1
|
Abdelmohsen K, Mazan‐Mamczarz K, Munk R, Tsitsipatis D, Meng Q, Rossi M, Pal A, Shin CH, Martindale JL, Piao Y, Fan J, Yanai H, De S, Beerman I, Gorospe M. Identification of senescent cell subpopulations by CITE-seq analysis. Aging Cell 2024; 23:e14297. [PMID: 39143693 PMCID: PMC11561699 DOI: 10.1111/acel.14297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/30/2024] [Accepted: 07/23/2024] [Indexed: 08/16/2024] Open
Abstract
Cellular senescence, a state of persistent growth arrest, is closely associated with aging and age-related diseases. Deciphering the heterogeneity within senescent cell populations and identifying therapeutic targets are paramount for mitigating senescence-associated pathologies. In this study, proteins on the surface of cells rendered senescent by replicative exhaustion and by exposure to ionizing radiation (IR) were identified using mass spectrometry analysis, and a subset of them was further studied using single-cell CITE-seq (Cellular Indexing of Transcriptomes and Epitopes by Sequencing) analysis. Based on the presence of proteins on the cell surface, we identified two distinct IR-induced senescent cell populations: one characterized by high levels of CD109 and CD112 (cluster 3), the other characterized by high levels of CD112, CD26, CD73, HLA-ABC, CD54, CD49A, and CD44 (cluster 0). We further found that cluster 0 represented proliferating and senescent cells in the G1 phase of the division cycle, and CITE-seq detection of cell surface proteins selectively discerned those in the senescence group. Our study highlights the heterogeneity of senescent cells and underscores the value of cell surface proteins as tools for distinguishing senescent cell programs and subclasses, paving the way for targeted therapeutic strategies in disorders exacerbated by senescence.
Collapse
|
2
|
Lodde V, Zarbo IR, Farina G, Masia A, Solla P, Campesi I, Delogu G, Muroni MR, Tsitsipatis D, Gorospe M, Floris M, Idda ML. Identification of hsa_circ_0018905 as a New Potential Biomarker for Multiple Sclerosis. Cells 2024; 13:1668. [PMID: 39404430 PMCID: PMC11475351 DOI: 10.3390/cells13191668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/27/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
Multiple sclerosis (MS) is a demyelinating autoimmune disease characterized by early onset, for which the interaction of genetic and environmental factors is crucial. Dysregulation of the immune system as well as myelinization-de-myelinization has been shown to correlate with changes in RNA, including non-coding RNAs. Recently, circular RNAs (circRNAs) have emerged as a key player in the complex network of gene dysregulation associated with MS. Despite several efforts, the mechanisms driving circRNA regulation and dysregulation in MS still need to be properly elucidated. Here, we explore the panorama of circRNA expression in PBMCs purified from five newly diagnosed MS patients and five healthy controls (HCs) using the Arraystar Human circRNAs microarray. Experimental validation was then carried out in a validation cohort, and a possible correlation with disease severity was tested. We identified 64 differentially expressed circRNAs, 53 of which were downregulated in PBMCs purified from MS compared to the HCs. The discovery dataset was subsequently validated using qRT-PCR with an independent cohort of 20 RRMS patients and 20 HCs. We validated seven circRNAs differentially expressed in the RRMS group versus the HC group. hsa_circ_0000518, hsa_circ_0000517, hsa_circ_0000514, and hsa_circ_0000511 were significantly upregulated in the MS group, while hsa_circ_0018905, hsa_circ_0048764, and hsa_circ_0003445 were significantly downregulated; Among them, the expression level of hsa_circ_0018905 was significantly decreased in patients showing a higher level of disability and in progressive forms of MS. We described the circRNAs expression profile of PBMCs in newly diagnosed MS patients and proposed hsa_circ_0018905 as potential MS biomarker.
Collapse
|
3
|
Ji E, Pandey PR, Martindale JL, Yang X, Yang JH, Tsitsipatis D, Shin CH, Piao Y, Fan J, Mazan-Mamczarz K, Banskota N, De S, Gorospe M. FUS-Mediated Inhibition of Myogenesis Elicited by Suppressing TNNT1 Production. Mol Cell Biol 2024; 44:391-409. [PMID: 39133076 PMCID: PMC11376412 DOI: 10.1080/10985549.2024.2383296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 08/13/2024] Open
Abstract
Myogenesis is a highly orchestrated process whereby muscle precursor cells, myoblasts, develop into muscle fibers to form skeletal muscle during embryogenesis and regenerate adult muscle. Here, we studied the RNA-binding protein FUS (fused in sarcoma), which has been implicated in muscular and neuromuscular pathologies but is poorly characterized in myogenesis. Given that FUS levels declined in human and mouse models of skeletal myogenesis, and that silencing FUS enhanced myogenesis, we hypothesized that FUS might be a repressor of myogenic differentiation. Interestingly, overexpression of FUS delayed myogenesis, accompanied by slower production of muscle differentiation markers. To identify the mechanisms through which FUS inhibits myogenesis, we uncovered RNA targets of FUS by ribonucleoprotein immunoprecipitation (RIP) followed by RNA-sequencing (RNA-seq) analysis. Stringent selection of the bound transcripts uncovered Tnnt1 mRNA, encoding troponin T1 (TNNT1), as a major effector of FUS influence on myogenesis. We found that in myoblasts, FUS retained Tnnt1 mRNA in the nucleus, preventing TNNT1 expression; however, reduction of FUS during myogenesis or by silencing FUS released Tnnt1 mRNA for export to the cytoplasm, enabling TNNT1 translation and promoting myogenesis. We propose that FUS inhibits myogenesis by suppressing TNNT1 expression through a mechanism of nuclear Tnnt1 mRNA retention.
