1
|
Rook Y, Schmidtke KU, Gaube F, Schepmann D, Wünsch B, Heilmann J, Lehmann J, Winckler T. Bivalent β-Carbolines as Potential Multitarget Anti-Alzheimer Agents. J Med Chem 2010; 53:3611-7. [DOI: 10.1021/jm1000024] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
|
15 |
113 |
2
|
Meyer C, Neue B, Schepmann D, Yanagisawa S, Yamaguchi J, Würthwein EU, Itami K, Wünsch B. Improvement of σ1 receptor affinity by late-stage C-H-bond arylation of spirocyclic lactones. Bioorg Med Chem 2013; 21:1844-56. [PMID: 23462714 DOI: 10.1016/j.bmc.2013.01.038] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 01/14/2013] [Accepted: 01/18/2013] [Indexed: 11/16/2022]
Abstract
The direct C-H-bond arylation of the complex spirocyclic lactones 13, 14, and 18 allows the introduction of diverse aryl moieties in the last step of the synthesis. A selective α-arylation of the thiophene moiety was performed with the catalytic system PdCl2/2,2'-bipyridyl/Ag2CO3, whereas the β-position of the thiophene ring was addressed by using the alternative catalytic system PdCl2/P[OCH(CF3)2]3/Ag2CO3. Due to electronic and steric reasons the arylation of the five-membered lactone 18 occurred in both α-positions providing 4'-mono-, 6'-mono- and 4',6'-diarylated thiophenes 22-26a-c. Compounds with an additional aryl moiety at the 'upper left (top)' position (1'-position of 13, 3'-position of 14, 4'-position of 18) showed increased σ1 affinity compared to the non-arylated parent compounds. A phenyl moiety at the 'left' position (2'-position in 20a) also increased the σ1 affinity but to a lower extent. A considerable reduction of σ1 affinity was observed after introducing an aryl moiety in 6'-position of 18, which might result from shielding the tertiary amine, which is crucial for interaction with the σ1 receptor. The discussion of the experimental results is supported by high-level quantum chemical DFT-calculations of the NBO-charges of 13 and 18 and the relative energies of the related arylated products.
Collapse
|
|
12 |
94 |
3
|
Tacke R, Popp F, Müller B, Theis B, Burschka C, Hamacher A, Kassack M, Schepmann D, Wünsch B, Jurva U, Wellner E. Sila-Haloperidol, a Silicon Analogue of the Dopamine (D2) Receptor Antagonist Haloperidol: Synthesis, Pharmacological Properties, and Metabolic Fate. ChemMedChem 2008; 3:152-64. [DOI: 10.1002/cmdc.200700205] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
|
17 |
74 |
4
|
Hasebein P, Frehland B, Lehmkuhl K, Fröhlich R, Schepmann D, Wünsch B. Synthesis and pharmacological evaluation of like- and unlike-configured tetrahydro-2-benzazepines with the α-substituted benzyl moiety in the 5-position. Org Biomol Chem 2015; 12:5407-26. [PMID: 24934693 DOI: 10.1039/c4ob00510d] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A large set of tetrahydro-2-benzazepines with an α-hydroxy or α-(aryl)alkoxy substituted benzyl moiety in the 5-position was prepared according to the recently reported C6C1 + C3N synthetic strategy. The Heck reaction of 2-iodobenzaldehyde acetal 4 and the subsequent Stetter reaction led to the ketone 7, which was reduced diastereoselectively to form the like-configured alcohol 8. The diastereomeric unlike-configured alcohol 9 was obtained by a Mitsunobu inversion of 8. Alkylation and reductive cyclization of the diastereomeric alcohols 8 and 9 provided like- and unlike-configured 2-benzazepines 13 and 23, which allowed the introduction of various substituents at the N-atom. Analysis of the relationship between the structure and the σ1 affinity revealed that large substituents such as the butyl, benzyl or 4-phenylbutyl moiety at the benzazepine N-atom resulted in high affinity ligands. A p-methoxybenzyl ether is less tolerated by the σ1 receptor than a methyl ether or an alcohol. The unlike-configured alcohols 25d and 27d show slightly higher σ1 affinity than their like-configured diastereomers 15d and 17d. With respect to the σ1 affinity, σ1/σ2 selectivity and lipophilic ligand efficiency, like- and unlike-configured alcohols 15d and 25d represent the most promising σ1 ligands of this series. Interactions of the novel 2-benzazepines with various binding sites of the NMDA receptor were not observed.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
65 |
5
|
Miyata K, Schepmann D, Wünsch B. Synthesis and σ receptor affinity of regioisomeric spirocyclic furopyridines. Eur J Med Chem 2014; 83:709-16. [PMID: 25016157 DOI: 10.1016/j.ejmech.2014.06.073] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 06/23/2014] [Accepted: 06/29/2014] [Indexed: 11/25/2022]
