1
|
Piasecka D, Braun M, Kordek R, Sadej R, Romanska H. MicroRNAs in regulation of triple-negative breast cancer progression. J Cancer Res Clin Oncol 2018; 144:1401-1411. [PMID: 29923083 PMCID: PMC6061037 DOI: 10.1007/s00432-018-2689-2] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 06/13/2018] [Indexed: 12/19/2022]
Abstract
PURPOSE Dysregulation of miRNA profile has been associated with a broad spectrum of cellular processes underlying progression of various human malignancies. Increasing evidence suggests that specific microRNA clusters might be of clinical utility, especially in triple-negative breast carcinoma (TNBC), devoid of both predictive markers and potential therapeutic targets. Here we provide a comprehensive review of the existing data on microRNAs in TNBC, their molecular targets, a putative role in invasive progression with a particular emphasis on the epithelial-to-mesenchymal transition (EMT) and acquisition of stem-cell properties (CSC), regarded both as prerequisites for metastasis, and significance for therapy. METHODS PubMed and Medline databases were systematically searched for the relevant literature. 121 articles have been selected and thoroughly analysed. RESULTS Several miRNAs associated with EMT/CSC and invasion were identified as significantly (1) upregulated: miR-10b, miR-21, miR-29, miR-9, miR-221/222, miR-373 or (2) downregulated: miR-145, miR-199a-5p, miR-200 family, miR-203, miR-205 in TNBC. Dysregulation of miR-10b, miR-21, miR-29, miR-145, miR-200 family, miR-203, miR-221/222 was reported of prognostic value in TNBC patients. CONCLUSION Available data suggest that specific microRNA clusters might play an important role in biology of TNBC, understanding of which should assist disease prognostication and therapy.
Collapse
|
Review |
7 |
120 |
2
|
Piasecka D, Braun M, Kitowska K, Mieczkowski K, Kordek R, Sadej R, Romanska H. FGFs/FGFRs-dependent signalling in regulation of steroid hormone receptors - implications for therapy of luminal breast cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:230. [PMID: 31142340 PMCID: PMC6542018 DOI: 10.1186/s13046-019-1236-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/17/2019] [Indexed: 12/27/2022]
Abstract
Stromal stimuli mediated by growth factor receptors, leading to ligand-independent activation of steroid hormone receptors, have long been implicated in development of breast cancer resistance to endocrine therapy. Mutations in fibroblast growth factor receptor (FGFR) genes have been associated with a higher incidence and progression of breast cancer. Increasing evidence suggests that FGFR-mediated interaction between luminal invasive ductal breast carcinoma (IDC) and its microenvironment contributes to the progression to hormone-independence. Therapeutic strategies based on FGFR inhibitors hold promise for overcoming resistance to the ER-targeting treatment. A series of excellent reviews discuss a potential role of FGFR in development of IDC. Here, we provide a concise updated summary of existing literature on FGFR-mediated signalling with an emphasis on an interaction between FGFR and estrogen/progesterone receptors (ER/PR) in IDC. Focusing on the regulatory role of tumour microenvironment in the activity of steroid hormone receptors, we compile the available functional data on FGFRs-mediated signalling, as a fundamental mechanism of luminal IDC progression and failure of anti-ER treatment. We also highlight the translational value of the presented findings and summarize ongoing oncologic clinical trials investigating FGFRs inhibition in interventional studies in breast cancer.
