1
|
Golombek S, Pilz M, Steinle H, Kochba E, Levin Y, Lunter D, Schlensak C, Wendel HP, Avci-Adali M. Intradermal Delivery of Synthetic mRNA Using Hollow Microneedles for Efficient and Rapid Production of Exogenous Proteins in Skin. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 11:382-392. [PMID: 29858073 PMCID: PMC5992458 DOI: 10.1016/j.omtn.2018.03.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 03/09/2018] [Accepted: 03/10/2018] [Indexed: 12/21/2022]
Abstract
In recent years, synthetic mRNA-based applications to produce desired exogenous proteins in cells have been gaining importance. However, systemic delivery of synthetic mRNA can result in unspecific uptake into undesired cells or organs and, thereby, fail to target desired cells. Thus, local and targeted delivery of synthetic mRNA becomes increasingly important to reach the desired cell types and tissues. In this study, intradermal delivery of synthetic mRNA using a hollow microneedle injection-based method was evaluated. Furthermore, an ex vivo porcine skin model was established to analyze synthetic mRNA-mediated protein expression in the skin following intradermal delivery. Using this model, highly efficient delivery of synthetic mRNA was demonstrated, which resulted in detection of high levels of secretable humanized Gaussia luciferase (hGLuc) protein encoded by the microinjected synthetic mRNA. Interestingly, synthetic mRNA injected without transfection reagent was also able to enter the cells and resulted in protein expression. The established ex vivo porcine skin model can be used to evaluate the successful production of desired proteins after intradermal delivery of synthetic mRNAs before starting with in vivo experiments. Furthermore, the use of microneedles enables patient-friendly, painless, and efficient delivery of synthetic mRNAs into the dermis; thus, this method could be applied for local treatment of different skin diseases as well as for vaccination and immunotherapy.
Collapse
|
Journal Article |
7 |
54 |
2
|
Pünnel LC, Lunter DJ. Film-Forming Systems for Dermal Drug Delivery. Pharmaceutics 2021; 13:pharmaceutics13070932. [PMID: 34201668 PMCID: PMC8308977 DOI: 10.3390/pharmaceutics13070932] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 01/29/2023] Open
Abstract
Film-forming formulations represent a novel form of sustained release dermatic products. They are applied to the skin as a liquid or semi-solid preparation. By evaporation of the volatile solvent on the skin, the polymer contained in the formulation forms a solid film. Various film-forming formulations were tested for their water and abrasion resistance and compared with conventional semi-solid formulations. Penetration and permeation studies of the formulations indicate a potential utility as transdermal therapeutic systems. They can be used as an alternative to patch systems to administer a variety of drugs in a topical way and may provide sustained release characteristics.
Collapse
|
Review |
4 |
39 |
3
|
Lunter D, Daniels R. In vitro skin permeation and penetration of nonivamide from novel film-forming emulsions. Skin Pharmacol Physiol 2013; 26:139-46. [PMID: 23549242 DOI: 10.1159/000348464] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 01/29/2013] [Indexed: 11/19/2022]
Abstract
The purpose of this study was to develop film-forming emulsions (FFE) facilitating long-term treatment of chronic pruritus with capsaicinoids. To this end, oil-in-water emulsions, which comprise dispersions of sustained-release polymers, were examined. Such emulsions form a film when applied to the skin and encapsulate the oily drug solution in a dry polymeric matrix. Permeation of the antipruritic drug nonivamide (NVA) is controlled by the matrix. Permeation rates of NVA from FFE and its concentration in the skin are equivalent to those achieved with a conventional semisolid formulation, but can be maintained for a longer period of time. FFE may therefore improve the treatment of chronic pruritus with capsaicinoids by enhancing patient compliance by means of a sustained-release regimen.
Collapse
|
Journal Article |
12 |
26 |
4
|
Zhang Z, Lunter DJ. Confocal Raman microspectroscopy as an alternative method to investigate the extraction of lipids from stratum corneum by emulsifiers and formulations. Eur J Pharm Biopharm 2018; 127:61-71. [PMID: 29428793 DOI: 10.1016/j.ejpb.2018.02.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/05/2018] [Accepted: 02/06/2018] [Indexed: 11/24/2022]
Abstract
The purpose of this study was to investigate the impact of emulsifiers and formulations on intercellular lipids of porcine stratum corneum (SC) and evaluate confocal Raman microscopy (CRM) as an alternative method in this research context. To this end, four different formulations were used: three conventional creams that contained ionic and/or non-ionic emulsifiers and one surfactants-free emulsion stabilized by a polymeric emulsifier. Additionally, all emulsifiers were tested in aqueous solution/dispersion in the respective concentrations as present in the formulations. CRM and HPTLC were used to analyse changes in SC lipid content after treatment. Furthermore, lipid extraction was visualized by fluorescence staining and SC thickness was measured by CRM and light microscopy. Various emulsifiers and emulsifier mixtures showed different impact on SC lipid content and SC thickness, while none of the tested formulations had any effect on SC lipids. Emulsifiers and their mixtures that reduced the lipids content also reduced SC thickness, indicating lipid extraction is the reason for SC thinning. Results from CRM and conventional methods showed a strong positive correlation for both lipid content and SC thickness measurements. With easy sample preparation and fast analytical readout, CRM has the potential to be a standardized analytical method for skin lipids investigation.
