1
|
Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, Rowan MJ, Selkoe DJ. Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 2002; 416:535-9. [PMID: 11932745 DOI: 10.1038/416535a] [Citation(s) in RCA: 3316] [Impact Index Per Article: 144.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Although extensive data support a central pathogenic role for amyloid beta protein (Abeta) in Alzheimer's disease, the amyloid hypothesis remains controversial, in part because a specific neurotoxic species of Abeta and the nature of its effects on synaptic function have not been defined in vivo. Here we report that natural oligomers of human Abeta are formed soon after generation of the peptide within specific intracellular vesicles and are subsequently secreted from the cell. Cerebral microinjection of cell medium containing these oligomers and abundant Abeta monomers but no amyloid fibrils markedly inhibited hippocampal long-term potentiation (LTP) in rats in vivo. Immunodepletion from the medium of all Abeta species completely abrogated this effect. Pretreatment of the medium with insulin-degrading enzyme, which degrades Abeta monomers but not oligomers, did not prevent the inhibition of LTP. Therefore, Abeta oligomers, in the absence of monomers and amyloid fibrils, disrupted synaptic plasticity in vivo at concentrations found in human brain and cerebrospinal fluid. Finally, treatment of cells with gamma-secretase inhibitors prevented oligomer formation at doses that allowed appreciable monomer production, and such medium no longer disrupted LTP, indicating that synaptotoxic Abeta oligomers can be targeted therapeutically.
Collapse
|
|
23 |
3316 |
2
|
Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE, Smith I, Brett FM, Farrell MA, Rowan MJ, Lemere CA, Regan CM, Walsh DM, Sabatini BL, Selkoe DJ. Amyloid-beta protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory. Nat Med 2008; 14:837-42. [PMID: 18568035 PMCID: PMC2772133 DOI: 10.1038/nm1782] [Citation(s) in RCA: 2883] [Impact Index Per Article: 169.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Accepted: 05/15/2008] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease constitutes a rising threat to public health. Despite extensive research in cellular and animal models, identifying the pathogenic agent present in the human brain and showing that it confers key features of Alzheimer's disease has not been achieved. We extracted soluble amyloid-beta protein (Abeta) oligomers directly from the cerebral cortex of subjects with Alzheimer's disease. The oligomers potently inhibited long-term potentiation (LTP), enhanced long-term depression (LTD) and reduced dendritic spine density in normal rodent hippocampus. Soluble Abeta from Alzheimer's disease brain also disrupted the memory of a learned behavior in normal rats. These various effects were specifically attributable to Abeta dimers. Mechanistically, metabotropic glutamate receptors were required for the LTD enhancement, and N-methyl D-aspartate receptors were required for the spine loss. Co-administering antibodies to the Abeta N-terminus prevented the LTP and LTD deficits, whereas antibodies to the midregion or C-terminus were less effective. Insoluble amyloid plaque cores from Alzheimer's disease cortex did not impair LTP unless they were first solubilized to release Abeta dimers, suggesting that plaque cores are largely inactive but sequester Abeta dimers that are synaptotoxic. We conclude that soluble Abeta oligomers extracted from Alzheimer's disease brains potently impair synapse structure and function and that dimers are the smallest synaptotoxic species.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
2883 |
3
|
Abstract
Converging lines of evidence suggest that progressive accumulation of the amyloid beta-protein (A beta) plays a central role in the genesis of Alzheimer's disease, but it was long assumed that A beta had to be assembled into extracellular amyloid fibrils to exert its cytotoxic effects. Over the past decade, data have emerged from the use of synthetic A beta peptides, cell culture models, beta-amyloid precursor protein transgenic mice and human brain to suggest that pre-fibrillar, diffusible assemblies of A beta are also deleterious. Although the precise molecular identity of these soluble toxins remains unsettled, accumulating evidence suggests that soluble forms of A beta are indeed the proximate effectors of synapse loss and neuronal injury. Here we review recent progress in understanding the role of soluble oligomers in Alzheimer's disease.