Collapse
|
4
|
Olinger B, Banarjee R, Dey A, Tsitsipatis D, Tanaka T, Ram A, Nyunt T, Daya G, Peng Z, Cui L, Candia J, Simonsick EM, Gorospe M, Walker KA, Ferrucci L, Basisty N. A plasma proteomic signature links secretome of senescent monocytes to aging- and obesity-related clinical outcomes in humans. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.01.24311368. [PMID: 39371126 PMCID: PMC11451660 DOI: 10.1101/2024.08.01.24311368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Cellular senescence increases with age and contributes to age-related declines and pathologies. We identified circulating biomarkers of senescence associated with diverse clinical traits in humans to facilitate future non-invasive assessment of individual senescence burden and efficacy testing of novel senotherapeutics. Using a novel nanoparticle-based proteomic workflow, we profiled the senescence-associated secretory phenotype (SASP) in monocytes and examined these proteins in plasma samples (N = 1060) from the Baltimore Longitudinal Study of Aging (BLSA). Machine learning models trained on monocyte SASP associated with several age-related phenotypes in a test cohort, including body fat composition, blood lipids, inflammation, and mobility-related traits, among others. Notably, a subset of SASP-based predictions, including a 'high impact' SASP panel that predicts age- and obesity-related clinical traits, were validated in InCHIANTI, an independent aging cohort. These results demonstrate the clinical relevance of the circulating SASP and identify relevant biomarkers of senescence that could inform future clinical studies.
Collapse
|
5
|
Rossi M, Banskota N, Shin CH, Anerillas C, Tsitsipatis D, Yang JH, Munk R, Martindale J, Yang X, Piao Y, Mazan-Mamczarz K, Fan J, Lehrmann E, Lam KW, De S, Abdelmohsen K, Gorospe M. Increased PTCHD4 expression via m6A modification of PTCHD4 mRNA promotes senescent cell survival. Nucleic Acids Res 2024; 52:7261-7278. [PMID: 38721764 PMCID: PMC11229380 DOI: 10.1093/nar/gkae322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/27/2024] [Accepted: 04/12/2024] [Indexed: 07/09/2024] Open
Abstract
RNA modifications, including N6-methyladenosine (m6A), critically modulate protein expression programs in a range of cellular processes. Although the transcriptomes of cells undergoing senescence are strongly regulated, the landscape and impact of m6A modifications during senescence are poorly understood. Here, we report a robust m6A modification of PTCHD4 mRNA, encoding Patched Domain-Containing Protein 4, in senescent cells. The METTL3/METTL14 complex was found to incorporate the m6A modification on PTCHD4 mRNA; addition of m6A rendered PTCHD4 mRNA more stable and increased PTCHD4 production. MeRIP RT-qPCR and eCLIP analyses were used to map this m6A modification to the last exon of PTCHD4 mRNA. Further investigation identified IGF2BP1, but not other m6A readers, as responsible for the stabilization and increased abundance of m6A-modified PTCHD4 mRNA. Silencing PTCHD4, a transmembrane protein, enhanced growth arrest and DNA damage in pre-senescent cells and sensitized them to senolysis and apoptosis. Our results indicate that m6A modification of PTCHD4 mRNA increases the production of PTCHD4, a protein associated with senescent cell survival, supporting the notion that regulating m6A modification on specific mRNAs could be exploited to eliminate senescent cells for therapeutic benefit.
Collapse
|
6
|
Shin CH, Rossi M, Anerillas C, Martindale JL, Yang X, Ji E, Pal A, Munk R, Yang JH, Tsitsipatis D, Mazan-Mamczarz K, Abdelmohsen K, Gorospe M. Increased ANKRD1 Levels in Early Senescence Mediated by RBMS1-Elicited ANKRD1 mRNA Stabilization. Mol Cell Biol 2024; 44:194-208. [PMID: 38769646 PMCID: PMC11123458 DOI: 10.1080/10985549.2024.2350540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/25/2024] [Indexed: 05/22/2024] Open
Abstract
Cellular senescence is a dynamic biological process triggered by sublethal cell damage and driven by specific changes in gene expression programs. We recently identified ANKRD1 (ankyrin repeat domain 1) as a protein strongly elevated after triggering senescence in fibroblasts. Here, we set out to investigate the mechanisms driving the elevated production of ANKRD1 in the early stages of senescence. Our results indicated that the rise in ANKRD1 levels after triggering senescence using etoposide (Eto) was the result of moderate increases in transcription and translation, and robust mRNA stabilization. Antisense oligomer (ASO) pulldown followed by mass spectrometry revealed a specific interaction of the RNA-binding protein RBMS1 with ANKRD1 mRNA that was confirmed by ribonucleoprotein immunoprecipitation analysis. RBMS1 abundance decreased in the nucleus and increased in the cytoplasm during Eto-induced senescence; in agreement with the hypothesis that RBMS1 may participate in post-transcriptional stabilization of ANKRD1 mRNA, silencing RBMS1 reduced, while overexpressing RBMS1 enhanced ANKRD1 mRNA half-life after Eto treatment. A segment proximal to the ANKRD1 coding region was identified as binding RBMS1 and conferring RBMS1-dependent increased expression of a heterologous reporter. We propose that RBMS1 increases expression of ANKRD1 during the early stages of senescence by stabilizing ANKRD1 mRNA.