Abstract
In order to investigate systematically the effect of the position of the pyridine N-atom on the σ1 receptor affinity four regioisomeric furopyridines 2a-d were synthesized and pharmacologically evaluated. The key steps of the synthesis comprise bromine/lithium exchange at regioisomeric bromopyridinecarbaldehyde acetals 7a-d, subsequent addition to 1-benzylpiperidin-4-one and cyclization. The regioisomeric acetals 7a-d were obtained either by o-metalation of bromopyridines 5b and 5c or by oxidation of bromopicolines 3a and 3d. In radioligand binding studies the regioisomeric furopyridines 2a-d showed 7- to 12-fold lower σ1 affinity than the benzofuran analog 1. The reduced σ1 affinity of the furopyridines 2a-d is explained with the reduced electron density of the pyridine ring. Since the four regioisomeric furopyridines show almost the same σ1 affinity (Ki = 4.9-10 nM), a directed interaction of the pyridine N-atom with the receptor protein can be excluded.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
63 |
6
|
Wirt U, Schepmann D, Wünsch B. Asymmetric Synthesis of 1-Substituted Tetrahydro-3-benzazepines as NMDA Receptor Antagonists. European J Org Chem 2007. [DOI: 10.1002/ejoc.200600746] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
|
18 |
61 |
7
|
Fischer S, Wiese C, Maestrup EG, Hiller A, Deuther-Conrad W, Scheunemann M, Schepmann D, Steinbach J, Wünsch B, Brust P. Molecular imaging of σ receptors: synthesis and evaluation of the potent σ1 selective radioligand [18F]fluspidine. Eur J Nucl Med Mol Imaging 2011; 38:540-51. [PMID: 21072511 DOI: 10.1007/s00259-010-1658-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 10/20/2010] [Indexed: 11/28/2022]
Abstract
PURPOSE Neuroimaging of σ(1) receptors in the human brain has been proposed for the investigation of the pathophysiology of neurodegenerative and psychiatric diseases. However, there is a lack of suitable (18)F-labelled PET radioligands for that purpose. METHODS The selective σ(1) receptor ligand [(18)F]fluspidine (1'-benzyl-3-(2-[(18)F]fluoroethyl)-3H-spiro[[2]benzofuran-1,4'-piperidine]) was synthesized by nucleophilic (18)F(-) substitution of the tosyl precursor. In vitro receptor binding affinity and selectivity were assessed by radioligand competition in tissue homogenate and autoradiographic approaches. In female CD-1 mice, in vivo properties of [(18)F]fluspidine were evaluated by ex vivo brain section imaging and organ distribution of intravenously administered radiotracer. Target specificity was validated by organ distribution of [(18)F]fluspidine after treatment with 1 mg/kg i.p. of the σ receptor antagonist haloperidol or the emopamil binding protein (EBP) inhibitor tamoxifen. In vitro metabolic stability and in vivo metabolism were investigated by LC-MS(n) and radio-HPLC analysis. RESULTS [(18)F]Fluspidine was obtained with a radiochemical yield of 35-45%, a radiochemical purity of ≥ 99.6% and a specific activity of 150-350 GBq/μmol (n = 6) within a total synthesis time of 90-120 min. In vitro, fluspidine bound specifically and with high affinity to σ(1) receptors (K (i) = 0.59 nM). In mice, [(18)F]fluspidine rapidly accumulated in brain with uptake values of 3.9 and 4.7%ID/g and brain to blood ratios of 7 and 13 at 5 and 30 min after intravenous application of the radiotracer, respectively. By ex vivo autoradiography of brain slices, resemblance between binding site occupancy of [(18)F]fluspidine and the expression of σ(1) receptors was shown. The radiotracer uptake in the brain as well as in peripheral σ(1) receptor expressing organs was significantly inhibited by haloperidol but not by tamoxifen. Incubation with rat liver microsomes led to a fast biotransformation of fluspidine. After an incubation period of 30 min only 13% of the parent compound was left. Seven metabolites were identified by HPLC-UV and LC-MS(n) techniques. However, [(18)F]fluspidine showed a higher metabolic stability in vivo. In plasma samples ∼ 94% of parent compound remained at 30 min and ∼ 67% at 60 min post-injection. Only one major radiometabolite was detected. None of the radiometabolites crossed the blood-brain barrier. CONCLUSION [(18)F]Fluspidine demonstrated favourable target affinity and specificity as well as metabolic stability both in vitro and in animal experiments. The in vivo properties of [(18)F]fluspidine offer a high potential of this radiotracer for neuroimaging and quantitation of σ(1) receptors in vivo.