Collapse
|
Review |
18 |
1483 |
4
|
Cleary JP, Walsh DM, Hofmeister JJ, Shankar GM, Kuskowski MA, Selkoe DJ, Ashe KH. Natural oligomers of the amyloid-beta protein specifically disrupt cognitive function. Nat Neurosci 2004; 8:79-84. [PMID: 15608634 DOI: 10.1038/nn1372] [Citation(s) in RCA: 1328] [Impact Index Per Article: 63.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Accepted: 11/10/2004] [Indexed: 11/09/2022]
Abstract
A central unresolved problem in research on Alzheimer disease is the nature of the molecular entity causing dementia. Here we provide the first direct experimental evidence that a defined molecular species of the amyloid-beta protein interferes with cognitive function. Soluble oligomeric forms of amyloid-beta, including trimers and dimers, were both necessary and sufficient to disrupt learned behavior in a manner that was rapid, potent and transient; they produced impaired cognitive function without inducing permanent neurological deficits. Although beta-amyloidosis has long been hypothesized to affect cognition, the abnormally folded protein species associated with this or any other neurodegenerative disease has not previously been isolated, defined biochemically and then specifically characterized with regard to its effects on cognitive function. The biochemical isolation of discrete amyloid-beta moieties with pathophysiological properties sets the stage for a new approach to studying the molecular mechanisms of cognitive impairment in Alzheimer disease and related neurodegenerative disorders.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
1328 |
5
|
Shankar GM, Bloodgood BL, Townsend M, Walsh DM, Selkoe DJ, Sabatini BL. Natural oligomers of the Alzheimer amyloid-beta protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. J Neurosci 2007; 27:2866-75. [PMID: 17360908 PMCID: PMC6672572 DOI: 10.1523/jneurosci.4970-06.2007] [Citation(s) in RCA: 1233] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by decreased synapse density in hippocampus and neocortex, and synapse loss is the strongest anatomical correlate of the degree of clinical impairment. Although considerable evidence supports a causal role for the amyloid-beta protein (Abeta) in AD, a direct link between a specific form of Abeta and synapse loss has not been established. We demonstrate that physiological concentrations of naturally secreted Abeta dimers and trimers, but not monomers, induce progressive loss of hippocampal synapses. Pyramidal neurons in rat organotypic slices had markedly decreased density of dendritic spines and numbers of electrophysiologically active synapses after exposure to picomolar levels of soluble oligomers. Spine loss was reversible and was prevented by Abeta-specific antibodies or a small-molecule modulator of Abeta aggregation. Mechanistically, Abeta-mediated spine loss required activity of NMDA-type glutamate receptors (NMDARs) and occurred through a pathway involving cofilin and calcineurin. Furthermore, NMDAR-mediated calcium influx into active spines was reduced by Abeta oligomers. Partial blockade of NMDARs by pharmacological antagonists was sufficient to trigger spine loss. We conclude that soluble, low-n oligomers of human Abeta trigger synapse loss that can be reversed by therapeutic agents. Our approach provides a quantitative cellular model for elucidating the molecular basis of Abeta-induced neuronal dysfunction.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
1233 |
6
|
Abstract
Acutely developing lesions of the brain have been highly instructive in elucidating the neural systems underlying memory in humans and animal models. Much less has been learned from chronic neurodegenerative disorders that insidiously impair memory. But the advent of a detailed molecular hypothesis for the development of Alzheimer's disease and the creation of compelling mouse models thereof have begun to change this situation. Experiments in rodents suggest that soluble oligomers of the amyloid beta protein (Abeta) may discretely interfere with synaptic mechanisms mediating aspects of learning and memory, including long-term potentiation. In humans, memory impairment correlates strongly with cortical levels of soluble Abeta species, which include oligomers. Local inflammatory changes, neurofibrillary degeneration, and neurotransmitter deficits all contribute to memory impairment, but available evidence suggests that these develop as a consequence of early Abeta accumulation. Accordingly, attempts to slow memory and cognitive loss by decreasing cerebral Abeta levels have entered human trials.
Collapse
|
Review |
21 |
936 |
7
|
Walsh DM, Hartley DM, Kusumoto Y, Fezoui Y, Condron MM, Lomakin A, Benedek GB, Selkoe DJ, Teplow DB. Amyloid beta-protein fibrillogenesis. Structure and biological activity of protofibrillar intermediates. J Biol Chem 1999; 274:25945-52. [PMID: 10464339 DOI: 10.1074/jbc.274.36.25945] [Citation(s) in RCA: 844] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Alzheimer's disease is characterized by extensive cerebral amyloid deposition. Amyloid deposits associated with damaged neuropil and blood vessels contain abundant fibrils formed by the amyloid beta-protein (Abeta). Fibrils, both in vitro and in vivo, are neurotoxic. For this reason, substantial effort has been expended to develop therapeutic approaches to control Abeta production and amyloidogenesis. Achievement of the latter goal is facilitated by a rigorous mechanistic understanding of the fibrillogenesis process. Recently, we discovered a novel intermediate in the pathway of Abeta fibril formation, the amyloid protofibril (Walsh, D. M., Lomakin, A., Benedek, G. B., Condron, M. M., and Teplow, D. B. (1997) J. Biol. Chem. 272, 22364-22372). We report here results of studies of the assembly, structure, and biological activity of these polymers. We find that protofibrils: 1) are in equilibrium with low molecular weight Abeta (monomeric or dimeric); 2) have a secondary structure characteristic of amyloid fibrils; 3) appear as beaded chains in rotary shadowed preparations examined electron microscopically; 4) give rise to mature amyloid-like fibrils; and 5) affect the normal metabolism of cultured neurons. The implications of these results for the development of therapies for Alzheimer's disease and for our understanding of fibril assembly are discussed.
