1
|
Johnson EA, Rice S, Preimesberger MR, Nye DB, Gilevicius L, Wenke BB, Brown JM, Witman GB, Lecomte JTJ. Characterization of THB1, a Chlamydomonas reinhardtii truncated hemoglobin: linkage to nitrogen metabolism and identification of lysine as the distal heme ligand. Biochemistry 2014; 53:4573-89. [PMID: 24964018 PMCID: PMC4108185 DOI: 10.1021/bi5005206] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 06/23/2014] [Indexed: 12/21/2022]
Abstract
The nuclear genome of the model organism Chlamydomonas reinhardtii contains genes for a dozen hemoglobins of the truncated lineage. Of those, THB1 is known to be expressed, but the product and its function have not yet been characterized. We present mutagenesis, optical, and nuclear magnetic resonance data for the recombinant protein and show that at pH near neutral in the absence of added ligand, THB1 coordinates the heme iron with the canonical proximal histidine and a distal lysine. In the cyanomet state, THB1 is structurally similar to other known truncated hemoglobins, particularly the heme domain of Chlamydomonas eugametos LI637, a light-induced chloroplastic hemoglobin. Recombinant THB1 is capable of binding nitric oxide (NO(•)) in either the ferric or ferrous state and has efficient NO(•) dioxygenase activity. By using different C. reinhardtii strains and growth conditions, we demonstrate that the expression of THB1 is under the control of the NIT2 regulatory gene and that the hemoglobin is linked to the nitrogen assimilation pathway.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
36 |
2
|
Johnson EA, Russo MM, Nye DB, Schlessman JL, Lecomte JTJ. Lysine as a heme iron ligand: A property common to three truncated hemoglobins from Chlamydomonas reinhardtii. Biochim Biophys Acta Gen Subj 2018; 1862:2660-2673. [PMID: 30251657 DOI: 10.1016/j.bbagen.2018.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/06/2018] [Accepted: 08/08/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND The nuclear genome of Chlamydomonas reinhardtii encodes a dozen hemoglobins of the truncated lineage. Four of these, named THB1-4, contain a single ~130-residue globin unit. THB1, which is cytoplasmic and capable of nitric oxide dioxygenation activity, uses a histidine and a lysine as axial ligands to the heme iron. In the present report, we compared THB2, THB3, and THB4 to THB1 to gain structural and functional insights into algal globins. METHODS We inspected properties of the globin domains prepared by recombinant means through site-directed mutagenesis, electronic absorption, CD, and NMR spectroscopies, and X-ray crystallography. RESULTS Recombinant THB3, which lacks the proximal histidine but has a distal histidine, binds heme weakly. NMR data demonstrate that the recombinant domains of THB2 and THB4 coordinate the ferrous heme iron with the proximal histidine and a lysine from the distal helix. An X-ray structure of ferric THB4 confirms lysine coordination. THB1, THB2, and THB4 have reduction potentials between -65 and -100 mV, are capable of nitric oxide dioxygenation, are reduced at different rates by the diaphorase domain of C. reinhardtii nitrate reductase, and show different response to peroxide treatment. CONCLUSIONS Three single-domain C. reinhardtii hemoglobins use lysine as a distal heme ligand in both Fe(III) and Fe(II) oxidation states. This common feature is likely related to enzymatic activity in the management of reactive oxygen species. GENERAL SIGNIFICANCE Primary structure analysis of hemoglobins has limited power in the prediction of heme ligation. Experimental determination reveals variations in this essential property across the superfamily.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
13 |
3
|
Nye DB, Preimesberger MR, Majumdar A, Lecomte JTJ. Histidine-Lysine Axial Ligand Switching in a Hemoglobin: A Role for Heme Propionates. Biochemistry 2018; 57:631-644. [PMID: 29271191 DOI: 10.1021/acs.biochem.7b01155] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The hemoglobin of Synechococcus sp. PCC 7002, GlbN, is a monomeric group I truncated protein (TrHb1) that coordinates the heme iron with two histidine ligands at neutral pH. One of these is the distal histidine (His46), a residue that can be displaced by dioxygen and other small molecules. Here, we show with mutagenesis, electronic absorption spectroscopy, and nuclear magnetic resonance (NMR) spectroscopy that at high pH and exclusively in the ferrous state, Lys42 competes with His46 for the iron coordination site. When b heme is originally present, the population of the lysine-bound species remains too small for detailed characterization; however, the population can be increased significantly by using dimethyl-esterified heme. Electronic absorption and NMR spectroscopies showed that the reversible ligand switching process occurs with an apparent pKa of 9.3 and a Lys-ligated population of ∼60% at the basic pH limit in the modified holoprotein. The switching rate, which is slow on the chemical shift time scale, was estimated to be 20-30 s-1 by NMR exchange spectroscopy. Lys42-His46 competition and attendant conformational rearrangement appeared to be related to weakened bis-histidine ligation and enhanced backbone dynamics in the ferrous protein. The pH- and redox-dependent ligand exchange process observed in GlbN illustrates the structural plasticity allowed by the TrHb1 fold and demonstrates the importance of electrostatic interactions at the heme periphery for achieving axial ligand selection. An analogy is drawn to the alkaline transition of cytochrome c, in which Lys-Met competition is detected at alkaline pH, but, in contrast to GlbN, in the ferric state only.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