Collapse
|
|
14 |
59 |
8
|
Lechtenberg M, Schepmann D, Niehues M, Hellenbrand N, Wünsch B, Hensel A. Quality and functionality of saffron: quality control, species assortment and affinity of extract and isolated saffron compounds to NMDA and sigma1 (sigma-1) receptors. PLANTA MEDICA 2008; 74:764-72. [PMID: 18496783 DOI: 10.1055/s-2008-1074535] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Extracts from saffron, the dried stigmata from Crocus sativus L., are being used more and more in preclinical and clinical trials for the treatment of cancer and depression. Because of the known quality problems of saffron, HPLC methods on RP(18) 2.5 microm and monolithic RP(18) material have been developed and validated for quality control including the quantification of crocins 1 to 5, crocetin, picrocrocin and the degradation products, the CIS-crocins. Additionally, a GC-MS method has allowed detection and quantification of the volatile compounds from the pentane extract of saffron. Both systems together allowed the comprehensive characterisation of saffron herbal material and extracts for clinical/preclinical trials. For effective preparation of the respective reference standards, a fast centrifugal partition chromatography (FCPC) method was developed allowing the quick isolation of crocins 1, 2, 5 and picrocrocin in good yields. Using these chromatographic methods and the reference standards, a representative survey of saffron from the global market indicated a high variability of quality, especially concerning the amounts of volatile compounds in saffron samples. A specification for high-quality saffron of >20% crocins, >6% picrocrocin and not less than 0.3% of volatiles, calculated as sum of safranal, isophorone and ketoisophorone, was developed. Because no detailed pharmacological studies are available to explain the clinical effects of saffron for the treatment of cancer and depression, receptor binding studies were performed. Saffron extracts and crocetin had a clear binding capacity at the PCP binding side of the NMDA receptor and at the sigma(1) receptor, while the crocins and picrocrocin were not effective. These data could give biochemical support for the above-mentioned pharmacological effects of saffron.