Collapse
|
|
26 |
844 |
8
|
Walsh DM, Lomakin A, Benedek GB, Condron MM, Teplow DB. Amyloid beta-protein fibrillogenesis. Detection of a protofibrillar intermediate. J Biol Chem 1997; 272:22364-72. [PMID: 9268388 DOI: 10.1074/jbc.272.35.22364] [Citation(s) in RCA: 842] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Fibrillogenesis of the amyloid beta-protein (Abeta) is a seminal pathogenetic event in Alzheimer's disease. Inhibiting fibrillogenesis is thus one approach toward disease therapy. Rational design of fibrillogenesis inhibitors requires elucidation of the stages and kinetics of Abeta fibrillogenesis. We report results of studies designed to examine the initial stages of Abeta oligomerization. Size exclusion chromatography, quasielastic light scattering spectroscopy, and electron microscopy were used to characterize fibrillogenesis intermediates. After dissolution in 0.1 M Tris-HCl, pH 7.4, and removal of pre-existent seeds, Abeta chromatographed almost exclusively as a single peak. The molecules composing the peak had average hydrodynamic radii of 1.8 +/- 0.2 nm, consistent with the predicted size of dimeric Abeta. Over time, an additional peak, with a molecular weight >100,000, appeared. This peak contained predominantly curved fibrils, 6-8 nm in diameter and <200 nm in length, which we have termed "protofibrils." The kinetics of protofibril formation and disappearance are consistent with protofibrils being intermediates in the evolution of amyloid fibers. Protofibrils appeared during the polymerization of Abeta-(1-40), Abeta-(1-42), and Abeta-(1-40)-Gln22, peptides associated with both sporadic and inherited forms of Alzheimer's disease, suggesting that protofibril formation may be a general phenomenon in Abeta fibrillogenesis. If so, protofibrils could be attractive targets for fibrillogenesis inhibitors.
Collapse
|
|
28 |
842 |
9
|
Meyer-Luehmann M, Coomaraswamy J, Bolmont T, Kaeser S, Schaefer C, Kilger E, Neuenschwander A, Abramowski D, Frey P, Jaton AL, Vigouret JM, Paganetti P, Walsh DM, Mathews PM, Ghiso J, Staufenbiel M, Walker LC, Jucker M. Exogenous induction of cerebral beta-amyloidogenesis is governed by agent and host. Science 2006; 313:1781-4. [PMID: 16990547 DOI: 10.1126/science.1131864] [Citation(s) in RCA: 759] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Protein aggregation is an established pathogenic mechanism in Alzheimer's disease, but little is known about the initiation of this process in vivo. Intracerebral injection of dilute, amyloid-beta (Abeta)-containing brain extracts from humans with Alzheimer's disease or beta-amyloid precursor protein (APP) transgenic mice induced cerebral beta-amyloidosis and associated pathology in APP transgenic mice in a time- and concentration-dependent manner. The seeding activity of brain extracts was reduced or abolished by Abeta immunodepletion, protein denaturation, or by Abeta immunization of the host. The phenotype of the exogenously induced amyloidosis depended on both the host and the source of the agent, suggesting the existence of polymorphic Abeta strains with varying biological activities reminiscent of prion strains.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
759 |
10
|
Li S, Hong S, Shepardson NE, Walsh DM, Shankar GM, Selkoe D. Soluble oligomers of amyloid Beta protein facilitate hippocampal long-term depression by disrupting neuronal glutamate uptake. Neuron 2009; 62:788-801. [PMID: 19555648 DOI: 10.1016/j.neuron.2009.05.012] [Citation(s) in RCA: 737] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 03/06/2009] [Accepted: 05/06/2009] [Indexed: 12/22/2022]
Abstract
In Alzheimer's disease (AD), the impairment of declarative memory coincides with the accumulation of extracellular amyloid-beta protein (Abeta) and intraneuronal tau aggregates. Dementia severity correlates with decreased synapse density in hippocampus and cortex. Although numerous studies show that soluble Abeta oligomers inhibit hippocampal long-term potentiation, their role in long-term synaptic depression (LTD) remains unclear. Here, we report that soluble Abeta oligomers from several sources (synthetic, cell culture, human brain extracts) facilitated electrically evoked LTD in the CA1 region. Abeta-enhanced LTD was mediated by mGluR or NMDAR activity. Both forms of LTD were prevented by an extracellular glutamate scavenger system. Abeta-facilitated LTD was mimicked by the glutamate reuptake inhibitor TBOA, including a shared dependence on extracellular calcium levels and activation of PP2B and GSK-3 signaling. In accord, synaptic glutamate uptake was significantly decreased by soluble Abeta. We conclude that soluble Abeta oligomers perturb synaptic plasticity by altering glutamate recycling at the synapse and promoting synapse depression.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
