1
|
Rapoport AP, Stadtmauer EA, Binder-Scholl GK, Goloubeva O, Vogl DT, Lacey SF, Badros AZ, Garfall A, Weiss B, Finklestein J, Kulikovskaya I, Sinha SK, Kronsberg S, Gupta M, Bond S, Melchiori L, Brewer JE, Bennett AD, Gerry AB, Pumphrey NJ, Williams D, Tayton-Martin HK, Ribeiro L, Holdich T, Yanovich S, Hardy N, Yared J, Kerr N, Philip S, Westphal S, Siegel DL, Levine BL, Jakobsen BK, Kalos M, June CH. NY-ESO-1-specific TCR-engineered T cells mediate sustained antigen-specific antitumor effects in myeloma. Nat Med 2015; 21:914-921. [PMID: 26193344 PMCID: PMC4529359 DOI: 10.1038/nm.3910] [Citation(s) in RCA: 670] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 06/23/2015] [Indexed: 12/22/2022]
Abstract
Despite recent therapeutic advances, multiple myeloma (MM) remains largely incurable. Here we report results of a phase I/II trial to evaluate the safety and activity of autologous T cells engineered to express an affinity-enhanced T cell receptor (TCR) recognizing a naturally processed peptide shared by the cancer-testis antigens NY-ESO-1 and LAGE-1. Twenty patients with antigen-positive MM received an average 2.4 × 10(9) engineered T cells 2 d after autologous stem cell transplant. Infusions were well tolerated without clinically apparent cytokine-release syndrome, despite high IL-6 levels. Engineered T cells expanded, persisted, trafficked to marrow and exhibited a cytotoxic phenotype. Persistence of engineered T cells in blood was inversely associated with NY-ESO-1 levels in the marrow. Disease progression was associated with loss of T cell persistence or antigen escape, in accordance with the expected mechanism of action of the transferred T cells. Encouraging clinical responses were observed in 16 of 20 patients (80%) with advanced disease, with a median progression-free survival of 19.1 months. NY-ESO-1-LAGE-1 TCR-engineered T cells were safe, trafficked to marrow and showed extended persistence that correlated with clinical activity against antigen-positive myeloma.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
670 |
2
|
Cohen AD, Garfall AL, Stadtmauer EA, Melenhorst JJ, Lacey SF, Lancaster E, Vogl DT, Weiss BM, Dengel K, Nelson A, Plesa G, Chen F, Davis MM, Hwang WT, Young RM, Brogdon JL, Isaacs R, Pruteanu-Malinici I, Siegel DL, Levine BL, June CH, Milone MC. B cell maturation antigen-specific CAR T cells are clinically active in multiple myeloma. J Clin Invest 2019; 129:2210-2221. [PMID: 30896447 DOI: 10.1172/jci126397] [Citation(s) in RCA: 539] [Impact Index Per Article: 89.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR) T cells are a promising therapy for hematologic malignancies. B-cell maturation antigen (BCMA) is a rational target in multiple myeloma (MM). METHODS We conducted a phase I study of autologous T cells lentivirally-transduced with a fully-human, BCMA-specific CAR containing CD3ζ and 4-1BB signaling domains (CART-BCMA), in subjects with relapsed/refractory MM. Twenty-five subjects were treated in 3 cohorts: 1) 1-5 x 108 CART-BCMA cells alone; 2) Cyclophosphamide (Cy) 1.5 g/m2 + 1-5 x 107 CART-BCMA cells; and 3) Cy 1.5 g/m2 + 1-5 x 108 CART-BCMA cells. No pre-specified BCMA expression level was required. RESULTS CART-BCMA cells were manufactured and expanded in all subjects. Toxicities included cytokine release syndrome and neurotoxicity, which were grade 3-4 in 8 (32%) and 3 (12%) subjects, respectively, and reversible. One subject died at day 24 from candidemia and progressive myeloma, following treatment for severe CRS and encephalopathy. Responses (based on treated subjects) were seen in 4/9 (44%) in cohort 1, 1/5 (20%) in cohort 2, and 7/11 (64%) in cohort 3, including 5 partial, 5 very good partial, and 2 complete responses, 3 of which were ongoing at 11, 14, and 32 months. Decreased BCMA expression on residual MM cells was noted in responders; expression increased at progression in most. Responses and CART-BCMA expansion were associated with CD4:CD8 T cell ratio and frequency of CD45RO-CD27+CD8+ T cells in the pre-manufacturing leukapheresis product. CONCLUSION CART-BCMA infusions with or without lymphodepleting chemotherapy are clinically active in heavily-pretreated MM patients. TRIAL REGISTRATION NCT02546167. FUNDING University of Pennsylvania-Novartis Alliance and NIH.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
539 |
3
|
Payne AS, Ishii K, Kacir S, Lin C, Li H, Hanakawa Y, Tsunoda K, Amagai M, Stanley JR, Siegel DL. Genetic and functional characterization of human pemphigus vulgaris monoclonal autoantibodies isolated by phage display. J Clin Invest 2005; 115:888-99. [PMID: 15841178 PMCID: PMC1070425 DOI: 10.1172/jci24185] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2004] [Accepted: 02/08/2005] [Indexed: 02/05/2023] Open