Collapse
|
Journal Article |
7 |
26 |
5
|
Thabet Y, Lunter D, Breitkreutz J. Continuous manufacturing and analytical characterization of fixed-dose, multilayer orodispersible films. Eur J Pharm Sci 2018; 117:236-244. [PMID: 29499348 DOI: 10.1016/j.ejps.2018.02.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 02/05/2018] [Accepted: 02/26/2018] [Indexed: 10/17/2022]
Abstract
Various drug therapies require more than one active pharmaceutical ingredient (API) for an effective treatment. There are many advantages, e.g. to improve the compliance or pharmacodynamic response in comparison to a monotherapy or to increase the therapy safety. Until now, there are only a few products available for the paediatric population due to the lack of age appropriate dosage forms or studies proving the efficacy and safety of these products. This study aims to develop orodispersible films (ODFs) in a continuous solvent casting process as child appropriate dosage form containing both enalapril maleate (EM) and hydrochlorothiazide (HCT) separated in different film layers. Furthermore, they should be characterised and the API migration analysed by confocal Raman microscopy (CRM). ODFs were successfully produced in a continuous manufacturing process in form of double- and triple-layer formulations based on hydroxypropylcellulose (HPC) or a combination of HPC and polyvinyl alcohol (PVA). CRM revealed that both APIs migrate within the film layers shortly after manufacturing. PVA inhibits the migration inside the double-layer film, but is not able to prevent the API migration as an interlayer inside a triple-layer ODF. With increasing film layers, the content of residual solvents and the disintegration time increases (mono-layer films: <10 s, triple-layer films: 37 s). In conclusion, it was feasible to produce fixed-dose combinations in therapeutic doses up to 9 mg HCT and 3.5 mg EM for the double-layer film with adequate mechanical properties, which enable coiling up onto jumbo rolls directly after production. The best separation of the two APIs was achieved by casting a double-layer ODF consisting of different film forming polymers, which can be beneficial when processing two incompatible APIs.
Collapse
|
Journal Article |
7 |
23 |
6
|
Liu Y, Lunter DJ. Systematic Investigation of the Effect of Non-Ionic Emulsifiers on Skin by Confocal Raman Spectroscopy-A Comprehensive Lipid Analysis. Pharmaceutics 2020; 12:pharmaceutics12030223. [PMID: 32131544 PMCID: PMC7150945 DOI: 10.3390/pharmaceutics12030223] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/19/2020] [Accepted: 02/29/2020] [Indexed: 12/31/2022] Open
Abstract
Non-ionic emulsifiers are commonly found in existing pharmaceutical and cosmetic formulations and have been widely employed to enhance the penetration and permeation of active ingredients into the skin. With the potential of disrupting skin barrier function and increasing fluidity of stratum corneum (SC) lipids, we herein examined the effects of two kinds of non-ionic emulsifiers on intercellular lipids of skin, using confocal Raman spectroscopy (CRS) with lipid signals on skin CRS spectrum. Non-ionic emulsifiers of polyethylene glycol alkyl ethers and sorbitan fatty acid esters were studied to obtain a deep understanding of the mechanism between non-ionic emulsifiers and SC lipids. Emulsifier solutions and dispersions were prepared and applied onto excised porcine skin. Water and sodium laureth sulfate solution (SLS) served as controls. SC lipid signals were analysed by CRS regarding lipid content, conformation and lateral packing order. Polyethylene glycol (PEG) sorbitan esters revealed no alteration of intercellular lipid properties while PEG-20 ethers appeared to have the most significant effects on reducing lipid content and interrupting lipid organization. In general, the polyoxyethylene chain and alkyl chain of PEG derivative emulsifiers might indicate their ability of interaction with SC components. HLB values remained critical for complete explanation of emulsifier effects on skin lipids. With this study, it is possible to characterize the molecular effects of non-ionic emulsifiers on skin lipids and further deepen the understanding of enhancing substance penetration with reduced skin barrier properties and increased lipid fluidity.