Collapse
|
Review |
6 |
30 |
3
|
Piasecka D, Kitowska K, Czaplinska D, Mieczkowski K, Mieszkowska M, Turczyk L, Skladanowski AC, Zaczek AJ, Biernat W, Kordek R, Romanska HM, Sadej R. Fibroblast growth factor signalling induces loss of progesterone receptor in breast cancer cells. Oncotarget 2018; 7:86011-86025. [PMID: 27852068 PMCID: PMC5349893 DOI: 10.18632/oncotarget.13322] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 11/07/2016] [Indexed: 02/02/2023] Open
Abstract
We have recently demonstrated that, fibroblast growth factor 2 (FGFR2), signalling via ribosomal S6 kinase 2 (RSK2), promotes progression of breast cancer (BCa). Loss of progesterone receptor (PR), whose activity in BCa cells can be stimulated by growth factor receptors (GFRs), is associated with poor patient outcome. Here we showed that FGF7/FGFR2 triggered phosphorylation of PR at Ser294, PR ubiquitination and subsequent receptor`s degradation via the 26S proteasome pathway in BCa cells. We further demonstrated that RSK2 mediated FGF7/FGFR2-induced PR downregulation. In addition, a strong synergistic effect of FGF7 and progesterone (Pg), reflected in the enhanced anchorage-independent growth and cell migration, was observed. Analysis of clinical material demonstrated that expression of PR inversely correlated with activated RSK (RSK-P) (p = 0.016). Patients with RSK-P(+)/PR(–) tumours had 3.629-fold higher risk of recurrence (p = 0.002), when compared with the rest of the cohort. Moreover, RSK-P(+)/PR(–) phenotype was shown as an independent prognostic factor (p = 0.006). These results indicate that the FGF7/FGFR2-RSK2 axis promotes PR turnover and activity, which may sensitize BCa cells to stromal stimuli and contribute to the progression toward steroid hormone negative BCa.
Collapse
|
Journal Article |
7 |
17 |
4
|
Mieczkowski K, Kitowska K, Braun M, Galikowska-Bogut B, Gorska-Arcisz M, Piasecka D, Stawiski K, Zaczek AJ, Nejc D, Kordek R, Romanska HM, Sadej R. FGF7/FGFR2-JunB signalling counteracts the effect of progesterone in luminal breast cancer. Mol Oncol 2022; 16:2823-2842. [PMID: 35726195 PMCID: PMC9348598 DOI: 10.1002/1878-0261.13274] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 05/21/2022] [Accepted: 06/17/2022] [Indexed: 11/25/2022] Open
Abstract
We have recently demonstrated that fibroblast growth factor receptor 2 (FGFR2)‐mediated signalling alters progesterone receptor (PR) activity and response of oestrogen receptor α (ER)‐positive (ER+) breast cancer (BCa) cell lines to anti‐ER agents. Little is known about whether the crosstalk between ER and PR, shown to be modulated by the hormonal background, might also be affected by FGFR2. Here, PR‐dependent behaviour of ER+ BCa cells was studied in the presence of oestrogen (E2) and progesterone (P4) and/or FGF7. In vitro analyses showed that FGF7/FGFR2 signalling: (a) abolished the effect of P4 on E2‐promoted 3D cell growth and response to tamoxifen; (b) regulated ER and PR expression and activity; (c) increased formation of ER–PR complexes; and (d) reversed P4‐triggered deregulation of ER‐dependent genes. Analysis of clinical data demonstrated that the prognostic value of FGFR2 varied between patients with different menopausal status; that is, high expression of FGFR2 was significantly associated with longer progression‐free survival (PFS) in postmenopausal patients, whereas there was no significant association in premenopausal patients. FGFR2 was found to positively correlate with the expression of JunB proto‐oncogene, AP‐1 transcription factor subunit (JUNB), an ER‐dependent gene, only in premenopausal patients. Molecular analyses revealed that the presence of JunB was a prerequisite for FGFR2‐mediated abrogation of P4‐induced inhibition of cell growth. Our results demonstrate for the first time that the FGF7/FGFR2–JunB axis abolishes the modulatory effects of PR on ER‐associated biological functions in premenopausal ER+ BCa. This may provide foundations for a better selection of patients for FGFR‐targeting therapeutic strategies.