Abstract
Pemphigus is a life-threatening blistering disorder of the skin and mucous membranes caused by pathogenic autoantibodies to desmosomal adhesion proteins desmoglein 3 (Dsg3) and Dsg1. Mechanisms of antibody pathogenicity are difficult to characterize using polyclonal patient sera. Using antibody phage display, we have isolated repertoires of human anti-Dsg mAbs as single-chain variable-region fragments (scFvs) from a patient with active mucocutaneous pemphigus vulgaris. ScFv mAbs demonstrated binding to Dsg3 or Dsg1 alone, or both Dsg3 and Dsg1. Inhibition ELISA showed that the epitopes defined by these scFvs are blocked by autoantibodies from multiple pemphigus patients. Injection of scFvs into neonatal mice identified 2 pathogenic scFvs that caused blisters histologically similar to those observed in pemphigus patients. Similarly, these 2 scFvs, but not others, induced cell sheet dissociation of cultured human keratinocytes, indicating that both pathogenic and nonpathogenic antibodies were isolated. Genetic analysis of these mAbs showed restricted patterns of heavy and light chain gene usage, which were distinct for scFvs with different desmoglein-binding specificities. Detailed characterization of these pemphigus mAbs should lead to a better understanding of the immunopathogenesis of disease and to more specifically targeted therapeutic approaches.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
179 |
4
|
Wang L, Calcedo R, Bell P, Lin J, Grant RL, Siegel DL, Wilson JM. Impact of pre-existing immunity on gene transfer to nonhuman primate liver with adeno-associated virus 8 vectors. Hum Gene Ther 2011; 22:1389-401. [PMID: 21476868 DOI: 10.1089/hum.2011.031] [Citation(s) in RCA: 159] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Vectors based on the primate-derived adeno-associated virus serotype 8 (AAV8) are being evaluated in preclinical and clinical models. Natural infections with related AAVs activate memory B cells that produce antibodies capable of modulating the efficacy and safety of the vector. We have evaluated the biology of AAV8 gene transfer in macaque liver, with a focus on assessing the impact of pre-existing humoral immunity. Twenty-one macaques with various levels of AAV neutralizing antibody (NAb) were injected intravenously with AAV8 vector expressing green fluorescent protein. Pre-existing antibody titers in excess of 1:10 substantially diminished hepatocyte transduction that, in the absence of NAbs, was highly efficient. Vector-specific NAb diminished liver deposition of genomes and unexpectedly increased genome distribution to the spleen. The majority of animals showed high-level and stable sequestration of vector capsid protein by follicular dendritic cells of splenic germinal centers. These studies illustrate how natural immunity to a virus that is related to a vector can impact the efficacy and potential safety of in vivo gene therapy. We propose to use the in vitro transduction inhibition assay to evaluate research subjects before gene therapy and to preclude from systemic AAV8 trials those that have titers in excess of 1:10.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
159 |
5
|
Garfall AL, Dancy EK, Cohen AD, Hwang WT, Fraietta JA, Davis MM, Levine BL, Siegel DL, Stadtmauer EA, Vogl DT, Waxman A, Rapoport AP, Milone MC, June CH, Melenhorst JJ. T-cell phenotypes associated with effective CAR T-cell therapy in postinduction vs relapsed multiple myeloma. Blood Adv 2019; 3:2812-2815. [PMID: 31575532 PMCID: PMC6784521 DOI: 10.1182/bloodadvances.2019000600] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/08/2019] [Indexed: 01/01/2023] Open
Abstract
T cells from patients early in myeloma therapy exhibit better fitness for CAR T manufacturing than those from relapsed/refractory patients. CAR T cells may be more effective if manufactured from patients before onset of relapsed/refractory disease.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
152 |
6
|
