1
|
Serbinova E, Kagan V, Han D, Packer L. Free radical recycling and intramembrane mobility in the antioxidant properties of alpha-tocopherol and alpha-tocotrienol. Free Radic Biol Med 1991; 10:263-75. [PMID: 1649783 DOI: 10.1016/0891-5849(91)90033-y] [Citation(s) in RCA: 386] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
d-Alpha-tocopherol (2R,4'R,8'R-Alpha-tocopherol) and d-alpha-tocotrienol are two vitamin E constituents having the same aromatic chromanol "head" but differing in their hydrocarbon "tail": tocopherol with a saturated and toctrienol with an unsaturated isoprenoid chain. d-Alpha-tocopherol has the highest vitamin E activity, while d-alpha-tocotrienol manifests only about 30% of this activity. Since vitamin E is considered to be physiologically the most important lipid-soluble chain-breaking antioxidant of membranes, we studied alpha-tocotrienol as compared to alpha-tocopherol under conditions which are important for their antioxidant function. d-Alpha-tocotrienol possesses 40-60 times higher antioxidant activity against (Fe2+ + ascorbate)- and (Fe2+ + NADPH)-induced lipid peroxidation in rat liver microsomal membranes and 6.5 times better protection of cytochrome P-450 against oxidative damage than d-alpha-tocopherol. To clarify the mechanisms responsible for the much higher antioxidant potency of d-alpha-tocotrienol compared to d-alpha-tocopherol, ESR studies were performed of recycling efficiency of the chromanols from their chromanoxyl radicals. 1H-NMR measurements of lipid molecular mobility in liposomes containing chromanols, and fluorescence measurements which reveal the uniformity of distribution (clusterizations) of chromanols in the lipid bilayer. From the results, we concluded that this higher antioxidant potency of d-alpha-tocotrienol is due to the combined effects of three properties exhibited by d-alpha-tocotrienol as compared to d-alpha-tocopherol: (i) its higher recycling efficiency from chromanoxyl radicals, (ii) its more uniform distribution in membrane bilayer, and (iii) its stronger disordering of membrane lipids which makes interaction of chromanols with lipid radicals more efficient. The data presented show that there is a considerable discrepancy between the relative in vitro antioxidant activity of d-alpha-tocopherol and d-alpha-tocotrienol with the conventional bioassays of their vitamin activity.
Collapse
|
Comparative Study |
34 |
386 |
2
|
Shindo Y, Witt E, Han D, Epstein W, Packer L. Enzymic and non-enzymic antioxidants in epidermis and dermis of human skin. J Invest Dermatol 1994; 102:122-4. [PMID: 8288904 DOI: 10.1111/1523-1747.ep12371744] [Citation(s) in RCA: 350] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We measured enzymic and non-enzymic antioxidants in human epidermis and dermis from six healthy volunteers undergoing surgical procedures. Epidermis was separated from dermis by curettage and antioxidants were measured by high-performance liquid chromatography (HPLC) or standard spectrophotometric methods. The concentration of every antioxidant (referenced to skin wet weight) was higher in the epidermis than in the dermis. Among the enzymic antioxidants, the activities of superoxide dismutase, glutathione peroxidase, and glutathione reductase were higher in the epidermis compared to the dermis by 126, 61 and 215%, respectively. Catalase activity in particular was much higher (720%) in the epidermis. Glucose-6-phosphate dehydrogenase and isocitrate dehydrogenase, which provide reduced nicotinamide adenine dinucleotide phosphate (NADPH), also showed higher activity in the epidermis than the dermis by 111% and 313%, respectively. Among the lipophilic antioxidants, the concentration of alpha-tocopherol was higher in the epidermis than the dermis by 90%. The concentration of ubiquinol 10 was especially higher in the epidermis, by 900%. Among the hydrophilic antioxidants, concentrations of ascorbic acid and uric acid were also higher in the epidermis than in the dermis by 425 and 488%, respectively. Reduced glutathione and total glutathione were higher in the epidermis than in the dermis by 513 and 471%. Thus the antioxidant capacity of the human epidermis is far greater than that of dermis. As the epidermis composes the outermost 10% of the skin and acts as the initial barrier to oxidant assault, it is perhaps not surprising that it has higher levels of antioxidants.