Collapse
|
|
3 |
10 |
5
|
Mieszkowska M, Piasecka D, Potemski P, Debska-Szmich S, Rychlowski M, Kordek R, Sadej R, Romanska HM. Tetraspanin CD151 impairs heterodimerization of ErbB2/ErbB3 in breast cancer cells. Transl Res 2019; 207:44-55. [PMID: 30639369 DOI: 10.1016/j.trsl.2018.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/21/2018] [Accepted: 12/24/2018] [Indexed: 01/07/2023]
Abstract
CD151/Tspan24 (SFS-1, PETA3) is one of the best characterized members of the tetraspanin family, whose involvement in breast cancer (BCa) progression was demonstrated both in vitro and in vivo. We have recently reported that in ErbB2-overexpressing BCa cells grown in 3D laminin-rich extracellular matrix, CD151 regulated basal phosphorylation and homodimerization of ErbB2 and sensitized the cells to Herceptin (trastuzumab). Following from these data, we have here analyzed an involvement of CD151 in regulation of ErbB2/ErbB3 heterodimerization and its impact on cell response to Herceptin. CD151 was found to: (1) impair ErbB2/ErbB3 heterodimerization, (2) inhibit heregulin-dependent cell growth in 3D and signaling, and (3) counteract the protective effect of heregulin on Herceptin-mediated growth inhibition. Analysis of tissue samples demonstrated for the first time clinical significance of CD151 in patients with ErbB2-overexpressing BCa undergone trastuzumab-based therapy. Consistent with in vitro results, CD151 impact on disease outcome was ErbB3-dependent. In patients with ErbB3-negative tumors, CD151 significantly improved both overall survival (OS) (hazard ratio [HR] = 0.19, P = 0.034) and progression-free survival (PFS) (HR = 0.36, P = 0.043), while in ErbB3-positive cases it had no significant effect on patient survival (OS: HR = 3.33, P = 0.283; PFS: HR = 2.40, P = 0.208). These results support previous findings and show that CD151 acts as an important component of ErbB2 signaling axis in BCa cells, affecting their sensitivity to ErbB2-targeting therapy.
Collapse
|
|
6 |
7 |
6
|
Piasecka D, Braun M, Mieszkowska M, Kowalczyk L, Kopczynski J, Kordek R, Sadej R, Romanska HM. Upregulation of HIF1-α via an NF-κB/COX2 pathway confers proliferative dominance of HER2-negative ductal carcinoma in situ cells in response to inflammatory stimuli. Neoplasia 2020; 22:576-589. [PMID: 32980776 PMCID: PMC7522292 DOI: 10.1016/j.neo.2020.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 12/31/2022] Open
Abstract
There are data to suggest that some ductal carcinoma in situ (DCIS) may evolve through an evolutionary bottleneck, where minor clones susceptible to the imposed selective pressure drive disease progression. Here, we tested the hypothesis that an impact of the inflammatory environment on DCIS evolution is HER2-dependent, conferring proliferative dominance of HER2-negative cells. In tissue samples, density of tumour-infiltrating immune cells (TIICs) was associated only with high tumour nuclear grade, but in 9% of predominantly HER2-negative cases, the presence of tumoral foci ('hot-spots') of basal-like cells with HIF1-α activity adjacent to the areas of dense stromal infiltration was noted. Results of in vitro analyses further demonstrated that IL-1β and TNF-α as well as macrophage-conditioned medium triggered phosphorylation of NF-κB and subsequent upregulation of COX2 and HIF1-α, exclusively in HER2-negative cells. Treatment with both IL-1β and TNF-α resulted in growth stimulation and inhibition of HER2-negative and HER2-positive cells, respectively. Moreover, ectopic overexpression of HIF1-α rescued HER2-positive cells from the negative effect of IL-1β and TNF-α on cell growth. Our data provide novel insight into the molecular basis of HER2-dependent proliferation of DCIS cells and indicate the NF-κB/COX2 → HIF1-α signalling axis as a dominant mechanism of DCIS evolution induced by inflammatory microenvironment. Presented findings also highlight the clinical significance of heterogeneity of DCIS tumours and suggest that HIF1-α might be considered as a predictive marker of disease progression.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
6 |
7
|