7 |
10 |
4
|
Nye DB, Lecomte JTJ. Replacement of the Distal Histidine Reveals a Noncanonical Heme Binding Site in a 2-on-2 Hemoglobin. Biochemistry 2018; 57:5785-5796. [PMID: 30213188 PMCID: PMC6217817 DOI: 10.1021/acs.biochem.8b00752] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Heme ligation in hemoglobin is typically assumed by the "proximal" histidine. Hydrophobic contacts, ionic interactions, and the ligation bond secure the heme between two α-helices denoted E and F. Across the hemoglobin superfamily, several proteins also use a "distal" histidine, making the native state a bis-histidine complex. The group 1 truncated hemoglobin from Synechocystis sp. PCC 6803, GlbN, is one such bis-histidine protein. Ferric GlbN, in which the distal histidine (His46 or E10) has been replaced with a leucine, though expected to bind a water molecule and yield a high-spin iron complex at neutral pH, has low-spin spectral properties. Here, we applied nuclear magnetic resonance and electronic absorption spectroscopic methods to GlbN modified with heme and amino acid replacements to identify the distal ligand in H46L GlbN. We found that His117, a residue located in the C-terminal portion of the protein and on the proximal side of the heme, is responsible for the formation of an alternative bis-histidine complex. Simultaneous coordination by His70 and His117 situates the heme in a binding site different from the canonical site. This new holoprotein form is achieved with only local conformational changes. Heme affinity in the alternative site is weaker than in the normal site, likely because of strained coordination and a reduced number of specific heme-protein interactions. The observation of an unconventional heme binding site has important implications for the interpretation of mutagenesis results and globin homology modeling.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
6 |
5
|
Preimesberger MR, Johnson EA, Nye DB, Lecomte JTJ. Covalent attachment of the heme to Synechococcus hemoglobin alters its reactivity toward nitric oxide. J Inorg Biochem 2017; 177:171-182. [PMID: 28968520 DOI: 10.1016/j.jinorgbio.2017.09.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 01/19/2023]
Abstract
The cyanobacterium Synechococcus sp. PCC 7002 produces a monomeric hemoglobin (GlbN) implicated in the detoxification of reactive nitrogen and oxygen species. GlbN contains a b heme, which can be modified under certain reducing conditions. The modified protein (GlbN-A) has one heme-histidine C-N linkage similar to the C-S linkage of cytochrome c. No clear functional role has been assigned to this modification. Here, optical absorbance and NMR spectroscopies were used to compare the reactivity of GlbN and GlbN-A toward nitric oxide (NO). Both forms of the protein are capable of NO dioxygenase activity and both undergo heme bleaching after multiple NO challenges. GlbN and GlbN-A bind NO in the ferric state and form diamagnetic complexes (FeIII-NO) that resist reductive nitrosylation to the paramagnetic FeII-NO forms. Dithionite reduction of FeIII-NO GlbN and GlbN-A, however, resulted in distinct outcomes. Whereas GlbN-A rapidly formed the expected FeII-NO complex, NO binding to FeII GlbN caused immediate heme loss and, remarkably, was followed by slow heme rebinding and HNO (nitrosyl hydride) production. Additionally, combining FeIII GlbN, 15N-labeled nitrite, and excess dithionite resulted in the formation of FeII-H15NO GlbN. Dithionite-mediated HNO production was also observed for the related GlbN from Synechocystis sp. PCC 6803. Although ferrous GlbN-A appeared capable of trapping preformed HNO, the histidine-heme post-translational modification extinguished the NO reduction chemistry associated with GlbN. Overall, the results suggest a role for the covalent modification in FeII GlbNs: protection from NO-mediated heme loss and prevention of HNO formation.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
8 |
6 |
6
|
McCrary SV, Allen B, Moseley R, Crandall LA, Ostrer H, Curry RW, Dewar MA, Nye D. Ethical and practical implications of the human genome initiative for family medicine. ARCHIVES OF FAMILY MEDICINE 1993; 2:1158-63. [PMID: 8124491 DOI: 10.1001/archfami.2.11.1158] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Major advances in predictive genetic testing resulting from the Human Genome Initiative could change significantly the routine practice of family medicine. Family physicians should be aware that increased genetic information may affect patients' abilities to acquire and maintain insurance and employment and that interested parties will have incentives to seek this information. The social consequences of genetic information, as well as increased health promotion efforts, may raise problems of informed consent and confidentiality. In addition to their ethical implications, these developments will also affect the practice of family physicians in practical ways such as record keeping. We discuss cases that illustrate the potential impact of these emerging technologies on the practice of family medicine.