Collapse
|
Comparative Study |
31 |
350 |
3
|
Qu S, Zhou D, Li D, Ji W, Jing P, Han D, Liu L, Zeng H, Shen D. Toward Efficient Orange Emissive Carbon Nanodots through Conjugated sp(2) -Domain Controlling and Surface Charges Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:3516-21. [PMID: 26919550 DOI: 10.1002/adma.201504891] [Citation(s) in RCA: 334] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 01/02/2016] [Indexed: 05/20/2023]
Abstract
A strategy of achieving efficient orange emissive carbon nanodots (CNDs) with large sized conjugated sp(2) -domain is achieved in a solvothermal synthetic route using dimethylformamide as solvent, which is the basis of orange bandgap emission; enhanced orange emission with photoluminescent quantum yield of 46% is realized through surface charges engineering by surface metal-cation-functionalization.
Collapse
|
|
9 |
334 |
4
|
Han D, Williams E, Cadenas E. Mitochondrial respiratory chain-dependent generation of superoxide anion and its release into the intermembrane space. Biochem J 2001; 353:411-6. [PMID: 11139407 PMCID: PMC1221585 DOI: 10.1042/0264-6021:3530411] [Citation(s) in RCA: 259] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
It has been generally accepted that superoxide anion generated by the mitochondrial respiratory transport chain are vectorially released into the mitochondrial matrix, where they are converted to hydrogen peroxide through the catalytic action of Mn-superoxide dismutase. Release of superoxide anion into the intermembrane space is a controversial topic, partly unresolved by the reaction of superoxide anion with cytochrome c, which faces the intermembrane space and is present in this compartment at a high concentration. This study was aimed at assessing the topological site(s) of release of superoxide anion during respiratory chain activity. To address this issue, mitoplasts were prepared from isolated mitochondria by digitonin treatment to remove portions of the outer membrane along with portions of cytochrome c. EPR analysis in conjunction with spin traps of antimycin-supplemented mitoplasts revealed the formation of a spin adduct of superoxide anion. The EPR signal was (i) abrogated by superoxide dismutase, (ii) decreased competitively by exogenous ferricytochrome c and (iii) broadened by the membrane-impermeable spin-broadening agent chromium trioxalate. These results confirm the production and release of superoxide anion towards the cytosolic side of the inner mitochondrial membrane. In addition, co-treatment of mitoplasts with myxothiazol and antimycin A, resulting in an inhibition of the oxidation of ubiquinol to ubisemiquinone, abolished the EPR signal, thus suggesting that ubisemiquinone autoxidation at the outer site of the complex-III ubiquinone pool is a pathway for superoxide anion formation and subsequent release into the intermembrane space. The generation of superoxide anion towards the intermembrane space requires consideration of the mitochondrial steady-state values for superoxide anion and hydrogen peroxide, the decay pathways of these oxidants in this compartment and the implications of these processes for cytosolic events.
Collapse
|
research-article |
24 |
259 |
5
|
Pan S, Wu X, Jiang J, Gao W, Wan Y, Cheng D, Han D, Liu J, Englund NP, Wang Y, Peukert S, Miller-Moslin K, Yuan J, Guo R, Matsumoto M, Vattay A, Jiang Y, Tsao J, Sun F, Pferdekamper AC, Dodd S, Tuntland T, Maniara W, Kelleher JF, Yao YM, Warmuth M, Williams J, Dorsch M. Discovery of NVP-LDE225, a Potent and Selective Smoothened Antagonist. ACS Med Chem Lett 2010; 1:130-4. [PMID: 24900187 DOI: 10.1021/ml1000307] [Citation(s) in RCA: 255] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 03/10/2010] [Indexed: 12/14/2022] Open
Abstract
The blockade of aberrant hedgehog (Hh) signaling has shown promise for therapeutic intervention in cancer. A cell-based phenotypic high-throughput screen was performed, and the lead structure (1) was identified as an inhibitor of the Hh pathway via antagonism of the Smoothened receptor (Smo). Structure-activity relationship studies led to the discovery of a potent and specific Smoothened antagonist N-(6-((2S,6R)-2,6-dimethylmorpholino)pyridin-3-yl)-2-methyl-4'-(trifluoromethoxy)biphenyl-3-carboxamide (5m, NVP-LDE225), which is currently in clinical development.