Collapse
|
7
|
Zonnefeld AG, Cui CY, Tsitsipatis D, Piao Y, Fan J, Mazan-Mamczarz K, Xue Y, Indig FE, De S, Gorospe M. Characterization of age-associated gene expression changes in mouse sweat glands. Aging (Albany NY) 2024; 16:6717-6730. [PMID: 38637019 PMCID: PMC11087089 DOI: 10.18632/aging.205776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/18/2024] [Indexed: 04/20/2024]
Abstract
Evaporation of sweat on the skin surface is the major mechanism for dissipating heat in humans. The secretory capacity of sweat glands (SWGs) declines during aging, leading to heat intolerance in the elderly, but the mechanisms responsible for this decline are poorly understood. We investigated the molecular changes accompanying SWG aging in mice, where sweat tests confirmed a significant reduction of active SWGs in old mice relative to young mice. We first identified SWG-enriched mRNAs by comparing the skin transcriptome of Eda mutant Tabby male mice, which lack SWGs, with that of wild-type control mice by RNA-sequencing analysis. This comparison revealed 171 mRNAs enriched in SWGs, including 47 mRNAs encoding 'core secretory' proteins such as transcription factors, ion channels, ion transporters, and trans-synaptic signaling proteins. Among these, 28 SWG-enriched mRNAs showed significantly altered abundance in the aged male footpad skin, and 11 of them, including Foxa1, Best2, Chrm3, and Foxc1 mRNAs, were found in the 'core secretory' category. Consistent with the changes in mRNA expression levels, immunohistology revealed that higher numbers of secretory cells from old SWGs express the transcription factor FOXC1, the protein product of Foxc1 mRNA. In sum, our study identified mRNAs enriched in SWGs, including those that encode core secretory proteins, and altered abundance of these mRNAs and proteins with aging in mouse SWGs.
Collapse
|
8
|
Yang JH, Tsitsipatis D, Gorospe M. Stoichiometry of long noncoding RNA interactions with other RNAs: Insights from OIP5-AS1. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1841. [PMID: 38576135 DOI: 10.1002/wrna.1841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/27/2024] [Accepted: 03/07/2024] [Indexed: 04/06/2024]
Abstract
Long noncoding (lnc)RNAs modulate gene expression programs in a range of developmental processes in different organs. In skeletal muscle, lncRNAs have been implicated in myogenesis, the process whereby muscle precursor cells form muscle fibers during embryonic development and regenerate muscle fibers in the adult. Here, we discuss OIP5-AS1, a lncRNA that is highly expressed in skeletal muscle and is capable of coordinating protein expression programs during myogenesis. Given that several myogenic functions of OIP5-AS1 involve interactions with MEF2C mRNA and with the microRNA miR-7, it was critical to carefully evaluate the precise levels of OIP5-AS1 during myogenesis. We discuss the approaches used to examine lncRNA copy number using OIP5-AS1 as an example, focusing on quantification by quantitative PCR analysis with reference to nucleic acids of known abundance, by droplet digital (dd)PCR measurement, and by microscopic visualization of individual lncRNAs in cells. We discuss considerations of RNA stoichiometry in light of developmental processes in which lncRNAs are implicated. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
|
9
|
Tsitsipatis D, Martindale JL, Mazan‐Mamczarz K, Herman AB, Piao Y, Banskota N, Yang J, Cui L, Anerillas C, Chang M, Kaileh M, Munk R, Yang X, Ubaida‐Mohien C, Chia CW, Karikkineth AC, Zukley L, D'Agostino J, Abdelmohsen K, Basisty N, De S, Ferrucci L, Gorospe M. Transcriptomes of human primary skin fibroblasts of healthy individuals reveal age-associated mRNAs and long noncoding RNAs. Aging Cell 2023; 22:e13915. [PMID: 37462262 PMCID: PMC10652340 DOI: 10.1111/acel.13915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 09/27/2023] Open
Abstract
Changes in the transcriptomes of human tissues with advancing age are poorly cataloged. Here, we sought to identify the coding and long noncoding RNAs present in cultured primary skin fibroblasts collected from 82 healthy individuals across a wide age spectrum (22-89 years old) who participated in the GESTALT (Genetic and Epigenetic Signatures of Translational Aging Laboratory Testing) study of the National Institute on Aging, NIH. Using high-throughput RNA sequencing and a linear regression model, we identified 1437 coding RNAs (mRNAs) and 1177 linear and circular long noncoding (lncRNAs) that were differentially abundant as a function of age. Gene set enrichment analysis (GSEA) revealed select transcription factors implicated in coordinating the transcription of subsets of differentially abundant mRNAs, while long noncoding RNA enrichment analysis (LncSEA) identified RNA-binding proteins predicted to participate in the age-associated lncRNA profiles. In summary, we report age-associated changes in the global transcriptome, coding and noncoding, from healthy human skin fibroblasts and propose that these transcripts may serve as biomarkers and therapeutic targets in aging skin.