737 |
11
|
Qiu WQ, Walsh DM, Ye Z, Vekrellis K, Zhang J, Podlisny MB, Rosner MR, Safavi A, Hersh LB, Selkoe DJ. Insulin-degrading enzyme regulates extracellular levels of amyloid beta-protein by degradation. J Biol Chem 1998; 273:32730-8. [PMID: 9830016 DOI: 10.1074/jbc.273.49.32730] [Citation(s) in RCA: 605] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Excessive cerebral accumulation of the 42-residue amyloid beta-protein (Abeta) is an early and invariant step in the pathogenesis of Alzheimer's disease. Many studies have examined the cellular production of Abeta from its membrane-bound precursor, including the role of the presenilin proteins therein, but almost nothing is known about how Abeta is degraded and cleared following its secretion. We previously screened neuronal and nonneuronal cell lines for the production of proteases capable of degrading naturally secreted Abeta under biologically relevant conditions and concentrations. The major such protease identified was a metalloprotease released particularly by a microglial cell line, BV-2. We have now purified and characterized the protease and find that it is indistinguishable from insulin-degrading enzyme (IDE), a thiol metalloendopeptidase that degrades small peptides such as insulin, glucagon, and atrial natriuretic peptide. Degradation of both endogenous and synthetic Abeta at picomolar to nanomolar concentrations was completely inhibited by the competitive IDE substrate, insulin, and by two other IDE inhibitors. Immunodepletion of conditioned medium with an IDE antibody removed its Abeta-degrading activity. IDE was present in BV-2 cytosol, as expected, but was also released into the medium by intact, healthy cells. To confirm the extracellular occurrence of IDE in vivo, we identified intact IDE in human cerebrospinal fluid of both normal and Alzheimer subjects. In addition to its ability to degrade Abeta, IDE activity was unexpectedly found be associated with a time-dependent oligomerization of synthetic Abeta at physiological levels in the conditioned media of cultured cells; this process, which may be initiated by IDE-generated proteolytic fragments of Abeta, was prevented by three different IDE inhibitors. We conclude that a principal protease capable of down-regulating the levels of secreted Abeta extracellularly is IDE.
Collapse
|
|
27 |
605 |
12
|
Leissring MA, Farris W, Chang AY, Walsh DM, Wu X, Sun X, Frosch MP, Selkoe DJ. Enhanced Proteolysis of β-Amyloid in APP Transgenic Mice Prevents Plaque Formation, Secondary Pathology, and Premature Death. Neuron 2003; 40:1087-93. [PMID: 14687544 DOI: 10.1016/s0896-6273(03)00787-6] [Citation(s) in RCA: 540] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Converging evidence suggests that the accumulation of cerebral amyloid beta-protein (Abeta) in Alzheimer's disease (AD) reflects an imbalance between the production and degradation of this self-aggregating peptide. Upregulation of proteases that degrade Abeta thus represents a novel therapeutic approach to lowering steady-state Abeta levels, but the consequences of sustained upregulation in vivo have not been studied. Here we show that transgenic overexpression of insulin-degrading enzyme (IDE) or neprilysin (NEP) in neurons significantly reduces brain Abeta levels, retards or completely prevents amyloid plaque formation and its associated cytopathology, and rescues the premature lethality present in amyloid precursor protein (APP) transgenic mice. Our findings demonstrate that chronic upregulation of Abeta-degrading proteases represents an efficacious therapeutic approach to combating Alzheimer-type pathology in vivo.