Collapse
|
Case Reports |
32 |
6 |
7
|
|
|
55 |
4 |
8
|
Nye DB, Johnson EA, Mai MH, Lecomte JTJ. Replacement of the heme axial lysine as a test of conformational adaptability in the truncated hemoglobin THB1. J Inorg Biochem 2019; 201:110824. [PMID: 31514090 DOI: 10.1016/j.jinorgbio.2019.110824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/03/2019] [Accepted: 09/03/2019] [Indexed: 10/26/2022]
Abstract
Amino acid replacement is a useful strategy to assess the roles of axial heme ligands in the function of native heme proteins. THB1, the protein product of the Chlamydomonas reinhardtii THB1 gene, is a group 1 truncated hemoglobin that uses a lysine residue in the E helix (Lys53, at position E10 by reference to myoglobin) as an iron ligand at neutral pH. Phylogenetic evidence shows that many homologous proteins have a histidine, methionine or arginine at the same position. In THB1, these amino acids would each be expected to convey distinct reactive properties if replacing the native lysine as an axial ligand. To explore the ability of the group 1 truncated Hb fold to support alternative ligation schemes and distal pocket conformations, the properties of the THB1 variants K53A as a control, K53H, K53M, and K53R were investigated by electronic absorption, EPR, and NMR spectroscopies. We found that His53 is capable of heme ligation in both the Fe(III) and Fe(II) states, that Met53 can coordinate only in the Fe(II) state, and that Arg53 stabilizes a hydroxide ligand in the Fe(III) state. The data illustrate that the group 1 truncated Hb fold can tolerate diverse rearrangement of the heme environment and has a strong tendency to use two protein side chains as iron ligands despite accompanying structural perturbations. Access to various redox pairs and different responses to pH make this protein an excellent test case for energetic and dynamic studies of heme ligation.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
6 |
3 |
9
|
|
Comment |
33 |
2 |
10
|
Chan SH, Molé CN, Nye D, Mitchell L, Dai N, Buss J, Kneller DW, Whipple JM, Robb GB. Biochemical characterization of mRNA capping enzyme from Faustovirus. RNA (NEW YORK, N.Y.) 2023; 29:1803-1817. [PMID: 37625853 PMCID: PMC10578482 DOI: 10.1261/rna.079738.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023]
Abstract
The mammalian mRNA 5' cap structures play important roles in cellular processes such as nuclear export, efficient translation, and evading cellular innate immune surveillance and regulating 5'-mediated mRNA turnover. Hence, installation of the proper 5' cap is crucial in therapeutic applications of synthetic mRNA. The core 5' cap structure, Cap-0, is generated by three sequential enzymatic activities: RNA 5' triphosphatase, RNA guanylyltransferase, and cap N7-guanine methyltransferase. Vaccinia virus RNA capping enzyme (VCE) is a heterodimeric enzyme that has been widely used in synthetic mRNA research and manufacturing. The large subunit of VCE D1R exhibits a modular structure where each of the three structural domains possesses one of the three enzyme activities, whereas the small subunit D12L is required to activate the N7-guanine methyltransferase activity. Here, we report the characterization of a single-subunit RNA capping enzyme from an amoeba giant virus. Faustovirus RNA capping enzyme (FCE) exhibits a modular array of catalytic domains in common with VCE and is highly efficient in generating the Cap-0 structure without an activation subunit. Phylogenetic analysis suggests that FCE and VCE are descended from a common ancestral capping enzyme. We found that compared to VCE, FCE exhibits higher specific activity, higher activity toward RNA containing secondary structures and a free 5' end, and a broader temperature range, properties favorable for synthetic mRNA manufacturing workflows.
