recent decades, damaging infrastructure and the environment. This review describes ongoing efforts by multiple groups to develop genetic biocontrol methods for invasive mussels. First, we provide an overview of genetic biocontrol strategies that have been applied in other invasive or pest species. Next, we summarize physical and chemical methods that are currently in use for invasive mussel control. We then describe the multidisciplinary approaches our groups are employing to develop genetic biocontrol tools for invasive mussels. Finally, we discuss the challenges and limitations of applying genetic biocontrol tools to invasive mussels. Collectively, we aim to openly share information and combine expertise to develop practical tools to enable the management of invasive freshwater mussels.
Collapse
|
Review |
2 |
|
11
|
Richard JC, Lane TW, Agbalog RE, Colletti SL, Leach TC, Dunn CD, Bollig N, Plate AR, Munoz JT, Leis EM, Knowles S, Standish IF, Waller DL, Goldberg TL. Freshwater Mussel Viromes Increase Rapidly in Diversity and Abundance When Hosts Are Released from Captivity into the Wild. Animals (Basel) 2024; 14:2531. [PMID: 39272316 PMCID: PMC11393864 DOI: 10.3390/ani14172531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/19/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Freshwater mussels (order: Unionida) are highly imperiled globally and are increasingly the focus of captive propagation efforts to protect and restore wild populations. The Upper Tennessee River Basin (UTRB) in Virginia is a freshwater biodiversity hotspot hosting at least 45 of North America's ~300 species of freshwater mussels, including 21 threatened and endangered species listed under the U.S. Endangered Species Act. Recent studies have documented that viruses and other microbes have contributed to freshwater mussel population declines in the UTRB. We conducted a multi-year longitudinal study of captive-reared hatchery mussels released to restoration sites throughout the UTRB to evaluate their viromes and compare them to captive hatchery environments. We documented 681 viruses from 27 families. The hatchery mussels had significantly less viruses than those deployed to wild sites, with only 20 viruses unique to the hatchery mussels. After the hatchery mussels were released into the wild, their number of viruses initially spiked and then increased steadily over time, with 451 viruses in total unique to the mussels in the wild. We found Clinch densovirus 1 (CDNV-1), a virus previously associated with mass mortality events in the Clinch River, in all samples, but the wild site mussels consistently had significantly higher CDNV-1 levels than those held in the hatchery. Our data document substantial differences between the viruses in the mussels in the hatchery and wild environments and rapid virome shifts after the mussels are released to the wild sites. These findings indicate that mussel release programs might benefit from acclimatization periods or other measures to mitigate the potential negative effects of rapid exposure to infectious agents found in natural environments.
Collapse
|
|
1 |
|
12
|
Barbour MT, Meulemans MJ, Severson TJ, Wise JK, Waller DL. Carbon Dioxide Toxicity to Zebra Mussels (Dreissena polymorpha) is Dependent on Water Chemistry. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1312-1319. [PMID: 38578198 DOI: 10.1002/etc.5864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/05/2023] [Accepted: 03/07/2024] [Indexed: 04/06/2024]
Abstract
Carbon dioxide (CO2) is gaining interest as a tool to combat aquatic invasive species, including zebra mussels (Dreissena polymorpha). However, the effects of water chemistry on CO2 efficacy are not well described. We conducted five trials in which we exposed adult zebra mussels to a range of CO2 in water with adjusted total hardness and specific conductance. We compared dose-responses and found differences in lethal concentration to 50% of organisms (LC50) estimates ranging from 108.3 to 179.3 mg/L CO2 and lethal concentration to 90% of organisms (LC90) estimates ranging from 163.7 to 216.6 mg/L CO2. We modeled LC50 and LC90 estimates with measured water chemistry variables from the trials. We found sodium (Na+) concentration to have the strongest correlation to changes in the LC50 and specific conductance to have the strongest correlation to changes in the LC90. Our results identify water chemistry as an important factor in considering efficacious CO2 concentrations for zebra mussel control. Additional research into the physiological responses of zebra mussels exposed to CO2 may be warranted to further explain mode of action and reported selectivity. Further study could likely develop a robust and relevant model to refine CO2 applications for a wider range of water chemistries. Environ Toxicol Chem 2024;43:1312-1319. Published 2024. This article is a U.S. Government work and is in the public domain in the USA. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
|
|
1 |
|
13
|
Barbour MT, Severson TJ, Wise JK, Muelemans MJ, Kelly K, Pucherelli S, Waller DL. Carbon dioxide infusion reduces invasive mussel biofouling (quagga mussel; Dreissena rostriformis bugensis) in raw water systems. BIOFOULING 2025; 41:253-264. [PMID: 39996399 DOI: 10.1080/08927014.2025.2468282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/27/2025] [Accepted: 02/12/2025] [Indexed: 02/26/2025]
Abstract
The efficacy of carbon dioxide (CO2) to reduce biofouling by quagga mussels (Dreissena rostriformis bugensis) in raw water systems was investigated. Experiments were conducted in a mobile laboratory located at Bureau of Reclamation Davis Dam Hydropower Facility and supplied with raw water from Lake Mohave, a reservoir of the Colorado River, USA. Incoming water was split between five chambers, each infused with CO2 at a different rate. Raw reservoir water containing quagga larvae (veligers) was mixed with CO2 chamber outflows and delivered to tanks containing settlement plates. Two experiments were conducted. Experiment 1 tested continuous infusion at target concentrations of 30, 45, 60, 75, and 100 mg L-1 dCO2 (dissolved CO2). Experiment 2 evaluated intermittent infusion schedules: 24 h on/off with 50, 75, and 100 mg L-1 dCO2 and 24 h once/week with 100 mg L-1 dCO2. In Experiment 1, the percent settlement decreased with mean CO2 concentration, ranging from 5.0% to < 0.1% in 28.7 and 92.2 mg L-1 dCO2, respectively. In Experiment 2, the efficacy of 24 h on/off at dCO2 > 72.2 mg L-1 was similar to continuous treatment. The least effective treatment was 24 h once weekly at 95 mg L-1 dCO2. These results demonstrate that CO2 treatment may reduce mussel biofouling in raw water systems.