Collapse
|
Journal Article |
5 |
23 |
7
|
Nikolic I, Mitsou E, Pantelic I, Randjelovic D, Markovic B, Papadimitriou V, Xenakis A, Lunter DJ, Zugic A, Savic S. Microstructure and biopharmaceutical performances of curcumin-loaded low-energy nanoemulsions containing eucalyptol and pinene: Terpenes' role overcome penetration enhancement effect? Eur J Pharm Sci 2019; 142:105135. [PMID: 31682974 DOI: 10.1016/j.ejps.2019.105135] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/29/2019] [Accepted: 10/30/2019] [Indexed: 12/22/2022]
Abstract
The objective of this work was to develop low-energy nanoemulsions for enhanced dermal delivery of curcumin, using monoterpene compounds eucalyptol (EUC) and pinene (PIN) as chemical penetration enhancers. Spontaneous emulsification was the preparation method. All formulations contained 10% of the oil phase (medium-chain triglycerides (MCT), or their mixture with EUC or PIN). Formulations were stabilized by the combination of polysorbate 80 and soybean lecithin (surfactant-to-oil-ratio=1). Concentration of curcumin was set to 3 mg/ml. Average droplet diameter of all tested formulations ranged from 102 nm to 132 nm, but the ones containing monoterpenes had significantly smaller size compared to the MCT formulation. Such finding was profoundly studied through electron paramagnetic resonance spectroscopy, which proved that the presence of monoterpenes modified the nanoemulsions' interfacial environment, resulting in droplet size reduction. The release study of curcumin (using Franz cells) demonstrated that the cumulative amount released after 6 h of the experiment was 10.1 ± 0.2% for the MCT nanoemulsions, 13.9 ± 0.1% and 14.0 ± 0.2% for PIN and EUC formulations, respectively. In vivo tape stripping revealed their performances in delivering curcumin into the skin, indicating the following order: EUC>MCT>PIN. The formulation with EUC was clearly the most successful, giving the highest cumulative amount of curcumin that penetrated per surface unit: 34.24±5.68 µg/cm2. The MCT formulation followed (30.62±2.61 µg/cm2) and, finally, the one with PIN (21.61±0.11 µg/cm2). These results corelated with curcumin's solubility in the chosen oils: 4.18±0.02 mg/ml for EUC, 1.67±0.04 mg/ml for MCT and 0.21±0.01 mg/ml for PIN. Probably, higher solubility in the oil phase of the nanoemulsion promoted curcumin's solubility in the superficial skin layers, providing enhanced penetration.
Collapse
|
Journal Article |
6 |
21 |
8
|
Lunter D, Klang V, Kocsis D, Varga-Medveczky Z, Berkó S, Erdő F. Novel aspects of Raman spectroscopy in skin research. Exp Dermatol 2022; 31:1311-1329. [PMID: 35837832 PMCID: PMC9545633 DOI: 10.1111/exd.14645] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/07/2022] [Accepted: 07/12/2022] [Indexed: 11/27/2022]
Abstract
The analytical technology of Raman spectroscopy has an almost 100‐year history. During this period, many modifications and developments happened in the method like discovery of laser, improvements in optical elements and sensitivity of spectrometer and also more advanced light detection systems. Many types of the innovative techniques appeared (e.g. Transmittance Raman spectroscopy, Coherent Raman Scattering microscopy, Surface‐Enhanced Raman scattering and Confocal Raman spectroscopy/microscopy). This review article gives a short description about these different Raman techniques and their possible applications. Then, a short statistical part is coming about the appearance of Raman spectroscopy in the scientific literature from the beginnings to these days. The third part of the paper shows the main application options of the technique (especially confocal Raman spectroscopy) in skin research, including skin composition analysis, drug penetration monitoring and analysis, diagnostic utilizations in dermatology and cosmeto‐scientific applications. At the end, the possible role of artificial intelligence in Raman data analysis and the regulatory aspect of these techniques in dermatology are briefly summarized. For the future of Raman Spectroscopy, increasing clinical relevance and in vivo applications can be predicted with spreading of non‐destructive methods and appearance with the most advanced instruments with rapid analysis time.
Collapse
|
Review |
3 |
21 |
9
|
Lunter DJ, Rottke M, Daniels R. Oil-in-oil-emulsions with enhanced substantivity for the treatment of chronic skin diseases. J Pharm Sci 2014; 103:1515-9. [PMID: 24634106 DOI: 10.1002/jps.23944] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/30/2014] [Accepted: 02/25/2014] [Indexed: 11/07/2022]
Abstract
The therapy of chronic skin diseases often requires several applications of creams or ointments per day. This is inconvenient to the patients and frequently leads to poor acceptance and compliance. We therefore developed oil-in-oil-emulsions that deliver the active pharmaceutical ingredient (API) to the skin over a prolonged period of time. In this study, we compare the permeation of the API from a conventional formulation to its permeation from an oil-in-oil-emulsion under infinite and finite dosing. Furthermore, we evaluate the substantivity of the formulations. Our results show that the permeation from oil-in-oil-emulsions is constant over a prolonged time and that the emulsions show significantly higher substantivity than conventional formulations. Because of that, the treatment intervals can be extended substantially and compliance can be increased.