Collapse
|
Validation Study |
17 |
55 |
9
|
Köhler J, Bergander K, Fabian J, Schepmann D, Wünsch B. Enantiomerically Pure 1,3-Dioxanes as Highly Selective NMDA and σ1 Receptor Ligands. J Med Chem 2012; 55:8953-7. [DOI: 10.1021/jm301166m] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
|
13 |
49 |
10
|
Oberdorf C, Schepmann D, Vela JM, Diaz JL, Holenz J, Wünsch B. Thiophene Bioisosteres of Spirocyclic σ Receptor Ligands. 1. N-Substituted Spiro[piperidine-4,4′-thieno[3,2-c]pyrans]. J Med Chem 2008; 51:6531-7. [DOI: 10.1021/jm8007739] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
|
17 |
47 |
11
|
Brune S, Schepmann D, Klempnauer KH, Marson D, Dal Col V, Laurini E, Fermeglia M, Wünsch B, Pricl S. The sigma enigma: in vitro/in silico site-directed mutagenesis studies unveil σ1 receptor ligand binding. Biochemistry 2014; 53:2993-3003. [PMID: 24766040 DOI: 10.1021/bi401575g] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The σ1 receptor is an integral membrane protein that shares no homology with other receptor systems, has no unequivocally identified natural ligands, but appears to play critical roles in a wide variety of cell functions. While the number of reports of the possible functions of the σ1 receptor is increasing, almost no information about the three-dimensional structure of the receptor and/or possible modes of interaction of the σ1 protein with its ligands have been described. Here we performed an in vitro/in silico investigation to analyze the molecular interactions of the σ1 receptor with its prototypical agonist (+)-pentazocine. Accordingly, 23 mutant σ1 isoforms were generated, and their interactions with (+)-pentazocine were determined experimentally. All direct and/or indirect effects exerted by the mutant residues on the receptor-agonist interactions were reproduced and rationalized in silico, thus shining new light on the three-dimensional structure of the σ1 receptor and its ligand binding site.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
46 |
12
|
Meyer C, Schepmann D, Yanagisawa S, Yamaguchi J, Dal Col V, Laurini E, Itami K, Pricl S, Wünsch B. Pd-catalyzed direct C-H bond functionalization of spirocyclic σ1 ligands: generation of a pharmacophore model and analysis of the reverse binding mode by docking into a 3D homology model of the σ1 receptor. J Med Chem 2012; 55:8047-65. [PMID: 22913577 DOI: 10.1021/jm300894h] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
To explore the hydrophobic binding region of the σ(1) receptor protein, regioisomeric spirocyclic thiophenes 9-11 were developed as versatile building blocks. Regioselective α- and β-arylation using the catalyst systems PdCl(2)/bipy/Ag(2)CO(3) and PdCl(2)/P[OCH(CF(3))(2)](3)/Ag(2)CO(3) allowed the introduction of various aryl moieties at different positions in the last step of the synthesis. The increasing σ(1) affinity in the order 4 < 5/6 < 7/8 indicates that the positions of the additional aryl moiety and the S atom in the spirocyclic thiophene systems control the σ(1) affinity. The main features of the pharmacophore model developed for this class of σ(1) ligands are a positive ionizable group, a H-bond acceptor group, two hydrophobic moieties, and one hydrophobic aromatic group. Docking of the ligands into a σ(1) 3D homology model via molecular mechanics/Poisson-Boltzmann surface area calculations led to a very good correlation between the experimentally determined and estimated free energy of receptor binding. These calculations support the hypothesis of a reverse binding mode of ligands bearing the aryl moiety at the "top" (compounds 2, 3, 7, and 8) and "left" (compounds 4, 5, and 6) positions, respectively.
Collapse
|
|
13 |
45 |
13
|
Harel D, Schepmann D, Prinz H, Brun R, Schmidt TJ, Wünsch B. Natural product derived antiprotozoal agents: synthesis, biological evaluation, and structure-activity relationships of novel chromene and chromane derivatives. J Med Chem 2013; 56:7442-8. [PMID: 23968432 DOI: 10.1021/jm401007p] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Various natural products with the chromane and chromene scaffold exhibit high antiprotozoal activity. The natural product encecalin (7) served as key intermediate for the synthesis of different ethers 9, amides 11, and amines 12. The chromane analogues 14 and the phenols 15 were obtained by reductive amination of ketones 13 and 6, respectively. Angelate 3, ethers 9, and amides 11 did not show considerable antiprotozoal activity. However, the chromene and chromane derived amines 12, 14, and 15 revealed promising antiprotozoal activity and represent novel lead compounds. Whereas benzylamine 12a and α-methylbenzylamine 12g were active against P. falciparum with IC50 values in the range of chloroquine, the analogous phenols 15a and 15b were unexpectedly 10- to 25-fold more potent than chloroquine with selectivity indexes of 6760 and 1818, respectively. The phenylbutylamine 14d based on the chromane scaffold has promising activity against T. brucei rhodesiense and L. donovani.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