Collapse
|
10
|
Anerillas C, Mazan-Mamczarz K, Herman AB, Munk R, Lam KWG, Calvo-Rubio M, Garrido A, Tsitsipatis D, Martindale JL, Altés G, Rossi M, Piao Y, Fan J, Cui CY, De S, Abdelmohsen K, de Cabo R, Gorospe M. The YAP-TEAD complex promotes senescent cell survival by lowering endoplasmic reticulum stress. NATURE AGING 2023; 3:1237-1250. [PMID: 37667102 PMCID: PMC11369890 DOI: 10.1038/s43587-023-00480-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 08/03/2023] [Indexed: 09/06/2023]
Abstract
Sublethal cell damage can trigger senescence, a complex adaptive program characterized by growth arrest, resistance to apoptosis and a senescence-associated secretory phenotype (SASP). Here, a whole-genome CRISPR knockout screen revealed that proteins in the YAP-TEAD pathway influenced senescent cell viability. Accordingly, treating senescent cells with a drug that inhibited this pathway, verteporfin (VPF), selectively triggered apoptotic cell death largely by derepressing DDIT4, which in turn inhibited mTOR. Reducing mTOR function in senescent cells diminished endoplasmic reticulum (ER) biogenesis, triggering ER stress and apoptosis due to high demands on ER function by the SASP. Importantly, VPF treatment decreased the numbers of senescent cells in the organs of old mice and mice exhibiting doxorubicin-induced senescence. Moreover, VPF treatment reduced immune cell infiltration and pro-fibrotic transforming growth factor-β signaling in aging mouse lungs, improving tissue homeostasis. We present an alternative senolytic strategy that eliminates senescent cells by hindering ER activity required for SASP production.
Collapse
|
11
|
Abdelmohsen K, Herman AB, Carr AE, Henry‐Smith CA, Rossi M, Meng Q, Yang J, Tsitsipatis D, Bangura A, Munk R, Martindale JL, Nogueras‐Ortiz CJ, Hao J, Gong Y, Liu Y, Cui C, Hartnell LM, Price NL, Ferrucci L, Kapogiannis D, de Cabo R, Gorospe M. Survey of organ-derived small extracellular vesicles and particles (sEVPs) to identify selective protein markers in mouse serum. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e106. [PMID: 37744304 PMCID: PMC10512735 DOI: 10.1002/jex2.106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/11/2023] [Accepted: 07/21/2023] [Indexed: 09/26/2023]
Abstract
Extracellular vesicles and particles (EVPs) are secreted by organs across the body into different circulatory systems, including the bloodstream, and reflect pathophysiologic conditions of the organ. However, the heterogeneity of EVPs in the blood makes it challenging to determine their organ of origin. We hypothesized that small (s)EVPs (<100 nm in diameter) in the bloodstream carry distinctive protein signatures associated with each originating organ, and we investigated this possibility by studying the proteomes of sEVPs produced by six major organs (brain, liver, lung, heart, kidney, fat). We found that each organ contained distinctive sEVP proteins: 68 proteins were preferentially found in brain sEVPs, 194 in liver, 39 in lung, 15 in heart, 29 in kidney, and 33 in fat. Furthermore, we isolated sEVPs from blood and validated the presence of sEVP proteins associated with the brain (DPP6, SYT1, DNM1L), liver (FABPL, ARG1, ASGR1/2), lung (SFPTA1), heart (CPT1B), kidney (SLC31), and fat (GDN). We further discovered altered levels of these proteins in serum sEVPs prepared from old mice compared to young mice. In sum, we have cataloged sEVP proteins that can serve as potential biomarkers for organ identification in serum and show differential expression with age.
Collapse
|
12
|
Herman AB, Tsitsipatis D, Anerillas C, Mazan-Mamczarz K, Carr AE, Gregg JM, Wang M, Zhang J, Michel M, Henry-Smith C, Harris SC, Munk R, Martindale JL, Piao Y, Fan J, Mattison JA, De S, Abdelmohsen K, Maul RW, Tanaka T, Moore AZ, DeMouth ME, Sidoli S, Ferrucci L, Liu Y, de Cabo R, Lakatta EG, Gorospe M. DPP4 inhibition impairs senohemostasis to improve plaque stability in atherosclerotic mice. J Clin Invest 2023:165933. [PMID: 37097759 DOI: 10.1172/jci165933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
Senescent vascular smooth muscle cells (VSMCs) accumulate in the vasculature with age and tissue damage, and secrete factors that promote atherosclerotic plaque vulnerability and disease. Here, we report increased levels and activity of dipeptidyl peptidase 4 (DPP4), a serine protease, in senescent VSMCs. Analysis of the conditioned media from senescent VSMCs revealed a unique senescence-associated secretory phenotype (SASP) signature comprising many complement and coagulation factors; silencing or inhibiting DPP4 reduced these factors and increased cell death. Serum samples from persons with high risk for cardiovascular disease contained high levels of DPP4-regulated complement and coagulation factors. Importantly, DPP4 inhibition reduced senescent cell burden and coagulation and improved plaque stability, while single-cell resolution of senescent VSMCs reflected the senomorphic and senolytic effects of DPP4 inhibition in murine atherosclerosis. We propose that DPP4-regulated factors could be exploited therapeutically to reduce senescent cell function, reverse senohemostasis, and improve vascular disease.