Collapse
|
Journal Article |
11 |
18 |
10
|
Ilić T, Savić S, Batinić B, Marković B, Schmidberger M, Lunter D, Savić M, Savić S. Combined use of biocompatible nanoemulsions and solid microneedles to improve transport of a model NSAID across the skin: In vitro and in vivo studies. Eur J Pharm Sci 2018; 125:110-119. [DOI: 10.1016/j.ejps.2018.09.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 09/08/2018] [Accepted: 09/30/2018] [Indexed: 12/23/2022]
|
|
7 |
17 |
11
|
Lunter D, Daniels R. Confocal Raman microscopic investigation of the effectiveness of penetration enhancers for procaine delivery to the skin. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:126015. [PMID: 25539061 DOI: 10.1117/1.jbo.19.12.126015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 11/18/2014] [Indexed: 06/04/2023]
Abstract
A methodology that employs confocal Raman microscopy (CRM) on ex vivo skin samples is proposed for the investigation of drug content and distribution in the skin. To this end, the influence of the penetration enhancers propylene glycol and polyoxyethylene-23-lauryl ether on the penetration and permeation of procaine as a model substance was investigated. The drug content of skin samples that had been incubated with semisolid formulations containing one of these enhancers was examined after skin segmentation. The experiments showed that propylene glycol did not affect the procaine content that was delivered to the skin, whereas polyoxyethylene-23-lauryl ether led to higher procaine contents and deeper penetration. Neither substance was found to influence the permeation rate of procaine. It is thereby shown that CRM can provide additional information on drug penetration and permeation. Furthermore, the method was found to enhance the depth from which Raman spectra can be collected and to improve the depth resolution compared to previously proposed methods.
Collapse
|
|
11 |
17 |
12
|
Krombholz R, Lunter D. A New Method for In-Situ Skin Penetration Analysis by Confocal Raman Microscopy. Molecules 2020; 25:E4222. [PMID: 32942565 PMCID: PMC7571176 DOI: 10.3390/molecules25184222] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 12/25/2022] Open
Abstract
In the development of dermal drug formulations and cosmetics, understanding the penetration properties of the active ingredients is crucial. Given that widespread methods, including tape stripping, lack in spatial resolution, while being time- and labour-intensive, Confocal Raman Microscopy is a promising alternative. In optimizing topically applied formulations, or the development of generic formulations, comparative in-situ measurements have a huge potential of saving time and resources. In this work, we show our approach to in-situ skin penetration analysis by confocal Raman Microscopy. To analyse feasibility of the approach, we used caffeine solutions as model vehicles and tested the effectiveness of 1,2-pentanediol as a penetration enhancer for delivery to the skin.
Collapse
|
research-article |
5 |
16 |
13
|
Zhang Z, Lunter DJ. Confocal Raman microspectroscopy as an alternative to differential scanning calorimetry to detect the impact of emulsifiers and formulations on stratum corneum lipid conformation. Eur J Pharm Sci 2018; 121:1-8. [PMID: 29775655 DOI: 10.1016/j.ejps.2018.05.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/09/2018] [Accepted: 05/14/2018] [Indexed: 12/16/2022]
Abstract
The purpose of this study was to investigate the impact of emulsifiers and formulations on stratum corneum (SC) lipid conformation and evaluate confocal Raman microspectroscopy (CRM) as an alternative method to differential scanning calorimetry (DSC) in this research context. To this end, four different formulations were used: three conventional creams that contained ionic and/or non-ionic emulsifiers and one surfactants-free emulsion stabilized by a polymeric emulsifier. Additionally, all emulsifiers were tested in aqueous solutions/dispersions in the respective concentrations as present in the formulations. In this study, emulsifiers and formulations were applied onto excised porcine skin during incubation in Franz diffusion cells. Subsequently, SC was isolated, dried and subjected to CRM and DSC measurement to analyse lipid structural changes after treatment. In CRM measurement, 1080 cm-1/(1130 cm-1 + 1070 cm-1) peak ratio, which represents the C-C skeleton vibration and trans-gauche conformation order of lipids, was investigated. Various emulsifiers and formulations showed different impact on SC lipid conformation. Specifically, cetearyl alcohol and sodium cetearyl sulfate mixture dispersion showed the strongest ability among all studied emulsifiers, followed by glycerol monostearate, polyoxyethylene-20-glycerol monostearate as well as their mixture. Polysorbate 60, cetyl stearyl alcohol and their mixture did not affect SC lipid structure. The results of CRM and DSC correlated very well, indicating CRM, as an alternative to DSC, can be a reliable method to investigate SC lipid conformation.