44 |
14
|
Maestrup EG, Fischer S, Wiese C, Schepmann D, Hiller A, Deuther-Conrad W, Steinbach J, Wünsch B, Brust P. Evaluation of spirocyclic 3-(3-fluoropropyl)-2-benzofurans as sigma1 receptor ligands for neuroimaging with positron emission tomography. J Med Chem 2009; 52:6062-72. [PMID: 19791807 DOI: 10.1021/jm900909e] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of various N-substituted 3-(3-fluoropropyl)-3H-spiro[[2]benzofuran-1,4'-piperidines] (7) has been synthesized. In receptor binding studies, the N-benzyl derivative 7a (WMS-1813) revealed extraordinarily high sigma(1) receptor affinity (K(i) = 1.4 nM) and excellent sigma(1)/sigma(2) selectivity (>600 fold). In vitro biotransformation of 7a with rat liver microsomes led to three main metabolites. N-Debenzylation was inhibited by introduction of an N-phenylethyl residue (7 g). The PET tracer [(18)F]7a was synthesized by nucleophilic substitution of the tosylate 13 with K[(18)F]F-K222-carbonate complex. The decay corrected radiochemical yield of [(18)F]7a was 35-48% with a radiochemical purity of >99.5% and a specific activity of 150-238 GBq/micromol. The radiotracer properties were evaluated in female CD-1 mice by organ distribution and ex vivo brain autoradiography. The radiotracer uptake in the brain was fast and sufficient, with values of approximately 4% injected dose per gram. Target specificity of [(18)F]7a was validated in blocking studies by preapplication of haloperidol, and significant reduction in the uptake of radioactivity was observed in the brain and peripheral organs expressing sigma(1) receptors.
Collapse
|
|
16 |
43 |
15
|
Banerjee A, Schepmann D, Köhler J, Würthwein EU, Wünsch B. Synthesis and SAR studies of chiral non-racemic dexoxadrol analogues as uncompetitive NMDA receptor antagonists. Bioorg Med Chem 2010; 18:7855-67. [DOI: 10.1016/j.bmc.2010.09.047] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 09/20/2010] [Accepted: 09/21/2010] [Indexed: 11/16/2022]
|
|
15 |
42 |
16
|
Tewes B, Frehland B, Schepmann D, Schmidtke KU, Winckler T, Wünsch B. Design, Synthesis, and Biological Evaluation of 3-Benzazepin-1-ols as NR2B-Selective NMDA Receptor Antagonists. ChemMedChem 2010; 5:687-95. [DOI: 10.1002/cmdc.201000005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
|
15 |
42 |
17
|
Maestrup EG, Wiese C, Schepmann D, Brust P, Wünsch B. Synthesis, pharmacological activity and structure affinity relationships of spirocyclic σ(1) receptor ligands with a (2-fluoroethyl) residue in 3-position. Bioorg Med Chem 2010; 19:393-405. [PMID: 21126878 DOI: 10.1016/j.bmc.2010.11.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 11/03/2010] [Accepted: 11/06/2010] [Indexed: 11/30/2022]
Abstract
In order to develop a fluorinated radiotracer for imaging of σ(1) receptors in the central nervous system a series of (2-fluoroethyl) substituted spirocyclic piperidines 3 has been prepared. In the key step of the synthesis 2-bromocinnamaldehyde acetal 5 was added to piperidones 6 with various substituents at the N-atom. Unexpectedly, this reaction led to 2-benzoxepines 8, which were contracted with acid to afford the spirocyclic 2-benzofuranacetaldehydes 9. The best yields were obtained, when the transformations up to the alcohols 10 were performed without isolation of intermediates. Generally the (2-fluoroethyl) derivatives 3 have higher σ(1) affinity and σ(1)/σ(2) selectivity than the corresponding (3-fluoropropyl) derivatives 2. The most promising candidate for the development as radiotracer is the (2-fluoroethyl) derivative 3a (WMS-1828, fluspidine, 1'-benzyl-3-(2-fluoroethyl)-3H-spiro[[2]benzofuran-1,4'-piperidine]), which shows subnanomolar σ(1) affinity (K(i)=0.59nM) and excellent selectivity over the σ(2) subtype (1331-fold) as well as some other receptor systems. The novel synthetic strategy also allows the systematic pharmacological evaluation of intermediate alcohols 10. Despite their high σ(1) affinity (K(i)=6-32nM) and selectivity the alcohols 10 are 10-30-fold less potent than the bioisosteric fluoro derivatives 3.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