Collapse
|
|
22 |
540 |
13
|
Townsend M, Shankar GM, Mehta T, Walsh DM, Selkoe DJ. Effects of secreted oligomers of amyloid beta-protein on hippocampal synaptic plasticity: a potent role for trimers. J Physiol 2006; 572:477-92. [PMID: 16469784 PMCID: PMC1779683 DOI: 10.1113/jphysiol.2005.103754] [Citation(s) in RCA: 481] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Accepted: 02/07/2006] [Indexed: 01/08/2023] Open
Abstract
The accumulation of amyloid beta-protein (Abeta) in brain regions serving memory and cognition is a central pathogenic feature of Alzheimer's disease (AD). We have shown that small soluble oligomers of human Abeta that are naturally secreted by cultured cells inhibit hippocampal long-term potentiation (LTP) in vitro and in vivo and transiently impair the recall of a complex learned behaviour in rats. These results support the hypothesis that diffusible oligomers of Abeta initiate a synaptic dysfunction that may be an early event in AD. We now report detailed electrophysiological analyses that define conditions under which acute application of soluble Abeta inhibits hippocampal synaptic plasticity in wild-type mice. To ascertain which Abeta assemblies contribute to the impairment of LTP, we fractionated oligomers by size-exclusion chromatography and found that Abeta trimers fully inhibit LTP, whereas dimers and tetramers have an intermediate potency. Natural Abeta oligomers are sensitive to heat denaturation, primarily inhibit the induction phase of LTP, and cause a sustained impairment of LTP even after extensive washout. We observed no effects of Abeta oligomers on presynaptic vesicle release. LTP in juvenile mice is resistant to the effects of Abeta oligomers, as is brain-derived-neurotrophic-factor-induced LTP in adult hippocampus. We conclude that specific assemblies, particularly timers, of naturally secreted Abeta oligomers are potent and selective inhibitors of certain forms of hippocampal LTP.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
481 |
14
|
Sharon R, Bar-Joseph I, Frosch MP, Walsh DM, Hamilton JA, Selkoe DJ. The formation of highly soluble oligomers of alpha-synuclein is regulated by fatty acids and enhanced in Parkinson's disease. Neuron 2003; 37:583-95. [PMID: 12597857 DOI: 10.1016/s0896-6273(03)00024-2] [Citation(s) in RCA: 445] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Accumulation of misfolded proteins as insoluble aggregates occurs in several neurodegenerative diseases. In Parkinson's disease (PD) and dementia with Lewy bodies (DLB), alpha-synuclein (alpha S) accumulates in insoluble inclusions. To identify soluble alpha S oligomers that precede insoluble aggregates, we probed the cytosols of mesencephalic neuronal (MES) cells, normal and alpha S-transgenic mouse brains, and normal, PD, and DLB human brains. All contained highly soluble oligomers of alpha S whose detection was enhanced by delipidation. Exposure of living MES neurons to polyunsaturated fatty acids (PUFAs) increased alpha S oligomer levels, whereas saturated FAs decreased them. PUFAs directly promoted oligomerization of recombinant alphaS. Transgenic mice accumulated soluble oligomers with age. PD and DLB brains had elevated amounts of the soluble, lipid-dependent oligomers. We conclude that alpha S interacts with PUFAs in vivo to promote the formation of highly soluble oligomers that precede the insoluble alpha S aggregates associated with neurodegeneration.