Collapse
|
research-article |
2 |
1 |
11
|
Nye D, Coler RA, Wall WJ. A quantitative sample concentration procedure. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 1967; 2:355-356. [PMID: 24189960 DOI: 10.1007/bf01684411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
|
|
58 |
1 |
12
|
McLain LG, Decker M, Nye D, Mehta S, London R. Gonococcal perihepatitis in a female adolescent. Fitz-Hugh-Curtis syndrome. JAMA 1978; 239:339-40. [PMID: 579415 DOI: 10.1001/jama.239.4.339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
Case Reports |
47 |
1 |
13
|
Ostrer H, Allen W, Crandall LA, Moseley RE, Dewar MA, Nye D, McCrary SV. Insurance and genetic testing: where are we now? Am J Hum Genet 1993; 52:565-77. [PMID: 8447322 PMCID: PMC1682164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Basic research will spur development of genetic tests that are capable of presymptomatic prediction of disease, disability, and premature death in presently asymptomatic individuals. Concerns have been expressed about potential harms related to the use of genetic test results, especially loss of confidentiality, eugenics, and discrimination. Existing laws and administrative policies may not be sufficient to assure that genetic information is used fairly. To provide factual information and conceptual principles upon which sound social policy can be based, the Human Genome Initiative established an Ethical, Legal, and Social Issues Program. Among the first areas to be identified as a priority for study was insurance. This paper provides a review of life, health, and disability insurance systems, including basic principles, risk classification, and market and regulatory issues, and examines the potential impact of genetic information on the insurance industry.
Collapse
|
research-article |
32 |
|
14
|
Nye DB, Tanner NA. Chimeric DNA byproducts in strand displacement amplification using the T7 replisome. PLoS One 2022; 17:e0273979. [PMID: 36121810 PMCID: PMC9484634 DOI: 10.1371/journal.pone.0273979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/19/2022] [Indexed: 11/30/2022] Open
Abstract
Recent advances in next generation sequencing technologies enable reading DNA molecules hundreds of kilobases in length and motivate development of DNA amplification methods capable of producing long amplicons. In vivo, DNA replication is performed not by a single polymerase enzyme, but multiprotein complexes called replisomes. Here, we investigate strand-displacement amplification reactions using the T7 replisome, a macromolecular complex of a helicase, a single-stranded DNA binding protein, and a DNA polymerase. The T7 replisome may initiate processive DNA synthesis from DNA nicks, and the reaction of a 48 kilobase linear double stranded DNA substrate with the T7 replisome and nicking endonucleases is shown to produce discrete DNA amplicons. To gain a mechanistic understanding of this reaction, we utilized Oxford Nanopore long-read sequencing technology. Sequence analysis of the amplicons revealed chimeric DNA reads and uncovered a connection between template switching and polymerase exonuclease activity. Nanopore sequencing provides insight to guide the further development of isothermal amplification methods for long DNA, and our results highlight the need for high-specificity, high-turnover nicking endonucleases to initiate DNA amplification without thermal denaturation.
Collapse
|
|
3 |
|
15
|
Nye D, Preimesberger M, Majumdar A, Lecomte J. A Histidine-Lysine Axial Ligand Switch in a Hemoglobin. Biophys J 2018. [DOI: 10.1016/j.bpj.2017.11.2246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
|
7 |
|
16
|
Cutler T, Nye D. Subjects and accomplices: regulation and the ethics of cigarette advertising. INTERNATIONAL JOURNAL OF HEALTH SERVICES : PLANNING, ADMINISTRATION, EVALUATION 1997; 27:329-46. [PMID: 9142605 DOI: 10.2190/55w7-eymh-bwbk-76cu] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In debates on the regulation of cigarette advertising, opposition to regulation is based on a perceived threat to individual autonomy and choice. Advocates of regulation have sought to combat such arguments by focusing on the unique characteristics of tobacco: the absence of a "safe" level of consumption; that the habit is often acquired by children or young persons; that smokers are unaware of the extent of the risks involved; and that smoking is "addictive." The authors discuss the implications of these characteristics for regulation and the difficulties with such arguments. The focus on characteristics of the product means that little attention is given to the implications of the content and techniques of advertising. The dominant forms of cigarette advertising involve the communication of little product information and the use of persuasive mechanisms of which the consumer is either unaware or not fully aware. The authors explore the implications of such advertising strategies for regulation and public policy.
Collapse
|
|
28 |
|
17
|
Nye D, Preimesberger M, Kougentakis C, Rice S, Lecomte J. Heme Coordination Versatility in a Truncated Hemoglobin. Biophys J 2015. [DOI: 10.1016/j.bpj.2014.11.1177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
|
10 |
|