37 |
18
|
Rossi D, Pedrali A, Gaggeri R, Marra A, Pignataro L, Laurini E, Dal Col V, Fermeglia M, Pricl S, Schepmann D, Wünsch B, Peviani M, Curti D, Collina S. Chemical, Pharmacological, and in vitro Metabolic Stability Studies on Enantiomerically Pure RC‐33 Compounds: Promising Neuroprotective Agents Acting as σ
1
Receptor Agonists. ChemMedChem 2013; 8:1514-27. [DOI: 10.1002/cmdc.201300218] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Indexed: 12/22/2022]
|
|
12 |
37 |
19
|
Bourgeois C, Werfel E, Galla F, Lehmkuhl K, Torres-Gómez H, Schepmann D, Kögel B, Christoph T, Straßburger W, Englberger W, Soeberdt M, Hüwel S, Galla HJ, Wünsch B. Synthesis and pharmacological evaluation of 5-pyrrolidinylquinoxalines as a novel class of peripherally restricted κ-opioid receptor agonists. J Med Chem 2014; 57:6845-60. [PMID: 25062506 DOI: 10.1021/jm500940q] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
5-Pyrrolidinyl substituted perhydroquinoxalines were designed as conformationally restricted κ-opioid receptor agonists restricted to the periphery. The additional N atom of the quinoxaline system located outside the ethylenediamine κ pharmacophore allows the fine-tuning of the pharmacodynamic and pharmacokinetic properties. The perhydroquinoxalines were synthesized stereoselectively using the concept of late stage diversification of the central building blocks 14. In addition to high κ-opioid receptor affinity they demonstrate high selectivity over μ, δ, σ1, σ2, and NMDA receptors. In the [35S]GTPγS assay full agonism was observed. Because of their high polarity, the secondary amines 14a (log D7.4=0.26) and 14b (log D7.4=0.21) did not penetrate an artificial blood-brain barrier. 14b was able to inhibit the spontaneous pain reaction after rectal mustard oil application to mice (ED50=2.35 mg/kg). This analgesic effect is attributed to activation of peripherally located κ receptors, since 14b did not affect centrally mediated referred allodynia and hyperalgesia.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
36 |
20
|
Rossi D, Pedrali A, Urbano M, Gaggeri R, Serra M, Fernández L, Fernández M, Caballero J, Ronsisvalle S, Prezzavento O, Schepmann D, Wuensch B, Peviani M, Curti D, Azzolina O, Collina S. Identification of a potent and selective σ1 receptor agonist potentiating NGF-induced neurite outgrowth in PC12 cells. Bioorg Med Chem 2011; 19:6210-24. [DOI: 10.1016/j.bmc.2011.09.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 09/05/2011] [Accepted: 09/08/2011] [Indexed: 12/20/2022]
|
|
14 |
35 |
21
|
Ilg R, Burschka C, Schepmann D, Wünsch B, Tacke R. Synthesis and Pharmacological Characterization of Sila-panamesine, a Sila-Analogue of the σ Receptor Ligand Panamesine (EMD 57445). Organometallics 2006. [DOI: 10.1021/om060562c] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
|
19 |
35 |
22
|
Grosse Maestrup E, Wiese C, Schepmann D, Hiller A, Fischer S, Scheunemann M, Brust P, Wünsch B. Synthesis of spirocyclic sigma1 receptor ligands as potential PET radiotracers, structure-affinity relationships and in vitro metabolic stability. Bioorg Med Chem 2009; 17:3630-41. [PMID: 19394833 DOI: 10.1016/j.bmc.2009.03.060] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 03/30/2009] [Accepted: 03/31/2009] [Indexed: 11/29/2022]
Abstract
Several 3H-spiro[[2]benzofuran-1,4'-piperidines] bearing a p-fluorobenzyl residue at the N-atom and various substituents in position 3 of the benzofuran system were synthesized. The crucial reaction steps are the addition of a lithiated benzaldehyde derivative to the p-fluorobenzylpiperidone 5 and the BF(3).OEt(2) catalyzed substitution of the methoxy group of 2a by various nucleophiles. Structure-affinity relationship studies revealed that compounds with two protons (2d), a methoxy group (2a), and a cyano group (2e) in position 3 possess subnanomolar sigma(1) affinity (K(i)=0.18 nM, 0.79 nM, 0.86 nM) and high selectivity against the sigma(2) subtype. The metabolites of 2a, 2d, and 2e, which were formed upon incubation with rat liver microsomes, were identified. Additionally, the rate of metabolic degradation of 2a, 2d, and 2e was determined and compared with the degradation rate of the non-fluorinated spirocyclic compound 1. For the synthesis of the potential PET tracers [(18)F]2a and [(18)F]2e two different radiosynthetic approaches were followed.