Collapse
|
13
|
Rossi M, Anerillas C, Idda ML, Munk R, Shin CH, Donega S, Tsitsipatis D, Herman AB, Martindale JL, Yang X, Piao Y, Mazan-Mamczarz K, Fan J, Ferrucci L, Johnson PF, De S, Abdelmohsen K, Gorospe M. Pleiotropic effects of BAFF on the senescence-associated secretome and growth arrest. eLife 2023; 12:e84238. [PMID: 37083495 PMCID: PMC10121226 DOI: 10.7554/elife.84238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 03/26/2023] [Indexed: 04/22/2023] Open
Abstract
Senescent cells release a variety of cytokines, proteases, and growth factors collectively known as the senescence-associated secretory phenotype (SASP). Sustained SASP contributes to a pattern of chronic inflammation associated with aging and implicated in many age-related diseases. Here, we investigated the expression and function of the immunomodulatory cytokine BAFF (B-cell activating factor; encoded by the TNFSF13B gene), a SASP protein, in multiple senescence models. We first characterized BAFF production across different senescence paradigms, including senescent human diploid fibroblasts (WI-38, IMR-90) and monocytic leukemia cells (THP-1), and tissues of mice induced to undergo senescence. We then identified IRF1 (interferon regulatory factor 1) as a transcription factor required for promoting TNFSF13B mRNA transcription in senescence. We discovered that suppressing BAFF production decreased the senescent phenotype of both fibroblasts and monocyte-like cells, reducing IL6 secretion and SA-β-Gal staining. Importantly, however, the influence of BAFF on the senescence program was cell type-specific: in monocytes, BAFF promoted the early activation of NF-κB and general SASP secretion, while in fibroblasts, BAFF contributed to the production and function of TP53 (p53). We propose that BAFF is elevated across senescence models and is a potential target for senotherapy.
Collapse
|
14
|
Wechter N, Rossi M, Anerillas C, Tsitsipatis D, Piao Y, Fan J, Martindale JL, De S, Mazan-Mamczarz K, Gorospe M. Single-cell transcriptomic analysis uncovers diverse and dynamic senescent cell populations. Aging (Albany NY) 2023; 15:2824-2851. [PMID: 37086265 DOI: 10.18632/aging.204666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 04/03/2023] [Indexed: 04/23/2023]
Abstract
Senescence is a state of enduring growth arrest triggered by sublethal cell damage. Given that senescent cells actively secrete proinflammatory and matrix-remodeling proteins, their accumulation in tissues of older persons has been linked to many diseases of aging. Despite intense interest in identifying robust markers of senescence, the highly heterogeneous and dynamic nature of the senescent phenotype has made this task difficult. Here, we set out to comprehensively analyze the senescent transcriptome of human diploid fibroblasts at the individual-cell scale by performing single-cell RNA-sequencing analysis through two approaches. First, we characterized the different cell states in cultures undergoing senescence triggered by different stresses, and found distinct cell subpopulations that expressed mRNAs encoding proteins with roles in growth arrest, survival, and the secretory phenotype. Second, we characterized the dynamic changes in the transcriptomes of cells as they developed etoposide-induced senescence; by tracking cell transitions across this process, we found two different senescence programs that developed divergently, one in which cells expressed traditional senescence markers such as p16 (CDKN2A) mRNA, and another in which cells expressed long noncoding RNAs and splicing was dysregulated. Finally, we obtained evidence that the proliferation status at the time of senescence initiation affected the path of senescence, as determined based on the expressed RNAs. We propose that a deeper understanding of the transcriptomes during the progression of different senescent cell phenotypes will help develop more effective interventions directed at this detrimental cell population.
Collapse
|
15
|
Tsitsipatis D, Mazan-Mamczarz K, Si Y, Herman AB, Yang JH, Guha A, Piao Y, Fan J, Martindale JL, Munk R, Yang X, De S, Singh BK, Ho R, Gorospe M, King PH. Transcriptomic analysis of human ALS skeletal muscle reveals a disease-specific pattern of dysregulated circRNAs. Aging (Albany NY) 2022; 14:9832-9859. [PMID: 36585921 PMCID: PMC9831722 DOI: 10.18632/aging.204450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/13/2022] [Indexed: 01/01/2023]
Abstract
Circular RNAs are abundant, covalently closed transcripts that arise in cells through back-splicing and display distinct expression patterns across cells and developmental stages. While their functions are largely unknown, their intrinsic stability has made them valuable biomarkers in many diseases. Here, we set out to examine circRNA patterns in amyotrophic lateral sclerosis (ALS). By RNA-sequencing analysis, we first identified circRNAs and linear RNAs that were differentially abundant in skeletal muscle biopsies from ALS compared to normal individuals. By RT-qPCR analysis, we confirmed that 8 circRNAs were significantly elevated and 10 were significantly reduced in ALS, while the linear mRNA counterparts, arising from shared precursor RNAs, generally did not change. Several of these circRNAs were also differentially abundant in motor neurons derived from human induced pluripotent stem cells (iPSCs) bearing ALS mutations, and across different disease stages in skeletal muscle from a mouse model of ALS (SOD1G93A). Interestingly, a subset of the circRNAs significantly elevated in ALS muscle biopsies were significantly reduced in the spinal cord samples from ALS patients and ALS (SOD1G93A) mice. In sum, we have identified differentially abundant circRNAs in ALS-relevant tissues (muscle and spinal cord) that could inform about neuromuscular molecular programs in ALS and guide the development of therapies.