Collapse
|
Journal Article |
7 |
16 |
14
|
Liu Y, Lunter DJ. Profiling skin penetration using PEGylated emulsifiers as penetration enhancers via confocal Raman spectroscopy and fluorescence spectroscopy. Eur J Pharm Biopharm 2021; 166:1-9. [PMID: 34082121 DOI: 10.1016/j.ejpb.2021.04.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/19/2021] [Accepted: 04/29/2021] [Indexed: 11/17/2022]
Abstract
Non-ionic emulsifiers have been continuous research focus in skin analysis. With the aim of finding their role as penetration enhancers in dermal drug delivery systems, PEGylated emulsifiers of polyethylene glycol (PEG) ethers were targeted to be investigated ex-vivo. The effectiveness of them in the enhancement of skin penetration was examined by conventional tape stripping method and confocal Raman spectroscopy (CRS). Fluorescein sodium salt (Fluo-Na) and procaine HCl were respectively used as model drugs. The drug delivery performances were compared in the aspects of penetration amount and depth. Based on the results from both analyses, all investigated emulsifiers have the ability to enhance the amount of drug penetration. PEG-20 ethers showed higher ability than PEG-2 oleyl ether (O2) in promoting drug distribution by depth, especially PEG-20 cetyl ether (C20) showed a distinct effect. According to this study, their penetration enhancing performances seem to be linked to their interruption of intercellular lipids, which can be considered as the underlying mechanism for governing the ability of PEGylated emulsifiers as penetration enhancers. Further instrumental comparison highlighted the benefits of using CRS as an alternative in skin penetration analysis.
Collapse
|
|
4 |
14 |
15
|
Pantelić I, Lukić M, Gojgić-Cvijović G, Jakovljević D, Nikolić I, Lunter DJ, Daniels R, Savić S. Bacillus licheniformis levan as a functional biopolymer in topical drug dosage forms: From basic colloidal considerations to actual pharmaceutical application. Eur J Pharm Sci 2019; 142:105109. [PMID: 31770662 DOI: 10.1016/j.ejps.2019.105109] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/15/2019] [Accepted: 10/13/2019] [Indexed: 12/17/2022]
Abstract
Ongoing demand in sustainable and biocompatible drug dosage forms is reflected in the search for novel pharmaceutical excipients with equal properties. A group of microbial exopolysaccharides offers a variety of biopolymers with many alleged uses and effects. This study aims to assess applicative properties of levan obtained from Bacillus licheniformis NS032, focusing on its potential co-stabilizing and drug release-controlling functions in pertaining emulsion systems. Despite its high molecular weight and partial existence in globular nanometric structures (180-190 nm), levan was successfully incorporated into both tested colloidal systems: those stabilized with synthetic/anionic or natural-origin/non-ionic emulsifiers. In the tested levan concentrations range (0.2-3.0% w/w) the monitored flow and thermal parameters failed to show linear concentration dependence, which prompted us to revisit certain colloidal fundamentals of this biopolymer. Being a part of the external phase of the investigated emulsion systems, levan contributed to formation of a matrix-like environment, offering additional stabilization of the microstructure and rheology modifying properties (hysteresis loop elevation as high as 4167±98 to 20792±3166 Pa•s-1), especially in case of the samples where lamellar liquid crystalline formation occurred. Apart from its good water solubility and considerable conformational flexibility, the investigated homofructan easily saturated the external phase of the samples stabilized with a conventional anionic emulsifier, leading to similar properties of 0.2% and 3.0% levan-containing samples. After closer consideration of thermal and release behavior, this was considered as a favorable property for a novel excipient, offering tailored formulation characteristics even with lower levan concentrations, consequently not compromising the potential cost of the final drug dosage form.
Collapse
|
Journal Article |
6 |
13 |
16
|
Lunter DJ. How Confocal Is Confocal Raman Microspectroscopy on the Skin? Impact of Microscope Configuration and Sample Preparation on Penetration Depth Profiles. Skin Pharmacol Physiol 2016; 29:92-101. [PMID: 27054960 DOI: 10.1159/000444806] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 02/16/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS The aim of the study was to elucidate the effect of sample preparation and microscope configuration on the results of confocal Raman microspectroscopic evaluation of the penetration of a pharmaceutical active into the skin (depth profiling). METHODS Pig ear skin and a hydrophilic formulation containing procaine HCl were used as a model system. The formulation was either left on the skin during the measurement, or was wiped off or washed off prior to the analysis. The microscope configuration was varied with respect to objectives and pinholes used. RESULTS Sample preparation and microscope configuration had a tremendous effect on the results of depth profiling. Regarding sample preparation, the best results could be observed when the formulation was washed off the skin prior to the analysis. Concerning microscope configuration, the use of a 40 × 0.6 numerical aperture (NA) objective in combination with a 25-µm pinhole or a 100 × 1.25 NA objective in combination with a 50-µm pinhole was found to be advantageous. CONCLUSION Complete removal of the sample from the skin before the analysis was found to be crucial. A thorough analysis of the suitability of the chosen microscope configuration should be performed before acquiring concentration depth profiles.