He X, Feng Z, Ma J, Ling S, Cao Y, Gurung B, Wu Y, Katona BW, O'Dwyer KP, Siegel DL, June CH, Hua X. Bispecific and split CAR T cells targeting CD13 and TIM3 eradicate acute myeloid leukemia. Blood 2020; 135:713-723. [PMID: 31951650 PMCID: PMC7059518 DOI: 10.1182/blood.2019002779] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 12/13/2019] [Indexed: 02/05/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cells have radically improved the treatment of B cell-derived malignancies by targeting CD19. The success has not yet expanded to treat acute myeloid leukemia (AML). We developed a Sequentially Tumor-Selected Antibody and Antigen Retrieval (STAR) system to rapidly isolate multiple nanobodies (Nbs) that preferentially bind AML cells and empower CAR T cells with anti-AML efficacy. STAR-isolated Nb157 specifically bound CD13, which is highly expressed in AML cells, and CD13 CAR T cells potently eliminated AML in vitro and in vivo. CAR T cells bispecific for CD13 and TIM3, which are upregulated in AML leukemia stem cells, eradicated patient-derived AML, with much reduced toxicity to human bone marrow stem cells and peripheral myeloid cells in mouse models, highlighting a promising approach for developing effective AML CAR T cell therapy.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
132 |
7
|
Siegel DL, Branton D. Partial purification and characterization of an actin-bundling protein, band 4.9, from human erythrocytes. J Cell Biol 1985; 100:775-85. [PMID: 3882722 PMCID: PMC2113504 DOI: 10.1083/jcb.100.3.775] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Band 4.9 (a 48,000-mol-wt polypeptide) has been partially purified from human erythrocyte membranes. In solution, band 4.9 polypeptides exist as trimers with an apparent molecular weight of 145,000 and a Stokes radius of 50 A. Electron microscopy shows that the protein is a three-lobed structure with a radius slightly greater than 50 A. When gel-filtered rabbit muscle actin is polymerized in the presence of band 4.9, actin bundles are generated that are similar in appearance to those induced by "vinculin" or fimbrin. The bundles appear brittle and when they are centrifuged small pieces of filaments break off and remain in the supernatant. At low band 4.9 to actin molar ratios (1:30), band 4.9 lowers the apparent steady-state low-shear falling ball viscosity by sequestering filaments into thin bundles; at higher ratios, the bundles become thicker and obstruct the ball's movement leading to an apparent increase in steady-state viscosity. Band 4.9 increases the length of the lag phase and decreases the rate of elongation during actin polymerization as measured by high-shear Ostwald viscometry or by the increase in the fluorescence of pyrene-labeled actin. Band 4.9 does not alter the critical actin monomer concentration. We hypothesize that band 4.9, together with actin, erythrocyte tropomyosin, and spectrin, forms structures in erythroid precursor cells analogous to those formed by fimbrin, actin, tropomyosin, and TW 260/240 in epithelial brush borders. During erythroid development and enucleation, the actin filaments may depolymerize up to the membrane, leaving a membrane skeleton with short stubs of actin bundled by band 4.9 and cross-linked by spectrin.
Collapse
|
research-article |
40 |
89 |
8
|
Siegel DL, Chang TY, Russell SL, Bunya VY. Isolation of cell surface-specific human monoclonal antibodies using phage display and magnetically-activated cell sorting: applications in immunohematology. J Immunol Methods 1997; 206:73-85. [PMID: 9328570 DOI: 10.1016/s0022-1759(97)00087-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A method is described for the isolation of filamentous phage-displayed human monoclonal antibodies directed at unpurifiable cell surface-expressed molecules. To optimize the capture of antigen-specific phage and minimize the binding of irrelevant phage antibodies, a simultaneous positive and negative selection strategy is employed. Cells bearing the antigen of interest are pre-coated with magnetic beads and diluted into an excess of unmodified antigen-negative cells. Following incubation of the cell admixture with a Fab/phage library, the antigen-positive cell population is retrieved using magnetically-activated cell sorting and antigen-specific Fab/phage are eluted and propagated in bacterial culture. Utilizing this protocol with magnetically-labeled Rh(D)-positive and excess unlabeled Rh(D)-negative human red blood cells and a Fab/phage library constructed from human peripheral blood lymphocytes, dozens of unique clinically-useful gamma 1 kappa and gamma 1 lambda anti-Rh(D) antibodies were isolated from a single alloimmunized individual. This cell-surface selection method is readily adaptable for use in other systems, such as for the identification of putative tumor-specific antigens and provides a rapid (< 1 month), high-yield approach for isolating self-replicative antibody reagents directed at novel or conformationally-dependent cell-surface epitopes.
