Fukushiro-Lopes DF, Hegel AD, Rao V, Wyatt D, Baker A, Breuer EK, Osipo C, Zartman JJ, Burnette M, Kaja S, Kouzoukas D, Burris S, Jones WK, Gentile S. Preclinical study of a Kv11.1 potassium channel activator as antineoplastic approach for breast cancer.
Oncotarget 2017;
9:3321-3337. [PMID:
29423049 PMCID:
PMC5790466 DOI:
10.18632/oncotarget.22925]
[Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 11/09/2017] [Indexed: 12/04/2022] Open
Abstract
Potassium ion (K+) channels have been recently found to play a critical role in cancer biology. Despite that pharmacologic manipulation of ion channels is recognized as an important therapeutic approach, very little is known about the effects of targeting of K+ channels in cancer. In this study, we demonstrate that use of the Kv11.1 K+ channel activator NS1643 inhibits tumor growth in an in vivo model of breast cancer.
Tumors exposed to NS1643 had reduced levels of proliferation markers, high expression levels of senescence markers, increased production of ROS and DNA damage compared to tumors of untreated mice. Importantly, mice treated with NS1643 did not exhibit significant cardiac dysfunction. In conclusion, pharmacological stimulation of Kv11.1 activity produced arrested TNBC-derived tumor growth by generating DNA damage and senescence without significant side effects. We propose that use of Kv11.1 channels activators could be considered as a possible pharmacological strategy against breast tumors.
Collapse