Collapse
|
Journal Article |
9 |
13 |
17
|
Herrmann S, Daniels R, Lunter D. Methods for the determination of the substantivity of topical formulations. Pharm Dev Technol 2016; 22:487-491. [PMID: 26754018 DOI: 10.3109/10837450.2015.1135346] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Skin diseases are usually treated using topical formulations. Frequently, multiple applications per day are necessary, as up to 90% of the formulation (and thus of the active) are withdrawn from the skin by contact with the environment. During the development of topical formulations ex vivo permeation and penetration experiments are deployed to characterize the formulations. Still, these tests do not take into account the removal of formulations during the application period. To date, only few methods exist to probe the substantivity of dermal formulations. The aim of this investigation was to develop methods that simulate skin-to-skin or clothing-to-skin contact and enable the determination of the amount of formulation that is removed from the skin due to the contact. Three different types of formulations were used to validate the systems: a conventional semisolid cream, an oil-in-oil-emulsion, and a film forming formulation. The results showed that the substantivity decreased in the order: film forming formulation > semisolid cream > oil-in-oil-emulsion. A similar trend could be determined with both methods although the total amounts of withdrawn formulation differed. The developed methods can add to the knowledge about the formulation and can be used to develop formulations that exhibit higher substantivity.
Collapse
|
Journal Article |
9 |
9 |
18
|
Zugic A, Lunter DJ, Daniels R, Pantelic I, Tasic Kostov M, Tadic V, Misic D, Arsic I, Savic S. Usnea barbata CO2-supercritical extract in alkyl polyglucoside-based emulsion system: contribution of Confocal Raman imaging to the formulation development of a natural product. Pharm Dev Technol 2015; 21:563-75. [DOI: 10.3109/10837450.2015.1026606] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
|
10 |
8 |
19
|
Liu Y, Krombholz R, Lunter DJ. Critical parameters for accurate monitoring of caffeine penetration in porcine skin using confocal Raman spectroscopy. Int J Pharm 2021; 607:121055. [PMID: 34461169 DOI: 10.1016/j.ijpharm.2021.121055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/18/2021] [Accepted: 08/25/2021] [Indexed: 01/01/2023]
Abstract
In this research, we addressed a challenge while measuring the penetration performance of caffeine (CAF) using confocal Raman spectroscopy (CRS). Normally in the process of CRS analysis, skin sample was moved from an incubation setup to a specified CRS-measuring sample holder. Accurate data collection may be questioned due to the variation of the environment the skin placed in. Therefore, two critical parameters including the CRS measuring temperature and proper skin hydration were focused; accordingly, four different conditions were designed. First, the skin was incubated in a real-time device with the skin placing onto PBS-filled chamber where the temperature was adjusted to 32℃. This device can be fixed under the CRS microscope, enabling simultaneous skin incubation and dynamic CRS measurements (condition i, reference). The other conditions referred to skins incubated in Franz diffusion cells for simulating the common experimental procedures. In order to control variables of CRS measuring condition, skins were transferred from cells to real-time device and open device. In real-time device, proper skin hydration was maintained and the skin temperature was adjusted to 32℃ (condition ii) and room temperature (condition iii). In open device, the skin was in a less hydrated state by moving onto a PBS-soaked filter paper and wrapped with aluminum foil at room temperature (condition iv). The skin penetration performances measured in these conditions were compared with reference. Caffeine solution and gel formulation were separately applied to the skin. The results showed in both cases that the decrease of skin temperature and hydration in condition iii and iv would apparently induce the decrease of detected caffeine signal, resulting in the inaccurate data collection. To this point, it indicates the reduction of solubilized caffeine in skin layer. We suggest the forming of caffeine crystallization at varied skin conditions to be the factor. Achieved video image, CRS spectrum collection and surface scan demonstrated the caffeine crystallization process on superficial skin layer. Polarized microscopic images exemplified the crystalline drug on tape stripped skin layers. It can be a potential support of caffeine crystallization inside skin. In short, we suggest the consideration of these parameters during CRS measurements for accurate monitoring of topical drug delivery. Meanwhile, the use of real-time device for dynamic skin incubation and data collection provides advantages in saving time and efforts in this study.