Collapse
|
|
22 |
445 |
15
|
Cabaleiro-Lago C, Quinlan-Pluck F, Lynch I, Lindman S, Minogue AM, Thulin E, Walsh DM, Dawson KA, Linse S. Inhibition of Amyloid β Protein Fibrillation by Polymeric Nanoparticles. J Am Chem Soc 2008; 130:15437-43. [DOI: 10.1021/ja8041806] [Citation(s) in RCA: 431] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
|
17 |
431 |
16
|
Zott B, Simon MM, Hong W, Unger F, Chen-Engerer HJ, Frosch MP, Sakmann B, Walsh DM, Konnerth A. A vicious cycle of β amyloid-dependent neuronal hyperactivation. Science 2020; 365:559-565. [PMID: 31395777 DOI: 10.1126/science.aay0198] [Citation(s) in RCA: 400] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/02/2019] [Indexed: 12/11/2022]
Abstract
β-amyloid (Aβ)-dependent neuronal hyperactivity is believed to contribute to the circuit dysfunction that characterizes the early stages of Alzheimer's disease (AD). Although experimental evidence in support of this hypothesis continues to accrue, the underlying pathological mechanisms are not well understood. In this experiment, we used mouse models of Aβ-amyloidosis to show that hyperactivation is initiated by the suppression of glutamate reuptake. Hyperactivity occurred in neurons with preexisting baseline activity, whereas inactive neurons were generally resistant to Aβ-mediated hyperactivation. Aβ-containing AD brain extracts and purified Aβ dimers were able to sustain this vicious cycle. Our findings suggest a cellular mechanism of Aβ-dependent neuronal dysfunction that can be active before plaque formation.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
400 |
17
|
Walsh DM, Klyubin I, Fadeeva JV, Rowan MJ, Selkoe DJ. Amyloid-beta oligomers: their production, toxicity and therapeutic inhibition. Biochem Soc Trans 2002; 30:552-7. [PMID: 12196135 DOI: 10.1042/bst0300552] [Citation(s) in RCA: 389] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Despite extensive genetic and animal modelling data that support a central role for the amyloid beta-protein (A beta) in the genesis of Alzheimer's disease, the specific form(s) of A beta which causes injury to neurons in vivo has not been identified. In the present study, we examine the importance of soluble, pre-fibrillar assemblies of A beta as mediators of neurotoxicity. Specifically, we review the role of cell-derived SDS-stable oligomers, their blocking of hippocampal long-term potentiation in vivo and the finding that this blocking can be prevented by prior treatment of oligomer-producing cells with gamma-secretase inhibitors.
Collapse
|
Review |
23 |
389 |
18
|
Irvine GB, El-Agnaf OM, Shankar GM, Walsh DM. Protein aggregation in the brain: the molecular basis for Alzheimer's and Parkinson's diseases. Mol Med 2008; 14:451-64. [PMID: 18368143 DOI: 10.2119/2007-00100.irvine] [Citation(s) in RCA: 382] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Accepted: 03/17/2008] [Indexed: 12/31/2022] Open
Abstract
Developing effective treatments for neurodegenerative diseases is one of the greatest medical challenges of the 21st century. Although many of these clinical entities have been recognized for more than a hundred years, it is only during the past twenty years that the molecular events that precipitate disease have begun to be understood. Protein aggregation is a common feature of many neurodegenerative diseases, and it is assumed that the aggregation process plays a central role in pathogenesis. In this process, one molecule (monomer) of a soluble protein interacts with other monomers of the same protein to form dimers, oligomers, and polymers. Conformation changes in three-dimensional structure of the protein, especially the formation of beta-strands, often accompany the process. Eventually, as the size of the aggregates increases, they may precipitate as insoluble amyloid fibrils, in which the structure is stabilized by the beta-strands interacting within a beta-sheet. In this review, we discuss this theme as it relates to the two most common neurodegenerative conditions-Alzheimer's and Parkinson's diseases.
Collapse
|
Review |
17 |
382 |
19
|
Walsh DM, Tseng BP, Rydel RE, Podlisny MB, Selkoe DJ. The oligomerization of amyloid beta-protein begins intracellularly in cells derived from human brain. Biochemistry 2000; 39:10831-9. [PMID: 10978169 DOI: 10.1021/bi001048s] [Citation(s) in RCA: 380] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The progressive aggregation and deposition of amyloid beta-protein (Abeta) in brain regions subserving memory and cognition is an early and invariant feature of Alzheimer's disease, the most common cause of cognitive failure in aged humans. Inhibiting Abeta aggregation is therapeutically attractive because this process is believed to be an exclusively pathological event. Whereas many studies have examined the aggregation of synthetic Abeta peptides under nonphysiological conditions and concentrations, we have detected and characterized the oligomerization of naturally secreted Abeta at nanomolar levels in cultures of APP-expressing CHO cells [Podlisny, M. B., Ostaszewski, B. L., Squazzo, S. L., Koo, E. H., Rydell, R. E., Teplow, D. B., and Selkoe, D. J. (1995) J. Biol. Chem. 270, 9564-9570 (1); Podlisny, M. B., Walsh, D. M., Amarante, P., Ostaszewski, B. L., Stimson, E. R., Maggio, J. E., Teplow, D. B., and Selkoe, D. J. (1998) Biochemistry 37, 3602-3611 (2)]. To determine whether similar species occur in vivo, we probed samples of human cerebrospinal fluid (CSF) and detected SDS-stable dimers of Abeta in some subjects. Incubation of CSF or of CHO conditioned medium at 37 degrees C did not lead to new oligomer formation. This inability to induce oligomers extracellularly as well as the detection of oligomers in cell medium very early during the course of pulse-chase experiments suggested that natural Abeta oligomers might first form intracellularly. We therefore searched for and detected intracellular Abeta oligomers, principally dimers, in primary human neurons and in neuronal and nonneural cell lines. These dimers arose intracellularly rather than being derived from the medium by reuptake. The dimers were particularly detectable in neural cells: the ratio of intracellular to extracellular oligomers was much higher in brain-derived than nonbrain cells. We conclude that the pathogenically critical process of Abeta oligomerization begins intraneuronally.