Collapse
|
|
28 |
71 |
9
|
Ishii K, Lin C, Siegel DL, Stanley JR. Isolation of pathogenic monoclonal anti-desmoglein 1 human antibodies by phage display of pemphigus foliaceus autoantibodies. J Invest Dermatol 2007; 128:939-48. [PMID: 18007588 DOI: 10.1038/sj.jid.5701132] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Pemphigus foliaceus (PF) is a blistering disease caused by autoantibodies to desmoglein 1 (Dsg1) that cause loss of epidermal cell adhesion. To better understand PF pathophysiology, we used phage display to isolate anti-Dsg1 mAbs as single-chain variable fragments (scFvs) from a PF patient. Initial panning of the library isolated only non-pathogenic scFvs. We then used these scFvs to block non-pathogenic epitopes and were able to isolate two unique scFvs, each of which caused typical PF blisters in mice or human epidermis models, showing that a single mAb can disrupt Dsg1 function to cause disease. Both pathogenic scFvs bound conformational epitopes in the N terminus of Dsg1. Other PF sera showed a major antibody response against the same or nearby epitopes defined by these pathogenic scFvs. Finally, we showed restriction of the heavy-chain gene usage of all anti-Dsg1 clones to only five genes, which determined their immunological properties despite promiscuous light-chain gene usage. These mAbs will be useful for studying Dsg1 function and mechanisms of blister formation in PF and for developing targeted therapies and tools to monitor disease activity.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
70 |
10
|
Svoboda J, Andreadis C, Elstrom R, Chong EA, Downs LH, Berkowitz A, Luger SM, Porter DL, Nasta S, Tsai D, Loren AW, Siegel DL, Glatstein E, Alavi A, Stadtmauer EA, Schuster SJ. Prognostic value of FDG-PET scan imaging in lymphoma patients undergoing autologous stem cell transplantation. Bone Marrow Transplant 2006; 38:211-6. [PMID: 16770314 DOI: 10.1038/sj.bmt.1705416] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We conducted a retrospective analysis of 50 lymphoma patients (Hodgkin's disease and non-Hodgkin's lymphoma) who had an 18F-fluoro-deoxyglucose positron emission tomography (FDG-PET) scan after at least two cycles of salvage chemotherapy and before autologous stem cell transplantation (ASCT) at our institution. The patients were categorized into FDG-PET negative (N = 32) and positive (N = 18) groups. The median follow-up after ASCT was 19 months (range: 3-59). In the FDG-PET-negative group, the median progression-free survival (PFS) was 19 months (range: 2-59) with 15 (54%) patients without progression at 12 months after ASCT. The median overall survival (OS) for this group was not reached. In the FDG-PET-positive group, the median PFS was 5 months (range: 1-19) with only one (7%) patient without progression at 12 months after ASCT. The median OS was 19 months (range: 1-34). In the FDG-PET-negative group, chemotherapy-resistant patients by CT-based criteria had a comparable outcome to those with chemotherapy-sensitive disease. A positive FDG-PET scan after salvage chemotherapy and prior ASCT indicates an extremely poor chance of durable response after ASCT.
Collapse
|
Journal Article |
19 |
69 |
11
|
Kucher C, Steere J, Elenitsas R, Siegel DL, Xu X. Nephrogenic fibrosing dermopathy/nephrogenic systemic fibrosis with diaphragmatic involvement in a patient with respiratory failure. J Am Acad Dermatol 2006; 54:S31-4. [PMID: 16427988 DOI: 10.1016/j.jaad.2005.04.024] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Revised: 04/04/2005] [Accepted: 04/07/2005] [Indexed: 11/30/2022]
Abstract
Nephrogenic fibrosing dermopathy/nephrogenic systemic fibrosis (NFD/NSF) is a disorder occurring exclusively in patients with renal disease. Until recently, it has been considered a fibrosing disorder essentially confined to the skin and underlying superficial soft tissue. Recent reports, however, have described patients with involvement of other organ systems, suggesting that this disorder is actually a systemic disease with preferential cutaneous manifestations. We describe a patient with end-stage renal disease with diagnosed NFD/NSF who subsequently developed respiratory failure leading to his death. Autopsy findings showed NFD/NSF involving the skin of all extremities, as well as diffuse diaphragm involvement.
Collapse
|
|
19 |
68 |
12
|
Siegel DL, Goodman SR, Branton D. The effect of endogenous proteases on the spectrin binding proteins of human erythrocytes. BIOCHIMICA ET BIOPHYSICA ACTA 1980; 598:517-27. [PMID: 6770900 DOI: 10.1016/0005-2736(80)90032-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We have demonstrated that in human erythrocyte ghosts endogenous proteolytic activity is responsible for the digestion of the spectrin binding proteins (bands 2.1 to 2.6). The pH optimum, cofactor requirements and inhibitor sensitivity have been established. Our results indicate that proteolysis of bands 2.1 to 2.6 and the formation of 3', a fragment containing an active spectrin binding site, can occur through two enzymatic pathways: a cascade of consecutive proteolytic cleavages of the spectrin binding proteins inhibited by phenylmethylsulfonyl fluoride or a Ca2+-stimulated, phenylmethylsulfonyl fluoride-insensitive, EDTA-inhibited cleavage of band 2.1 to band 2.3, followed by digestion to band 3' by phenylmethylsulfonyl fluoride-inhibitable enzymes. These findings may provide the techniques necessary to prevent proteolysis of the spectrin binding proteins during purification and reconstitution experiments and provide insight into how they are formed in vivo.