Collapse
|
16
|
Tsitsipatis D, Gorospe M, Herman AB. Leveraging pathway analysis in a human skin model of healthy aging. Aging (Albany NY) 2022; 14:9775-9776. [PMID: 36566023 PMCID: PMC9831731 DOI: 10.18632/aging.204456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/25/2022]
|
17
|
Chang MW, Yang JH, Tsitsipatis D, Yang X, Martindale J, Munk R, Pandey P, Banskota N, Romero B, Batish M, Piao Y, Mazan-Mamczarz K, De S, Abdelmohsen K, Wilson G, Gorospe M. Enhanced myogenesis through lncFAM-mediated recruitment of HNRNPL to the MYBPC2 promoter. Nucleic Acids Res 2022; 50:13026-13044. [PMID: 36533518 PMCID: PMC9825165 DOI: 10.1093/nar/gkac1174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/16/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
The mammalian transcriptome comprises a vast family of long noncoding (lnc)RNAs implicated in physiologic processes such as myogenesis, through which muscle forms during embryonic development and regenerates in the adult. However, the specific molecular mechanisms by which lncRNAs regulate human myogenesis are poorly understood. Here, we identified a novel muscle-specific lncRNA, lncFAM71E1-2:2 (lncFAM), which increased robustly during early human myogenesis. Overexpression of lncFAM promoted differentiation of human myoblasts into myotubes, while silencing lncFAM suppressed this process. As lncFAM resides in the nucleus, chromatin isolation by RNA purification followed by mass spectrometry (ChIRP-MS) analysis was employed to identify the molecular mechanisms whereby it might promote myogenesis. Analysis of lncFAM-interacting proteins revealed that lncFAM recruited the RNA-binding protein HNRNPL to the promoter of MYBPC2, in turn increasing MYBPC2 mRNA transcription and enhancing production of the myogenic protein MYBPC2. These results highlight a mechanism whereby a novel ribonucleoprotein complex, lncFAM-HNRNPL, elevates MYBPC2 expression transcriptionally to promote myogenesis.
Collapse
|
18
|
Anerillas C, Herman AB, Munk R, Garrido A, Lam KWG, Payea MJ, Rossi M, Tsitsipatis D, Martindale JL, Piao Y, Mazan-Mamczarz K, Fan J, Cui CY, De S, Abdelmohsen K, de Cabo R, Gorospe M. Author Correction: A BDNF-TrkB autocrine loop enhances senescent cell viability. Nat Commun 2022; 13:7540. [PMID: 36477003 PMCID: PMC9729192 DOI: 10.1038/s41467-022-35154-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
19
|
Krasniewski LK, Tsitsipatis D, Izydore EK, Shi C, Piao Y, Michel M, Sen P, Gorospe M, Cui CY. Improved Macrophage Enrichment from Mouse Skeletal Muscle. Bio Protoc 2022; 12:e4561. [PMID: 36561115 PMCID: PMC9729853 DOI: 10.21769/bioprotoc.4561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/22/2020] [Accepted: 08/22/2022] [Indexed: 12/12/2022] Open
Abstract
Macrophages are a heterogeneous class of innate immune cells that offer a primary line of defense to the body by phagocytizing pathogens, digesting them, and presenting the antigens to T and B cells to initiate adaptive immunity. Through specialized pro-inflammatory or anti-inflammatory activities, macrophages also directly contribute to the clearance of infections and the repair of tissue injury. Macrophages are distributed throughout the body and largely carry out tissue-specific functions. In skeletal muscle, macrophages regulate tissue repair and regeneration; however, the characteristics of these macrophages are not yet fully understood, and their involvement in skeletal muscle aging remains to be elucidated. To investigate these functions, it is critical to efficiently isolate macrophages from skeletal muscle with sufficient purity and yield for various downstream analyses. However, methods to prepare enriched skeletal muscle macrophages are scarce. Here, we describe in detail an optimized method to isolate skeletal muscle macrophages from mice. This method has allowed the isolation of CD45 + /CD11b + macrophage-enriched cells from young and old mice, which can be further used for flow cytometric analysis, fluorescence-activated cell sorting (FACS), and single-cell RNA sequencing. This protocol was validated in: eLife (2022), DOI: 10.7554/eLife.77974.
Collapse
|
20
|
Krasniewski LK, Chakraborty P, Cui CY, Mazan-Mamczarz K, Dunn C, Piao Y, Fan J, Shi C, Wallace T, Nguyen C, Rathbun IA, Munk R, Tsitsipatis D, De S, Sen P, Ferrucci L, Gorospe M. Single-cell analysis of skeletal muscle macrophages reveals age-associated functional subpopulations. eLife 2022; 11:e77974. [PMID: 36259488 PMCID: PMC9629833 DOI: 10.7554/elife.77974] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 10/10/2022] [Indexed: 11/30/2022] Open
Abstract
Tissue-resident macrophages represent a group of highly responsive innate immune cells that acquire diverse functions by polarizing toward distinct subpopulations. The subpopulations of macrophages that reside in skeletal muscle (SKM) and their changes during aging are poorly characterized. By single-cell transcriptomic analysis with unsupervised clustering, we found 11 distinct macrophage clusters in male mouse SKM with enriched gene expression programs linked to reparative, proinflammatory, phagocytic, proliferative, and senescence-associated functions. Using a complementary classification, membrane markers LYVE1 and MHCII identified four macrophage subgroups: LYVE1-/MHCIIhi (M1-like, classically activated), LYVE1+/MHCIIlo (M2-like, alternatively activated), and two new subgroups, LYVE1+/MHCIIhi and LYVE1-/MHCIIlo. Notably, one new subgroup, LYVE1+/MHCIIhi, had traits of both M2 and M1 macrophages, while the other new subgroup, LYVE1-/MHCIIlo, displayed strong phagocytic capacity. Flow cytometric analysis validated the presence of the four macrophage subgroups in SKM and found that LYVE1- macrophages were more abundant than LYVE1+ macrophages in old SKM. A striking increase in proinflammatory markers (S100a8 and S100a9 mRNAs) and senescence-related markers (Gpnmb and Spp1 mRNAs) was evident in macrophage clusters from older mice. In sum, we have identified dynamically polarized SKM macrophages and propose that specific macrophage subpopulations contribute to the proinflammatory and senescent traits of old SKM.