Collapse
|
|
25 |
380 |
20
|
Klyubin I, Walsh DM, Lemere CA, Cullen WK, Shankar GM, Betts V, Spooner ET, Jiang L, Anwyl R, Selkoe DJ, Rowan MJ. Amyloid beta protein immunotherapy neutralizes Abeta oligomers that disrupt synaptic plasticity in vivo. Nat Med 2005; 11:556-61. [PMID: 15834427 DOI: 10.1038/nm1234] [Citation(s) in RCA: 376] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2004] [Accepted: 03/09/2005] [Indexed: 11/09/2022]
Abstract
One of the most clinically advanced forms of experimental disease-modifying treatment for Alzheimer disease is immunization against the amyloid beta protein (Abeta), but how this may prevent cognitive impairment is unclear. We hypothesized that antibodies to Abeta could exert a beneficial action by directly neutralizing potentially synaptotoxic soluble Abeta species in the brain. Intracerebroventricular injection of naturally secreted human Abeta inhibited long-term potentiation (LTP), a correlate of learning and memory, in rat hippocampus in vivo but a monoclonal antibody to Abeta completely prevented the inhibition of LTP when injected after Abeta. Size fractionation showed that Abeta oligomers, not monomers or fibrils, were responsible for inhibiting LTP, and an Abeta antibody again prevented such inhibition. Active immunization against Abeta was partially effective, and the effects correlated positively with levels of antibodies to Abeta oligomers. The ability of exogenous and endogenous antibodies to rapidly neutralize soluble Abeta oligomers that disrupt synaptic plasticity in vivo suggests that treatment with such antibodies might show reversible cognitive deficits in early Alzheimer disease.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
376 |
21
|
Wang Q, Walsh DM, Rowan MJ, Selkoe DJ, Anwyl R. Block of long-term potentiation by naturally secreted and synthetic amyloid beta-peptide in hippocampal slices is mediated via activation of the kinases c-Jun N-terminal kinase, cyclin-dependent kinase 5, and p38 mitogen-activated protein kinase as well as metabotropic glutamate receptor type 5. J Neurosci 2004; 24:3370-8. [PMID: 15056716 PMCID: PMC6730034 DOI: 10.1523/jneurosci.1633-03.2004] [Citation(s) in RCA: 375] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The mechanisms of action of human synthetic and naturally secreted cell-derived amyloid beta-peptide (Abeta)(1-42) on the induction of long-term potentiation (LTP) were investigated in the medial perforant path to dentate granule cell synapses in hippocampal slices. Synthetic and cell-derived Abeta strongly inhibited high-frequency stimulation (HFS)-induced LTP at peak HFS and 1 hr after HFS. Cell-derived Abeta was much more potent than synthetic Abeta at inhibiting LTP induction, with threshold concentrations of approximately 1 and 100-200 nm, respectively. The involvement of various kinases in Abeta-mediated inhibition of LTP induction was investigated by applying Abeta in the presence of inhibitors of these kinases. The c-Jun N-terminal kinase (JNK) inhibitor JNKI prevented the block of LTP induction by both synthetic and cell-derived Abeta. The block of LTP induced by synthetic Abeta was also prevented by the JNK inhibitor anthra[1,9-cd]pyrazol-6(2H)-one, the cyclin-dependent kinase 5 (Cdk5) inhibitors butyrolactone and roscovitine, and the p38 MAP kinase (MAPK) inhibitor 4-(4-fluorophenyl)-2-(4-methylsulfonylphenyl)-5-(4-pyridyl)-1H-imidazole but not by the p42-p44 MAP kinase inhibitor 1,4-diamino-2,3-dicyano-1,4-bis(2-aminophenylthio)butadiene. The group I-group II metabotropic glutamate receptor (mGluR) antagonist 2S-2-amino-2-(1S,2S-2-carboxycyclopropyl-1-yl)-3-(xanth-9-yl)propanoic acid and the mGluR5 antagonist methyl-6-(phenylethynyl)pyridine prevented the block of LTP induction by Abeta. However, thealpha7 nicotinic ACh receptor antagonist methylcaconatine did not prevent the inhibition of LTP induction by Abeta. These studies provide evidence that the Abeta-mediated inhibition of LTP induction involves stimulation of the kinases JNK, Cdk5, and p38 MAPK after the activation of both the Abeta receptor(s) and mGluR5.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
375 |
22
|