Collapse
|
|
1 |
|
14
|
Putnam JG, Steiner JN, Richard JC, Leis E, Goldberg TL, Dunn CD, Agbalog R, Knowles S, Waller DL. Mussel mass mortality in the Clinch River, USA: metabolomics detects affected pathways and biomarkers of stress. CONSERVATION PHYSIOLOGY 2023; 11:coad074. [PMID: 37680611 PMCID: PMC10482074 DOI: 10.1093/conphys/coad074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/18/2023] [Accepted: 08/22/2023] [Indexed: 09/09/2023]
Abstract
Biologists monitoring freshwater mussel (order Unionida) populations rely on behavioral, often subjective, signs to identify moribund ("sick") or stressed mussels, such as gaping valves and slow response to probing, and they lack clinical indicators to support a diagnosis. As part of a multi-year study to investigate causes of reoccurring mortality of pheasantshell (Ortmanniana pectorosa; synonym Actinonaias pectorosa) in the Clinch River, Virginia and Tennessee, USA, we analyzed the hemolymph metabolome of a subset of mussels from the 2018 sampling period. Mussels at the mortality sites were diagnosed in the field as affected (case) or unaffected (control) based on behavioral and physical signs. Hemolymph was collected in the field by non-lethal methods from the anterior adductor muscle for analysis. We used ultra-high-performance liquid chromatography with quadrupole time-of-flight mass spectroscopy to detect targeted and untargeted metabolites in hemolymph and compared metabolomic profiles by field assessment of clinical status. Targeted biomarker analysis found 13 metabolites associated with field assessments of clinical status. Of these, increased gamma-linolenic acid and N-methyl-l-alanine were most indicative of case mussels, while adenine and inosine were the best indicators of control mussels. Five pathways in the targeted analysis differed by clinical status; two of these, purine metabolism and glycerophospholipid metabolism, were also indicated in the untargeted analysis. In the untargeted nalysis, 22 metabolic pathways were associated with clinical status. Many of the impacted pathways in the case group were catabolic processes, such as degradation of amino acids and fatty acids. Hierarchical clustering analysis matched clinical status in 72% (18 of 25) of mussels, with control mussels more frequently (5 of 16) not matching clinical status. Our study demonstrated that metabolomic analysis of hemolymph is suitable for assessing mussel condition and complements field-based indicators of health.
Collapse
|
research-article |
2 |
|
15
|
Dahlberg AD, Waller DL, Hammond D, Lund K, Phelps NBD. Open water dreissenid mussel control projects: lessons learned from a retrospective analysis. Sci Rep 2023; 13:10410. [PMID: 37369671 DOI: 10.1038/s41598-023-36522-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Dreissenid mussels are one of the most problematic aquatic invasive species (AIS) in North America, causing substantial ecological and economic effects. To date, dreissenid mussel control efforts in open water have included physical, biological, and chemical methods. The feasibility of successful dreissenid mussel management or eradication in lakes is relatively undocumented in the freshwater management literature. This review presents information on 33 open water dreissenid mussel control projects in 23 North America lakes. We reviewed data from past dreissenid mussel control projects and identified patterns and knowledge gaps to help inform adaptive management strategies. The three key lessons learned include (1) pre- and post-treatment survey methods that are designed to meet management objectives are beneficial, e.g., by sampling for all life stages and taking into account that no survey method is completely comprehensive; (2) defining the treatment area-particularly ensuring it is sufficiently large to capture all life stages present-is critical to meeting management objectives; and (3) control projects provide an opportunity to collect water chemistry, effects on non-target organisms, and other efficacy-related data that can inform safe and effective adaptive management.
Collapse
|
|
2 |
|