Collapse
|
21
|
Yang JH, Chang MW, Tsitsipatis D, Yang X, Martindale J, Munk R, Cheng A, Izydore E, Pandey PR, Piao Y, Mazan-Mamczarz K, De S, Abdelmohsen K, Gorospe M. LncRNA OIP5-AS1-directed miR-7 degradation promotes MYMX production during human myogenesis. Nucleic Acids Res 2022; 50:7115-7133. [PMID: 35736212 PMCID: PMC9262585 DOI: 10.1093/nar/gkac524] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/22/2022] [Accepted: 06/01/2022] [Indexed: 12/24/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) modulate gene expression programs in physiology and disease. Here, we report a noncoding RNA regulatory network that modulates myoblast fusion into multinucleated myotubes, a process that occurs during muscle development and muscle regeneration after injury. In early stages of human myogenesis, the levels of lncRNA OIP5-AS1 increased, while the levels of miR-7 decreased. Moreover, OIP5-AS1 bound and induced miR-7 decay via target RNA-directed miRNA decay; accordingly, loss of OIP5-AS1 attenuated, while antagonizing miR-7 accelerated, myotube formation. We found that the OIP5-AS1-mediated miR-7 degradation promoted myoblast fusion, as it derepressed the miR-7 target MYMX mRNA, which encodes the fusogenic protein myomixer (MYMX). Remarkably, an oligonucleotide site blocker interfered with the OIP5-AS1-directed miR-7 degradation, allowing miR-7 to accumulate, lowering MYMX production and suppressing myotube formation. These results highlight a mechanism whereby lncRNA OIP5-AS1-mediated miR-7 decay promotes myotube formation by stimulating a myogenic fusion program.
Collapse
|
22
|
Tsitsipatis D, Martindale JL, Ubaida‐Mohien C, Lyashkov A, Yanai H, Kashyap A, Shin CH, Herman AB, Ji E, Yang J, Munk R, Dunn C, Lukyanenko Y, Yang X, Chia CW, Karikkineth AC, Zukley L, D’Agostino J, Kaileh M, Cui C, Beerman I, Ferrucci L, Gorospe M. Proteomes of primary skin fibroblasts from healthy individuals reveal altered cell responses across the life span. Aging Cell 2022; 21:e13609. [PMID: 35429111 PMCID: PMC9124301 DOI: 10.1111/acel.13609] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/24/2022] [Indexed: 02/04/2023] Open
Abstract
Changes in the proteome of different human tissues with advancing age are poorly characterized. Here, we studied the proteins present in primary skin fibroblasts collected from 82 healthy individuals across a wide age spectrum (22-89 years old) who participated in the GESTALT (Genetic and Epigenetic Signatures of Translational Aging Laboratory Testing) study of the National Institute on Aging, NIH. Proteins were extracted from lysed fibroblasts and subjected to liquid chromatography-mass spectrometry analysis, and the expression levels of 9341 proteins were analyzed using linear regression models. We identified key pathways associated with skin fibroblast aging, including autophagy, scavenging of reactive oxygen species (ROS), ribosome biogenesis, DNA replication, and DNA repair. Changes in these prominent pathways were corroborated using molecular and cell culture approaches. Our study establishes a framework of the global proteome governing skin fibroblast aging and points to possible biomarkers and therapeutic targets.
Collapse
|
23
|
Herman AB, Tsitsipatis D, Anerillas C, Wang M, Harris SC, Munk R, Mattison J, Martindale JL, Abdelmohsen K, Sidoli S, Lakatta EG, Gorospe M. Abstract 515: Inhibiting Dpp4 In Senescent Vascular Smooth Muscle Cells Suppresses A Coagulation Program. Arterioscler Thromb Vasc Biol 2022. [DOI: 10.1161/atvb.42.suppl_1.515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
In older persons, senescent vascular smooth muscle cells (VSMCs) express increased levels of senescence-associated secretory phenotype (SASP) factors such as cytokines, chemokines, adhesion molecules, matrix-remodeling enzymes, and angiogenic factors. The SASP contributes to destabilizing the plaque cap, suggesting that VSMC senescence promotes disease development. As a result of their prevalence in many diseases, major efforts are underway to develop therapies directed at senescent cells (senotherapies). Dipeptidyl Peptidase 4 (DPP4), a serine protease, was elevated on the plasma membrane of senescent fibroblasts. While the effect of DPP4 on VSMCs is not well understood, DPP4 inhibitors such as Vildagliptin are clinically used to treat diabetes, and in animal models, gliptins reduced atherosclerosis and inflammation independently of DPP4’s canonical role in glucose metabolism. We hypothesized that DPP4 inhibitors may reduce the progression and burden of atherosclerosis by preventing DPP4 enzymatic function on senescent VSMCs. Towards this end, we discovered that DPP4 protein levels and enzymatic activity increased in senescent human VSMCs (hVSMCs) senescence. We also found elevated DPP4 in human atherosclerotic plaques, and high levels of DPP4 colocalized with the senescence marker p16 in murine atherosclerosis. Strikingly, silencing DPP4 in senescent hVSMCs increased cell death and caspase activity. Proteomic analysis of conditioned media from senescent hVSMCs treated with DPP4 inhibitors revealed a reduction in numerous complement and coagulation factors, indicating that DPP4 partially governs hemostasis and the proteolytic events that promote thrombotic signaling. We propose that DPP4 inhibition suppresses the pro-coagulation/complement phenotype of senescent hVSMCs to disrupt their function and improve vascular disease progression.