Bieschke J, Herbst M, Wiglenda T, Friedrich RP, Boeddrich A, Schiele F, Kleckers D, Lopez del Amo JM, Grüning BA, Wang Q, Schmidt MR, Lurz R, Anwyl R, Schnoegl S, Fändrich M, Frank RF, Reif B, Günther S, Walsh DM, Wanker EE. Small-molecule conversion of toxic oligomers to nontoxic β-sheet–rich amyloid fibrils. Nat Chem Biol 2011; 8:93-101. [DOI: 10.1038/nchembio.719] [Citation(s) in RCA: 355] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 09/02/2011] [Indexed: 11/09/2022]
|
|
14 |
355 |
23
|
Shankar GM, Walsh DM. Alzheimer's disease: synaptic dysfunction and Abeta. Mol Neurodegener 2009; 4:48. [PMID: 19930651 PMCID: PMC2788538 DOI: 10.1186/1750-1326-4-48] [Citation(s) in RCA: 350] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2009] [Accepted: 11/23/2009] [Indexed: 01/21/2023] Open
Abstract
Synapse loss is an early and invariant feature of Alzheimer's disease (AD) and there is a strong correlation between the extent of synapse loss and the severity of dementia. Accordingly, it has been proposed that synapse loss underlies the memory impairment evident in the early phase of AD and that since plasticity is important for neuronal viability, persistent disruption of plasticity may account for the frank cell loss typical of later phases of the disease. Extensive multi-disciplinary research has implicated the amyloid β-protein (Aβ) in the aetiology of AD and here we review the evidence that non-fibrillar soluble forms of Aβ are mediators of synaptic compromise. We also discuss the possible mechanisms of Aβ synaptotoxicity and potential targets for therapeutic intervention.
Collapse
|
Journal Article |
16 |
350 |
24
|
Walsh DM, Selkoe DJ. Oligomers on the Brain: the Emerging Role of Soluble Protein Aggregates in Neurodegeneration. Protein Pept Lett 2004; 11:213-28. [PMID: 15182223 DOI: 10.2174/0929866043407174] [Citation(s) in RCA: 319] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Extracellular fibrous amyloid deposits or intracellular inclusion bodies containing abnormal protein fibrils characterize many different neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), dementia with Lewy bodies, multiple system atrophy, Huntington's disease, and the transmissible 'prion' dementias. There is strong evidence from genetic, transgenic mouse and biochemical studies to support the idea that the accumulation of protein aggregates in the brain plays a seminal role in the pathogenesis of these diseases. How monomeric proteins ultimately convert to highly polymeric deposits is unknown. However, studies employing, synthetic, cell-derived and purified recombinant proteins suggest that amyloid proteins first come together to form soluble low n-oligomers. Further association of these oligomers results in higher molecular weight assemblies including so-called 'protofibrils' and 'ADDLs' and these eventually exceed solubility limits until, finally, they are deposited as amyloid fibrils. With particular reference to AD and PD, we review recent evidence that soluble oligomers are the principal pathogenic species that drive neuronal dysfunction.
Collapse
|
|
21 |
319 |
25
|
Hellstrand E, Boland B, Walsh DM, Linse S. Amyloid β-protein aggregation produces highly reproducible kinetic data and occurs by a two-phase process. ACS Chem Neurosci 2010; 1:13-8. [PMID: 22778803 DOI: 10.1021/cn900015v] [Citation(s) in RCA: 311] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 10/01/2009] [Indexed: 12/26/2022] Open
Abstract
Protein aggregation can lead to major disturbances of cellular processes and is associated with several diseases. We report kinetic and equilibrium data by ThT fluorescence and enzyme-linked immunosorbent assay of sufficient quality and reproducibility to form a basis for mechanistic understanding of amyloid β-peptide (Aβ) fibril formation. Starting from monomeric peptide in a pure buffer system without cosolvents, we find that the kinetics of Aβ aggregation vary strongly with peptide concentration in a highly predictable manner. The free Aβ concentration in equilibrium with fibrils was found to vary with total peptide concentration in a manner expected for a two-phase system. The free versus total Aβ concentration was linear up to ca. 0.2 μM, after which free Aβ decreased with total Aβ toward an asymptotic value. Our results imply that Aβ fibril formation arises from a sequence of events in a highly predictable manner.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
311 |