Collapse
|
|
45 |
63 |
13
|
Tebas P, Jadlowsky JK, Shaw PA, Tian L, Esparza E, Brennan AL, Kim S, Naing SY, Richardson MW, Vogel AN, Maldini CR, Kong H, Liu X, Lacey SF, Bauer AM, Mampe F, Richman LP, Lee G, Ando D, Levine BL, Porter DL, Zhao Y, Siegel DL, Bar KJ, June CH, Riley JL. CCR5-edited CD4+ T cells augment HIV-specific immunity to enable post-rebound control of HIV replication. J Clin Invest 2021; 131:144486. [PMID: 33571163 PMCID: PMC8011906 DOI: 10.1172/jci144486] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/03/2021] [Indexed: 12/15/2022] Open
Abstract
BackgroundWe conducted a phase I clinical trial that infused CCR5 gene-edited CD4+ T cells to determine how these T cells can better enable HIV cure strategies.MethodsThe aim of trial was to develop RNA-based approaches to deliver zinc finger nuclease (ZFN), evaluate the effect of CCR5 gene-edited CD4+ T cells on the HIV-specific T cell response, test the ability of infused CCR5 gene-edited T cells to delay viral rebound during analytical treatment interruption, and determine whether individuals heterozygous for CCR5 Δ32 preferentially benefit. We enrolled 14 individuals living with HIV whose viral load was well controlled by antiretroviral therapy (ART). We measured the time to viral rebound after ART withdrawal, the persistence of CCR5-edited CD4+ T cells, and whether infusion of 10 billion CCR5-edited CD4+ T cells augmented the HIV-specific immune response.ResultsInfusion of the CD4+ T cells was well tolerated, with no serious adverse events. We observed a modest delay in the time to viral rebound relative to historical controls; however, 3 of the 14 individuals, 2 of whom were heterozygous for CCR5 Δ32, showed post-viral rebound control of viremia, before ultimately losing control of viral replication. Interestingly, only these individuals had substantial restoration of HIV-specific CD8+ T cell responses. We observed immune escape for 1 of these reinvigorated responses at viral recrudescence, illustrating a direct link between viral control and enhanced CD8+ T cell responses.ConclusionThese findings demonstrate how CCR5 gene-edited CD4+ T cell infusion could aid HIV cure strategies by augmenting preexisting HIV-specific immune responses.REGISTRATIONClinicalTrials.gov NCT02388594.FundingNIH funding (R01AI104400, UM1AI126620, U19AI149680, T32AI007632) was provided by the National Institute of Allergy and Infectious Diseases (NIAID), the National Institute on Drug Abuse (NIDA), the National Institute of Mental Health (NIMH), and the National Institute of Neurological Disorders and Stroke (NINDS). Sangamo Therapeutics also provided funding for these studies.
Collapse
|
Clinical Trial |
4 |
60 |
14
|
Villa CH, Cines DB, Siegel DL, Muzykantov V. Erythrocytes as Carriers for Drug Delivery in Blood Transfusion and Beyond. Transfus Med Rev 2016; 31:26-35. [PMID: 27707522 DOI: 10.1016/j.tmrv.2016.08.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 08/01/2016] [Accepted: 08/12/2016] [Indexed: 10/20/2022]
Abstract
Red blood cells (RBCs) are innate carriers that can also be engineered to improve the pharmacokinetics and pharmacodynamics of many drugs, particularly biotherapeutics. Successful loading of drugs, both internally and on the external surface of RBCs, has been demonstrated for many drugs including anti-inflammatory, antimicrobial, and antithrombotic agents. Methods for internal loading of drugs within RBCs are now entering clinical use. Although internal loading can result in membrane disruption that may compromise biocompatibility, surface loading using either affinity or chemical ligands offers a diverse set of approaches for the production of RBC drug carriers. A wide range of surface determinants is potentially available for this approach, although there remains a need to characterize the effects of coupling agents to these surface proteins. Somewhat surprisingly, recent data also suggest that red cell-mediated delivery may confer tolerogenic immune effects. Questions remaining before widespread application of these technologies include determining the optimal loading protocol, source of RBCs, and production logistics, as well as addressing regulatory hurdles. Red blood cell drug carriers, after many decades of progress, are now poised to enter the clinic and broaden the potential application of RBCs in blood transfusion.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
55 |
15
|
Fesnak A, Lin C, Siegel DL, Maus MV. CAR-T Cell Therapies From the Transfusion Medicine Perspective. Transfus Med Rev 2016; 30:139-45. [PMID: 27067907 DOI: 10.1016/j.tmrv.2016.03.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 03/21/2016] [Indexed: 02/06/2023]
Abstract
The use of chimeric antigen receptor (CAR)-T cell therapy for the treatment of hematologic malignancies has generated significant excitement over the last several years. From a transfusion medicine perspective, the implementation of CAR-T therapy as a potential mainstay treatment for not only hematologic but also solid-organ malignancies represents a significant opportunity for growth and expansion. In this review, we will describe the rationale for the development of genetically redirected T cells as a cancer therapeutic, the different elements that are required to engineer these cells, as well as an overview of the process by which patient cells are harvested and processed to create and subsequently validate CAR-T cells. Finally, we will briefly describe some of the toxicities and clinical efficacy of CAR-T cells in the setting of patients with advanced malignancy.