Collapse
|
24
|
Munk R, Anerillas C, Rossi M, Tsitsipatis D, Martindale JL, Herman AB, Yang JH, Roberts JA, Varma VR, Pandey PR, Thambisetty M, Gorospe M, Abdelmohsen K. Acid ceramidase promotes senescent cell survival. Aging (Albany NY) 2021; 13:15750-15769. [PMID: 34102611 PMCID: PMC8266329 DOI: 10.18632/aging.203170] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 05/18/2021] [Indexed: 01/18/2023]
Abstract
Cellular senescence is linked to chronic age-related diseases including atherosclerosis, diabetes, and neurodegeneration. Compared to proliferating cells, senescent cells express distinct subsets of proteins. In this study, we used cultured human diploid fibroblasts rendered senescent through replicative exhaustion or ionizing radiation to identify proteins differentially expressed during senescence. We identified acid ceramidase (ASAH1), a lysosomal enzyme that cleaves ceramide into sphingosine and fatty acid, as being highly elevated in senescent cells. This increase in ASAH1 levels in senescent cells was associated with a rise in the levels of ASAH1 mRNA and a robust increase in ASAH1 protein stability. Furthermore, silencing ASAH1 in pre-senescent fibroblasts decreased the levels of senescence proteins p16, p21, and p53, and reduced the activity of the senescence-associated β-galactosidase. Interestingly, depletion of ASAH1 in pre-senescent cells sensitized these cells to the senolytics Dasatinib and Quercetin (D+Q). Together, our study indicates that ASAH1 promotes senescence, protects senescent cells, and confers resistance against senolytic drugs. Given that inhibiting ASAH1 sensitizes cells towards senolysis, this enzyme represents an attractive therapeutic target in interventions aimed at eliminating senescent cells.
Collapse
|
25
|
Lee WJ, Shin CH, Ji H, Jeong SD, Park MS, Won HH, Pandey PR, Tsitsipatis D, Gorospe M, Kim HH. hnRNPK-regulated LINC00263 promotes malignant phenotypes through miR-147a/CAPN2. Cell Death Dis 2021; 12:290. [PMID: 33731671 PMCID: PMC7969774 DOI: 10.1038/s41419-021-03575-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/23/2021] [Accepted: 03/01/2021] [Indexed: 12/15/2022]
Abstract
Malignant characteristics of cancers, represented by rapid cell proliferation and high metastatic potential, are a major cause of high cancer-related mortality. As a multifunctional RNA-binding protein, heterogeneous nuclear ribonucleoprotein K (hnRNPK) is closely associated with cancer progression in various types of cancers. In this study, we sought to identify hnRNPK-regulated long intergenic non-coding RNAs (lincRNAs) that play a critical role in the regulation of cancer malignancy. We found that hnRNPK controlled malignant phenotypes including invasiveness, proliferation, and clonogenicity. RNA sequencing and functional studies revealed that LINC00263, a novel target of hnRNPK, is involved in the oncogenic functions of hnRNPK. Knockdown of LINC00263 mitigated the malignant capabilities. Conversely, increased malignant phenotypes were observed in LINC00263-overexpressing cells. Since LINC00263 was mainly localized in the cytosol and highly enriched in Argonaute 2-immunoprecipitation (Ago2-IP), we hypothesized that LINC00263 acts as a competitive endogenous RNA (ceRNA), and thus sought to identify LINC00263-associated microRNAs. Using small RNA sequencing followed by antisense oligonucleotide pull-down, miR-147a was selected for further study. We found that miR-147a negatively regulates LINC00263 via direct interaction, thus suppressing malignant capabilities. Moreover, knockdown of hnRNPK and LINC00263 upregulated miR-147a, indicating that LINC00263 serves as a ceRNA for miR-147a. By analyzing RNA sequencing data and miRNA target prediction, calpain 2 (CAPN2) was identified as a putative target of miR-147a. Ago2-IP and luciferase reporter assay revealed that miR-147a suppressed CAPN2 expression by directly binding to the 3′UTR of CAPN2 mRNA. In addition, we found that the weakened malignant capabilities following knockdown of hnRNPK or LINC00263 were restored by miR-147a inhibition or CAPN2 overexpression. Furthermore, our findings were validated in various other types of cancer cells including lung cancer, colorectal cancer, neuroblastoma, and melanoma. Collectively, we demonstrate that hnRNPK-regulated LINC00263 plays an important role in cancer malignancy by acting as a miR-147a decoy and thus upregulating CAPN2.
Collapse
|