Collapse
|
|
16 |
34 |
23
|
Holl R, Schepmann D, Fröhlich R, Grünert R, Bednarski PJ, Wünsch B. Dancing of the Second Aromatic Residue around the 6,8-Diazabicyclo[3.2.2]nonane Framework: Influence on σ Receptor Affinity and Cytotoxicity. J Med Chem 2009; 52:2126-37. [DOI: 10.1021/jm801522j] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
|
16 |
34 |
24
|
Geiger C, Zelenka C, Weigl M, Fröhlich R, Wibbeling B, Lehmkuhl K, Schepmann D, Grünert R, Bednarski PJ, Wünsch B. Synthesis of bicyclic sigma receptor ligands with cytotoxic activity. J Med Chem 2007; 50:6144-53. [PMID: 17967001 DOI: 10.1021/jm070620b] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
All possible stereoisomeric alcohols (6-benzyl-8-(4-methoxybenzyl)-6,8-diazabicyclo[3.2.2]nonan-2-ol) and methyl ethers (6-benzyl-2-methoxy-8-(4-methoxybenzyl)-6,8-diazabicyclo[3.2.2]nonane) are prepared from (R)- and (S)-glutamate. A Dieckmann analogous cyclization, which makes use of trapping the primary cyclization product with Me3SiCl, generates the bicyclic framework. Stereoselective LiBH4 reduction and Mitsunobu inversion establish the configuration in position 2. Enantiomeric alcohols 15 (1S,2S,5R) and ent-15 (1R,2R,5S) as well as diastereomeric methyl ethers ent-17 (1R,2R,5S) and ent-22 (1R,2S,5S) display high sigma1 receptor affinity. Cell growth inhibition of the stereoisomeric alcohols and methyl ethers against five human tumor cell lines is investigated. In particular, at a concentration of 20 muM the four methyl ethers stop completely the cell growth of the small cell lung cancer cell line A-427, indicating a specific target in this cell line. The IC50-values of methyl ethers ent-17 and ent-22 are in the range of the antitumor drugs cisplatin and oxaliplatin. Binding assays show that the investigated tumor cell lines express considerable amounts of sigma1 and sigma2 receptors.
Collapse
|
Journal Article |
18 |
33 |
25
|
Schläger T, Schepmann D, Lehmkuhl K, Holenz J, Vela JM, Buschmann H, Wünsch B. Combination of two pharmacophoric systems: synthesis and pharmacological evaluation of spirocyclic pyranopyrazoles with high σ₁ receptor affinity. J Med Chem 2011; 54:6704-13. [PMID: 21859078 DOI: 10.1021/jm200585k] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The novel class of spirocyclic σ(1) ligands 3 (6',7'-dihydro-1'H-spiro[piperidine-4,4'-pyrano[4,3-c]pyrazoles]) was designed by the combination of the potent σ(1) ligands 1 and 2 in one molecule. Thorough structure affinity relationships were derived by the variation of the substituents in position 1', 1, and 6'. Whereas the small electron rich methylpyrazole heterocycle was less tolerated by the σ(1) receptor protein, the introduction of a phenyl substituent instead of the methyl group led to ligands with a high σ(1) affinity. It is postulated that the additional phenyl substituent occupies a previously unrecognized hydrophobic region of the σ(1) receptor resulting in additional lipophilic interactions. The spirocyclic pyranopyrazoles are very selective against the σ(2) subtype, the PCP binding site of the NMDA receptor, and further targets. Despite high σ(1) affinity, the cyclohexylmethyl derivative 17i (K(i) (σ(1)) = 0.55 nM) and the isopentenyl derivative 17p (K(i) (σ(1)) = 1.6 nM) showed only low antiallodynic activity in the capsaicin assay.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
31 |