Collapse
|
Review |
9 |
54 |
16
|
Westhoff CM, Siegel DL, Burd CG, Foskett JK. Mechanism of Genetic Complementation of Ammonium Transport in Yeast by Human Erythrocyte Rh-associated Glycoprotein. J Biol Chem 2004; 279:17443-8. [PMID: 14966114 DOI: 10.1074/jbc.m311853200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Rh blood group proteins are erythrocyte proteins important in neonatal and transfusion medicine. Recent studies have shed new light on the possible biological function of Rh proteins as members of a conserved family of proteins involved in ammonium transport. The erythrocyte Rh-associated glycoprotein (RhAG) mediates uptake of ammonium when expressed in Xenopus laevis oocytes, and functional studies indicate that RhAG might function as an NH(4)(+)-H(+)-exchanger. To further delineate the functional properties of RhAG, in this study we have expressed RhAG in both a Saccharomyces cerevisiae ammonium-transport mutant (mep1Delta mep2Delta mep3Delta) and a wild-type strain. RhAG was able to complement the transport mutant, with complementation strictly pH-dependent, requiring pH 6.2-6.5. RhAG also conferred resistance to methylamine (MA), a toxic analog of ammonium, and expression in wild-type cells revealed that resistance was correlated with efflux of MA. RhAG-mediated resistance was pH-dependent, being optimal at acid pH. The opposite pH dependence of ammonium complementation (uptake) and MA resistance (efflux) is consistent with bidirectional movement of substrate counter to the direction of the proton gradient. This report clarifies and expands previous observations of RhAG-mediated transport in yeast and supports the hypothesis that ammonium transport is coupled to the H(+) gradient and that RhAG functions as a NH(4)(+)/H(+) exchanger.
Collapse
|
|
21 |
52 |
17
|
Glassman PM, Hood ED, Ferguson LT, Zhao Z, Siegel DL, Mitragotri S, Brenner JS, Muzykantov VR. Red blood cells: The metamorphosis of a neglected carrier into the natural mothership for artificial nanocarriers. Adv Drug Deliv Rev 2021; 178:113992. [PMID: 34597748 PMCID: PMC8556370 DOI: 10.1016/j.addr.2021.113992] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/26/2021] [Accepted: 09/24/2021] [Indexed: 12/18/2022]
Abstract
Drug delivery research pursues many types of carriers including proteins and other macromolecules, natural and synthetic polymeric structures, nanocarriers of diverse compositions and cells. In particular, liposomes and lipid nanoparticles represent arguably the most advanced and popular human-made nanocarriers, already in multiple clinical applications. On the other hand, red blood cells (RBCs) represent attractive natural carriers for the vascular route, featuring at least two distinct compartments for loading pharmacological cargoes, namely inner space enclosed by the plasma membrane and the outer surface of this membrane. Historically, studies of liposomal drug delivery systems (DDS) astronomically outnumbered and surpassed the RBC-based DDS. Nevertheless, these two types of carriers have different profile of advantages and disadvantages. Recent studies showed that RBC-based drug carriers indeed may feature unique pharmacokinetic and biodistribution characteristics favorably changing benefit/risk ratio of some cargo agents. Furthermore, RBC carriage cardinally alters behavior and effect of nanocarriers in the bloodstream, so called RBC hitchhiking (RBC-HH). This article represents an attempt for the comparative analysis of liposomal vs RBC drug delivery, culminating with design of hybrid DDSs enabling mutual collaborative advantages such as RBC-HH and camouflaging nanoparticles by RBC membrane. Finally, we discuss the key current challenges faced by these and other RBC-based DDSs including the issue of potential unintended and adverse effect and contingency measures to ameliorate this and other concerns.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
50 |
18
|
Yamagami J, Payne AS, Kacir S, Ishii K, Siegel DL, Stanley JR. Homologous regions of autoantibody heavy chain complementarity-determining region 3 (H-CDR3) in patients with pemphigus cause pathogenicity. J Clin Invest 2010; 120:4111-7. [PMID: 20978359 DOI: 10.1172/jci44425] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 09/01/2010] [Indexed: 12/23/2022] Open
Abstract