Collapse
|
|
4 |
7 |
20
|
Schmidberger M, Nikolic I, Pantelic I, Lunter D. Optimization of Rheological Behaviour and Skin Penetration of Thermogelling Emulsions with Enhanced Substantivity for Potential Application in Treatment of Chronic Skin Diseases. Pharmaceutics 2019; 11:E361. [PMID: 31344864 PMCID: PMC6723268 DOI: 10.3390/pharmaceutics11080361] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/17/2019] [Accepted: 07/22/2019] [Indexed: 01/06/2023] Open
Abstract
Topical formulations are an important pillar in the therapy of skin diseases. Nevertheless, after application the formulation will be exposed to environmental effects. Contact with other surfaces will reduce the available amount of formulation and drug substance. The resulting consequences for therapy range from reduced effects to therapeutic failure. The removed active ingredient also contaminates patients' environment. The aim of this work was to develop preparations that remain at the application site. These will enhance safety and efficiency and thus improve of skin disease therapies. Therefore, we developed polymer-stabilised emulsions that show thermogelling properties. Emulsions with different methyl cellulose concentrations and macrogols of different molecular weights were investigated. The dispersed phase consisted of nonivamide as the active pharmaceutical ingredient, dissolved in medium-chain triglycerides. Rheological properties, droplet size, substantivity and ex vivo penetration experiments were performed to characterise the developed formulations. Droplet size and rheological parameters were affected by the composition of the preparations. The tested formulations showed benefits in their substantivity compared to a conventional semi-solid cream. We found a residual amount of up to 100% at the application site. The drug levels in viable epidermis were in a therapeutic range. The developed emulsions are a promising vehicle to improve therapy for chronic skin diseases.
Collapse
|
research-article |
6 |
6 |
21
|
Abstract
Mesoporous silica particles have recently been used in the preparation of solid oral as well as dermal pharmaceutical formulations. In this work, the use of mesoporous silica of different particle size, pore size and pore volume as carrier for curcumin in hydrogels for dermal use was investigated. Oil absorption capacity of the silica, in vitro release of curcumin from formulations and chemical stability of curcumin during three months storage were evaluated. It was found that the silica particles did not alter in vitro release of curcumin compared to an emulsion. Furthermore, curcumin was found to exhibit similar or inferior stability in hydrogels containing mesoporous silica opposed to emulsions.
Collapse
|
Journal Article |
8 |
6 |
22
|
Liu Y, Lunter DJ. Optimal configuration of confocal Raman spectroscopy for precisely determining stratum corneum thickness: Evaluation of the effects of polyoxyethylene stearyl ethers on skin. Int J Pharm 2021; 597:120308. [PMID: 33540027 DOI: 10.1016/j.ijpharm.2021.120308] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 10/22/2022]
Abstract
Properties regarding stratum corneum (SC), the outermost membrane of the skin, remain an active area in dermatologic and cosmetic research. The reduced thickness of SC is associated with varied adverse statuses such as skin lipid deficiency, skin barrier dysfunctions and skin deceases, etc. Emulsifiers with existing irritative effects on skin components also face the risk of decreasing SC thickness. We have been focusing on the effects of PEGylated emulsifiers on the skin and have an interest in finding the role of their polyethylene glycol (PEG)-chain length in tuning skin irritations. With this aim, PEG-stearyl ethers with different numbers of hydrophilic chains were applied on the skin, and their influence on skin thickness was discovered to determine their skin barrier effect. Confocal Raman spectroscopy (CRS) with extensive application in skin research was used here. To obtain the precise determination of skin thickness, our secondary aim was to find the optimal CRS configuration referring to varied objectives and pinhole sizes where further study is still in demand. Therefore, SC thickness measured via eddy current approach served as reference. The applied PEG-stearyl ethers formed the system to achieve varied thicknesses. Results confirmed that the skin interactions rose with increasing PEG-chain length, however only up to a certain limit, with decreasing effects recorded from PEG-40 stearyl ether and no effects observed from PEG-100 stearyl ether. Simultaneously, CRS combined with water immersion objective and 50 μm pinhole presented the most consistent values to the references and exhibited better spectral intensity and signal-to-noise ratio. Correlation plots involving different cases of configurations were calculated for error corrections. Taken together, this work helps to identify the potential mechanisms governing the interactions between PEG-stearyl ethers and skin and offers powerful evidence of using CRS as a reliable alternative to obtain accurate thickness values.