Braun M, Piasecka D, Tomasik B, Mieczkowski K, Stawiski K, Zielinska A, Kopczynski J, Nejc D, Kordek R, Sadej R, Romanska HM. Hormonal Receptor Status Determines Prognostic Significance of FGFR2 in Invasive Breast Carcinoma. Cancers (Basel) 2020; 12:cancers12092713. [PMID: 32971804 PMCID: PMC7564845 DOI: 10.3390/cancers12092713] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/11/2020] [Accepted: 09/18/2020] [Indexed: 12/25/2022] Open
Abstract
Simple Summary FGFR2-ER-PR crosstalk leads to hormone-independent progression of breast cancer. In vitro, FGFR2 stimulates PR transcriptional activity and mediates resistance to anti-ER therapies. The postulated poor prognostic effect of FGFR2 overexpression has not been confirmed at clinical level. Our clinical data show that, counterintuitively, low expression of FGFR is linked to poor prognosis in breast cancer and its prognostic value is dependent on the hormonal receptor status, but not PR transcriptional activity. This shows, that the role of FGFR in breast cancer is more complex, which may explain unsatisfactory results of the clinical trials with FGFR inhibitors. Abstract Interaction between fibroblast growth factor receptor 2 (FGFR2) and estrogen/progesterone receptors (ER/PR) affects resistance to anti-ER therapies, however the prognostic value of FGFR2 in breast cancer (BCa) remains largely unexplored. We have recently showed in vitro that FGFR2-mediated signaling alters PR activity and response to anti-ER treatment. Herein, prognostic significance of FGFR2 in BCa was evaluated in relation to both ER/PR protein status and a molecular signature designed to reflect PR transcriptional activity. FGFR2 was examined in 353 BCa cases using immunohistochemistry and Nanostring-based RNA quantification. FGFR2 expression was higher in ER+PR+ and ER+PR- compared to ER−PR− cases (p < 0.001). Low FGFR2 was associated with higher grade (p < 0.001), higher Ki67 proliferation index (p < 0.001), and worse overall and disease-free survival (HR = 2.34 (95% CI: 1.26–4.34), p = 0.007 and HR = 2.22 (95% CI: 1.25–3.93), p = 0.006, respectively). The poor prognostic value of low FGFR2 was apparent in ER+PR+, but not in ER+PR− patients, and it did not depend on the expression level of PR-dependent genes. Despite the functional link between FGFR2 and ER/PR revealed by preclinical studies, the data showed a link between FGFR2 expression and poor prognosis in BCa patients.
Collapse
|
Journal Article |
5 |
6 |
8
|
Kitowska K, Kowalska A, Mieszkowska M, Piasecka D, Skladanowski AC, Romanska HM, Sadej R. Progesterone impairs Herceptin effect on breast cancer cells. Oncol Lett 2018; 15:1817-1822. [PMID: 29434878 DOI: 10.3892/ol.2017.7493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 10/16/2017] [Indexed: 12/19/2022] Open
Abstract
Breast cancer (BCa) is the most common cancer affecting women worldwide. Overexpression of human epidermal growth factor receptor 2 (HER2) occurs in ~20-25% of invasive ductal breast carcinomas and is associated with the more aggressive phenotype. Herceptin, a humanized antibody against HER2, is a standard therapy in HER2-overexpressing cases. Approximately one-third of patients relapse despite treatment. Therefore numerous studies have investigated the molecular mechanisms associated with Herceptin resistance. An interaction between HER2 signalling and steroid hormone receptor signalling pathways has been previously investigated, but the effect of this relationship on Herceptin resistance has never been studied. The present study analysed an impact of the steroid hormone, progesterone (PG), on Herceptin-dependent cell growth inhibition. Results indicated that Herceptin-inhibited proliferation of breast cancer cell lines overexpressing HER2 (BT474 and MCF/HER2) in 3D culture is abolished by PG. Furthermore, results demonstrated that PG led to the activation of HER2/HER3-mediated signalling. Moreover, PG treatment induced a shift of Herceptin-dependent cell cycle arrest in G1 phase towards S and G2 phases with concomitant upregulation of cyclin-dependent kinase 2 (CDK2) and downregulation of CDK inhibitor p27Kip1. These results demonstrate for the first time PG involvement in the failure of Herceptin treatment in vitro. The present observations suggest that cross-talk between PG- and HRG/HER2-initiated signalling pathways may lead to the acquisition of resistance to Herceptin in patients with BCa.