Pemphigus is a life-threatening autoimmune disease in which antibodies specific for desmogleins (Dsgs) cause loss of keratinocyte cell adhesion and blisters. In order to understand how antibodies cause pathogenicity and whether there are commonalities among antibodies in different patients that could ultimately be used to target specific therapy against these antibodies, we characterized Dsg-specific mAbs cloned by phage display from 3 patients with pemphigus vulgaris and 2 with pemphigus foliaceus. Variable heavy chain gene usage was restricted, but similar genes were used for both pathogenic and nonpathogenic mAbs. However, the heavy chain complementarity-determining region 3 (H-CDR3) of most pathogenic, but not nonpathogenic, mAbs shared an amino acid consensus sequence. Randomization of the H-CDR3 and site-directed mutagenesis indicated that changes in this sequence could block pathogenicity but not necessarily binding. In addition, for 2 antibodies with longer H-CDR3s, a tryptophan was critical for pathogenicity but not binding, a result that is consistent with blocking the tryptophan acceptor site that is thought to be necessary for Dsg-mediated adhesion. These studies indicate that H-CDR3 is critical for pathogenicity of a human autoantibody, that a small region (even 1 amino acid) can mediate pathogenicity, and that pathogenicity can be uncoupled from binding in these antibodies.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
46 |
19
|
Gao C, Liu Y, Zhang H, Zhang Y, Fukuda MN, Palma AS, Kozak RP, Childs RA, Nonaka M, Li Z, Siegel DL, Hanfland P, Peehl DM, Chai W, Greene MI, Feizi T. Carbohydrate sequence of the prostate cancer-associated antigen F77 assigned by a mucin O-glycome designer array. J Biol Chem 2014; 289:16462-77. [PMID: 24753245 PMCID: PMC4047413 DOI: 10.1074/jbc.m114.558932] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Monoclonal antibody F77 was previously raised against human prostate cancer cells and has been shown to recognize a carbohydrate antigen, but the carbohydrate sequence of the antigen was elusive. Here, we make multifaceted approaches to characterize F77 antigen, including binding analyses with the glycolipid extract of the prostate cancer cell line PC3, microarrays with sequence-defined glycan probes, and designer arrays from the O-glycome of an antigen-positive mucin, in conjunction with mass spectrometry. Our results reveal F77 antigen to be expressed on blood group H on a 6-linked branch of a poly-N-acetyllactosamine backbone. We show that mAb F77 can also bind to blood group A and B analogs but with lower intensities. We propose that the close association of F77 antigen with prostate cancers is a consequence of increased blood group H expression together with up-regulated branching enzymes. This is in contrast to other epithelial cancers that have up-regulated branching enzymes but diminished expression of H antigen. With knowledge of the structure and prevalence of F77 antigen in prostate cancer, the way is open to explore rationally its application as a biomarker to detect F77-positive circulating prostate cancer-derived glycoproteins and tumor cells.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
44 |
20
|
Abstract
With the development of murine hybridoma technology over a quarter century ago, the ability to produce large quantities of well-characterized monoclonal antibody preparations revolutionized diagnostic and therapeutic medicine. For many applications in transfusion medicine, however, the production of serological reagents in mice has certain biological limitations relating to the difficulty in obtaining murine monoclonal antibodies specific for many human blood group antigens. Furthermore, for therapeutic purposes, the efficacy of murine-derived immunoglobulin preparations is limited by the induction of anti-mouse immune responses. Technical difficulties inherent in human hybridoma formation have led to novel molecular approaches that facilitate the isolation and production of human antibodies without the need for B-cell transformation, tissue culture, or even immunized individuals. These technologies, referred to as 'repertoire cloning' or 'Fab/phage display', involve the rapid cloning of immunoglobulin gene segments to create immune libraries from which antibodies with desired specificities can be selected. The use of such recombinant methods in transfusion medicine is anticipated to play an important role in the development and production of renewable supplies of low-cost reagents for diagnostic and therapeutic applications.