Collapse
|
|
4 |
6 |
23
|
Lukic M, Filipovic M, Pajic N, Lunter D, Bozic D, Savic S. Formulation of topical acidic products and acidification of the skin - Contribution of glycolic acid. Int J Cosmet Sci 2021; 43:419-431. [PMID: 33864274 DOI: 10.1111/ics.12707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/08/2021] [Accepted: 04/13/2021] [Indexed: 01/21/2023]
Abstract
OBJECTIVE The acidic skin pH is one of the regulating factors of skin barrier homeostasis. Topical products as extrinsic factors which influence skin pH could be used for acidification of the skin and consequent beneficial effect. To formulate stabile and safe topical emulsion product with low pH is on-going challenge and areas interesting to explore are related to the effect of acidic products on the skin pH together with development of protocols for these studies. Aim of our work was to investigate formulations of acidic topical products with glycolic acid (GA) stabilized with long chain alkyl polyglucoside emulsifier, in regard to the specific colloidal structure of the vehicle, together with effect of products with different concentration of acidic active on skin pH. METHODS Investigated formulations were basic vehicle and two creams with glycolic acid (concentration 2 and 10 wt%). Microstructure was investigated by polarization microscopy, Raman spectral imaging, thermal analysis and rheological measurements. Effects on the skin were assessed by measurement of biophysical skin parameters in vivo studies (5-hour, 24-hour and 7-days). In vitro screening of antimicrobial activity was performed against bacteria Staphylococcus epidermidis. RESULTS Polarization micrographs and Raman images have shown that GA does not disturb the specific colloidal structure. Together with rheological and thermal analysis obtained results have shown that GA in higher concentrations contributes to vehicles' lamellar structure. In 5-hour study the mean values of skin pH ranged from 3.98-4.25 and 3.89-4.10 after application of products with smaller and higher GA concentration. GA samples lowered skin surface pH to 5 and less in 24-hour and 7-day study, with stronger effect of sample with more GA. Sample with 10% of GA had significant inhibitory effect on growth of S. epidermidis in 1:1 concentration. CONCLUSIONS Investigated APG emulsifier could be used as a stabilizer for acidic topical products with GA which are characterized by satisfactory safety profile. Topical products induce acidification of the skin after short- and long-term application without barrier impairment or sign of irritation. Acidification of the skin depends on presence of ingredients which are proton donors and their concentrations.
Collapse
|
Journal Article |
4 |
5 |
24
|
Kourbaj G, Gaiser A, Bielfeldt S, Lunter D. Assessment of penetration and permeation of caffeine by confocal Raman spectroscopy in vivo and ex vivo by tape stripping. Int J Cosmet Sci 2023; 45:14-28. [PMID: 36350131 DOI: 10.1111/ics.12820] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/19/2022] [Accepted: 09/25/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Tape stripping is an often-used non-invasive destructive method to investigate the skin penetration of a substance. In recent years, however, the suitability of confocal Raman spectroscopy (CRS) as a non-invasive method of non-destructive examination of the skin has become increasingly apparent. In this study, we compared invasion and depletion penetration and permeation kinetics of a 2% caffeine solution with and without 1,2-pentanediol as a penetration enhancer measured with CRS and tape stripping. METHODS Porcine skin was used for tape stripping and human skin for CRS. 2% caffeine solution was applied to the skin for different incubation times. Human skin was then examined by CRS while caffeine was extracted from porcine skin and quantified via reverse-phase HPLC. Fluxes were also measured and calculated by sum of the total amounts of caffeine penetrated into the skin. RESULTS Without penetration enhancers, there is hardly any difference between the penetration profiles of the two measurement methods for invasion, but the curves for depletion are different. Furthermore, the calculated flux values for the invasion are almost identical, but for the depletion the tape stripping values are about twice as high as the CRS values. CONCLUSION The relevance of conducting invasion and depletion studies became clear and was able to show the still existing problems in the comparability of CRS and tape stripping.
Collapse
|
|
2 |
4 |
25
|
Liu Y, Lunter DJ. Tracking heavy-water-incorporated confocal Raman spectroscopy for evaluating the effects of PEGylated emulsifiers on skin barrier. JOURNAL OF BIOPHOTONICS 2020; 13:e202000286. [PMID: 32975040 DOI: 10.1002/jbio.202000286] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
The class of PEGylated emulsifiers finds broad application in the pharmaceutical and cosmetic industry. We target on one of the categories of polyethylene glycol (PEG) alkyl ethers with different lipophilic and hydrophilic chain length and aim to examine their effects on the skin comprehensively. In this study, we employed confocal Raman spectroscopy for skin depth profiling and imaging. A unique probe of heavy water (D2 O) was incorporated, which can be tracked percutaneously and simultaneously monitor the effects caused by emulsifiers. According to the results, most of the PEGylated emulsifiers caused changes in skin lipid content/organization and induced the alteration in relative water content/hydrogen bonding structure. The results obtained from the depth profiling analysis provided the possibility to estimate the least penetration depth of emulsifiers. Among them, PEG-20 ethers displayed the most penetration ability. Meanwhile, it is interesting to find that the treatment of emulsifiers also affected the spatial distribution of D2 O whose differences were in line with the molecular skin variations. In particular, the isotopic H/D substitution in the skin was highlighted in detail. This result supports the possibility to use D2 O as an excellent and cost-effective probe to evaluate the skin barrier function.
Collapse
|
|
5 |
4 |