Collapse
|
|
7 |
1 |
9
|
Solek J, Chrzanowski J, Cieslak A, Zielinska A, Piasecka D, Braun M, Sadej R, Romanska HM. Subtype-Specific Tumour Immune Microenvironment in Risk of Recurrence of Ductal Carcinoma In Situ: Prognostic Value of HER2. Biomedicines 2022; 10:1061. [PMID: 35625798 PMCID: PMC9138378 DOI: 10.3390/biomedicines10051061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/25/2022] [Accepted: 04/30/2022] [Indexed: 11/16/2022] Open
Abstract
Increasing evidence suggests that the significance of the tumour immune microenvironment (TIME) for disease prognostication in invasive breast carcinoma is subtype-specific but equivalent studies in ductal carcinoma in situ (DCIS) are limited. The purpose of this paper is to review the existing data on immune cell composition in DCIS in relation to the clinicopathological features and molecular subtype of the lesion. We discuss the value of infiltration by various types of immune cells and the PD-1/PD-L1 axis as potential markers of the risk of recurrence. Analysis of the literature available in PubMed and Medline databases overwhelmingly supports an association between densities of infiltrating immune cells, traits of immune exhaustion, the foci of microinvasion, and overexpression of HER2. Moreover, in several studies, the density of immune infiltration was found to be predictive of local recurrence as either in situ or invasive cancer in HER2-positive or ER-negative DCIS. In light of the recently reported first randomized DCIS trial, relating recurrence risk with overexpression of HER2, we also include a closing paragraph compiling the latest mechanistic data on a functional link between HER2 and the density/composition of TIME in relation to its potential value in the prognostication of the risk of recurrence.
Collapse
|
Review |
3 |
1 |
10
|
Braun M, Piasecka D, Sadej R, Romanska HM. FGFR4-driven plasticity in breast cancer progression and resistance to therapy. Br J Cancer 2024; 131:11-22. [PMID: 38627607 PMCID: PMC11231301 DOI: 10.1038/s41416-024-02658-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/10/2024] [Accepted: 03/12/2024] [Indexed: 07/10/2024] Open
Abstract
Breast cancer (BCa) is a complex and heterogeneous disease, with different intrinsic molecular subtypes that have distinct clinical outcomes and responses to therapy. Although intrinsic subtyping provides guidance for treatment decisions, it is now widely recognised that, in some cases, the switch of the BCa intrinsic subtype (which embodies cellular plasticity), may be responsible for therapy failure and disease progression. Aberrant FGFR4 signalling has been implicated in various cancers, including BCa, where it had been shown to be associated with aggressive subtypes, such as HER2-enriched BCa, and poor prognosis. More importantly, FGFR4 is also emerging as a potential driver of BCa intrinsic subtype switching, and an essential promoter of brain metastases, particularly in the HER2-positive BCa. Although the available data are still limited, the findings may have far-reaching clinical implications. Here, we provide an updated summary of the existing both pre- and clinical studies of the role of FGFR4 in BCa, with a special focus on its contribution to subtype switching during metastatic spread and/or induced by therapy. We also discuss a potential clinical benefit of targeting FGFR4 in the development of new treatment strategies.