Collapse
|
Review |
23 |
42 |
21
|
Zhao A, Nunez-Cruz S, Li C, Coukos G, Siegel DL, Scholler N. Rapid isolation of high-affinity human antibodies against the tumor vascular marker Endosialin/TEM1, using a paired yeast-display/secretory scFv library platform. J Immunol Methods 2010; 363:221-32. [PMID: 20837020 DOI: 10.1016/j.jim.2010.09.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 08/12/2010] [Accepted: 09/01/2010] [Indexed: 01/03/2023]
Abstract
Endosialin/TEM1 is predominantly expressed on neovasculature, thus ideally suited for diagnostic, targeted imaging and therapy of cancer. To isolate TEM1-specific affinity reagents, we thought to screen a recombinant antibody (scFv) library derived from the repertoire of a patient with thrombotic thrombocytopenic purpura (TTP), as autoimmune disorders may produce self-reactive specificities. The yeast-display scFv library was constructed by homologous recombination of the TTP patient repertoire originally expressed on M13 bacteriophage in the novel vector pAGA2 for yeast-display expression. The TTP yeast-display library (10⁹ members) was screened by magnetic and flow sorting with human TEM1 recombinant protein. A pool of yeast-display scFv able to detect 2nM of TEM1 was obtained and transformed into yeast-secreted scFv by homologous recombination using the novel p416 BCCP vector for yeast secretion of biotinylated scFv. Anti-TEM1 yeast-secreted scFv were independently validated in vitro by flow cytometry analysis and ELISA assays, then in vivo biotinylated in N-termini to produce biobodies. Biobody-78 bound specifically to Endosialin/TEM1-expressing ovarian tumor in vivo, with functional stability over 48 h. Our results suggest that our novel paired display-secretory yeast libraries can serve as an ideal platform for the rapid isolation of high-affinity reagents, and that anti-TEM1 biobody-78 can be used for in vitro assays including flow cytometry analysis, as well as in vivo for targeted imaging and therapy of cancer.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
42 |
22
|
|
|
20 |
40 |
23
|
Chen J, Zheng Q, Hammers CM, Ellebrecht CT, Mukherjee EM, Tang HY, Lin C, Yuan H, Pan M, Langenhan J, Komorowski L, Siegel DL, Payne AS, Stanley JR. Proteomic Analysis of Pemphigus Autoantibodies Indicates a Larger, More Diverse, and More Dynamic Repertoire than Determined by B Cell Genetics. Cell Rep 2017; 18:237-247. [PMID: 28052253 DOI: 10.1016/j.celrep.2016.12.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/15/2016] [Accepted: 12/05/2016] [Indexed: 11/19/2022] Open
Abstract
In autoantibody-mediated diseases such as pemphigus, serum antibodies lead to disease. Genetic analysis of B cells has allowed characterization of antibody repertoires in such diseases but would be complemented by proteomic analysis of serum autoantibodies. Here, we show using proteomic analysis that the serum autoantibody repertoire in pemphigus is much more polyclonal than that found by genetic studies of B cells. In addition, many B cells encode pemphigus autoantibodies that are not secreted into the serum. Heavy chain variable gene usage of serum autoantibodies is not shared among patients, implying targeting of the coded proteins will not be a useful therapeutic strategy. Analysis of autoantibodies in individual patients over several years indicates that many antibody clones persist but the proportion of each changes. These studies indicate a dynamic and diverse autoantibody response not revealed by genetic studies and explain why similar overall autoantibody titers may give variable disease activity.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
39 |
24
|
Feng Z, He X, Zhang X, Wu Y, Xing B, Knowles A, Shan Q, Miller S, Hojnacki T, Ma J, Katona BW, Gade TPF, Siegel DL, Schrader J, Metz DC, June CH, Hua X. Potent suppression of neuroendocrine tumors and gastrointestinal cancers by CDH17CAR T cells without toxicity to normal tissues. NATURE CANCER 2022; 3:581-594. [PMID: 35314826 DOI: 10.1038/s43018-022-00344-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 02/09/2022] [Indexed: 12/15/2022]
Abstract
Gastrointestinal cancers (GICs) and neuroendocrine tumors (NETs) are often refractory to therapy after metastasis. Adoptive cell therapy using chimeric antigen receptor (CAR) T cells, though remarkably efficacious for treating leukemia, is yet to be developed for solid tumors such as GICs and NETs. Here we isolated a llama-derived nanobody, VHH1, and found that it bound cell surface adhesion protein CDH17 upregulated in GICs and NETs. VHH1-CAR T cells (CDH17CARTs) killed both human and mouse tumor cells in a CDH17-dependent manner. CDH17CARTs eradicated CDH17-expressing NETs and gastric, pancreatic and colorectal cancers in either tumor xenograft or autochthonous mouse models. Notably, CDH17CARTs do not attack normal intestinal epithelial cells, which also express CDH17, to cause toxicity, likely because CDH17 is localized only at the tight junction between normal intestinal epithelial cells. Thus, CDH17 represents a class of previously unappreciated tumor-associated antigens that is 'masked' in healthy tissues from attack by CAR T cells for developing safer cancer immunotherapy.
Collapse
|
|
3 |
39 |
25
|
Thurer RL, Luban NL, AuBuchon JP, Silver H, McCarthy LJ, Dzik S, Stowell CP, Moore SB, Vamvakas EC, Armstrong W, Kanter MH, Jeter E, Becker J, Higgins M, Galel S, Kleinman S, Marshall CS, Newman R, Ocaríz JA, Blackall D, Petz LD, Toy P, Oberman H, Siegel DL, Price TH, Slichter SJ. Universal WBC reduction. Transfusion 2000; 40:751-2. [PMID: 10864999 DOI: 10.1046/j.1537-2995.2000.40060751.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
Letter |
25 |
39 |