Collapse
|
Review |
1 |
|
11
|
Piasecka D, Składanowski AC, Kordek R, Romańska HM, Sądej R. [Aspects of progesterone receptor (PR) activity regulation - impact on breast cancer progression]. Postepy Biochem 2015; 61:198-206. [PMID: 26689013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Progesterone receptor (PR) and its specific ligand play a key role in development and physiology of mammary gland. The role of PR in initiation and progression of breast carcinoma (BCa) is unquestionable, although molecular mechanism of PR action is complex and not fully understood. It is known that increased risk of breast cancer is associated with progestin-based (synthetic ligands of progesterone) hormonal contraception or hormone replacement therapies. It is estimated that ER/PR-positive tumours represent approximately 50-70% of all BCa cases, and the loss of PR is associated with resistance to hormonal therapy and increased tumour invasiveness. In classical, genomic signalling pathway cytoplasmic PR, following ligand binding, translocates to the nucleus and regulates expression of genes with the PRE sequence. PR is also involved in a large number of alternative, non-genomic signalling cascades, e.g. PR is able to activate MAPK and PI3K/AKT pathways, which leads to regulation of gene expression. The cross-talk between PR and Growth Factors Receptors (GFR) results in progesterone-independent activation of PR as well as PR-regulated GFR expression and activation. Growth factors signalling promotes formation of a pool of hypersensitive PR responsive to even very low ligand concentration. Transcriptional activity of PR as well as its dynamic impact on processes such as cell migration and adhesion are crucial for BCa progression. Further studies of multifaceted mechanisms of PR action may contribute to new PR-targeting therapeutic strategies for breast cancer patients.
Collapse
|
English Abstract |
10 |
|
12
|
Gorska-Arcisz M, Popeda M, Braun M, Piasecka D, Nowak JI, Kitowska K, Stasilojc G, Okroj M, Romanska HM, Sadej R. FGFR2-triggered autophagy and activation of Nrf-2 reduce breast cancer cell response to anti-ER drugs. Cell Mol Biol Lett 2024; 29:71. [PMID: 38745155 PMCID: PMC11092031 DOI: 10.1186/s11658-024-00586-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Genetic abnormalities in the FGFR signalling occur in 40% of breast cancer (BCa) patients resistant to anti-ER therapy, which emphasizes the potential of FGFR-targeting strategies. Recent findings indicate that not only mutated FGFR is a driver of tumour progression but co-mutational landscapes and other markers should be also investigated. Autophagy has been recognized as one of the major mechanisms underlying the role of tumour microenvironment in promotion of cancer cell survival, and resistance to anti-ER drugs. The selective autophagy receptor p62/SQSTM1 promotes Nrf-2 activation by Keap1/Nrf-2 complex dissociation. Herein, we have analysed whether the negative effect of FGFR2 on BCa cell response to anti-ER treatment involves the autophagy process and/or p62/Keap1/Nrf-2 axis. METHODS The activity of autophagy in ER-positive MCF7 and T47D BCa cell lines was determined by analysis of expression level of autophagy markers (p62 and LC3B) and monitoring of autophagosomes' maturation. Western blot, qPCR and proximity ligation assay were used to determine the Keap1/Nrf-2 interaction and Nrf-2 activation. Analysis of 3D cell growth in Matrigel® was used to assess BCa cell response to applied treatments. In silico gene expression analysis was performed to determine FGFR2/Nrf-2 prognostic value. RESULTS We have found that FGFR2 signalling induced autophagy in AMPKα/ULK1-dependent manner. FGFR2 activity promoted dissociation of Keap1/Nrf-2 complex and activation of Nrf-2. Both, FGFR2-dependent autophagy and activation of Nrf-2 were found to counteract the effect of anti-ER drugs on BCa cell growth. Moreover, in silico analysis showed that high expression of NFE2L2 (gene encoding Nrf-2) combined with high FGFR2 expression was associated with poor relapse-free survival (RFS) of ER+ BCa patients. CONCLUSIONS This study revealed the unknown role of FGFR2 signalling in activation of autophagy and regulation of the p62/Keap1/Nrf-2 interdependence, which has a negative impact on the response of ER+ BCa cells to anti-ER therapies. The data from in silico analyses suggest that expression of Nrf-2 could act as a marker indicating potential benefits of implementation of anti-FGFR therapy in patients with ER+ BCa, in particular, when used in combination with anti-ER drugs.
Collapse
|
research-article |
1 |
|
13
|
Piasecka D, Mieszkowska M, Braun M, Kordek R, Sadej R, Romanska-Knight H. Inflammatory stimuli promote proliferative dominance of basal-like mammary epithelial cells. Eur J Surg Oncol 2018. [DOI: 10.1016/j.ejso.2018.01.547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
|
7 |
|