Collapse
|
Journal Article |
15 |
255 |
6
|
Li D, Jing P, Sun L, An Y, Shan X, Lu X, Zhou D, Han D, Shen D, Zhai Y, Qu S, Zbořil R, Rogach AL. Near-Infrared Excitation/Emission and Multiphoton-Induced Fluorescence of Carbon Dots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1705913. [PMID: 29411443 DOI: 10.1002/adma.201705913] [Citation(s) in RCA: 252] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/12/2017] [Indexed: 05/17/2023]
Abstract
Carbon dots (CDs) have significant potential for use in various fields including biomedicine, bioimaging, and optoelectronics. However, inefficient excitation and emission of CDs in both near-infrared (NIR-I and NIR-II) windows remains an issue. Solving this problem would yield significant improvement in the tissue-penetration depth for in vivo bioimaging with CDs. Here, an NIR absorption band and enhanced NIR fluorescence are both realized through the surface engineering of CDs, exploiting electron-acceptor groups, namely molecules or polymers rich in sulfoxide/carbonyl groups. These groups, which are bound to the outer layers and the edges of the CDs, influence the optical bandgap and promote electron transitions under NIR excitation. NIR-imaging information encryption and in vivo NIR fluorescence imaging of the stomach of a living mouse using CDs modified with poly(vinylpyrrolidone) in aqueous solution are demonstrated. In addition, excitation by a 1400 nm femtosecond laser yields simultaneous two-photon-induced NIR emission and three-photon-induced red emission of CDs in dimethyl sulfoxide. This study represents the realization of both NIR-I excitation and emission as well as two-photon- and three-photon-induced fluorescence of CDs excited in an NIR-II window, and provides a rational design approach for construction and clinical applications of CD-based NIR imaging agents.
Collapse
|
|
7 |
252 |
7
|
Han D, Handelman G, Marcocci L, Sen CK, Roy S, Kobuchi H, Tritschler HJ, Flohé L, Packer L. Lipoic acid increases de novo synthesis of cellular glutathione by improving cystine utilization. Biofactors 1997; 6:321-38. [PMID: 9288403 DOI: 10.1002/biof.5520060303] [Citation(s) in RCA: 225] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Lipoic acid (thiotic acid) is being used as a dietary supplement, and as a therapeutic agent, and is reported to have beneficial effects in disorders associated with oxidative stress, but its mechanism of action remains unclear. We present evidence that lipoic acid induces a substantial increase in cellular reduced glutathione in cultured human Jurkat T cells human erythrocytes, C6 glial cells, NB41A3 neuroblastoma cells, and peripheral blood lymphocytes. The effect depends on metabolic reduction of lipoic acid to dihydrolipoic acid. Dihydrolipoic acid is released into the culture medium where it reduces cystine. Cysteine thus formed is readily taken up by the neutral amino acid transport system and utilized for glutathione synthesis. By this mechanism lipoic acid enables cystine to bypass the xc- transport system, which is weakly expressed in lymphocytes and inhibited by glutamate. Thereby lipoic acid enables the key enzyme of glutathione synthesis, gamma-glutamylcysteine synthetase, which is regulated by uptake-limited cysteine supply, to work at optimum conditions. Flow cytometric analysis of freshly prepared human peripheral blood lymphocytes, using monobromobimane labeling of cellular thiols, reveals that lipoic acid acts mainly to normalize a subpopulation of cells severely compromised in thiol status rather than to increase thiol content beyond physiological levels. Hence lipoic acid may have clinical relevance in restoration of severely glutathione deficient cells.
Collapse
|
|
28 |
225 |
8
|
Kim H, Han K, Kim K, Han D, Jahng K, Chae K. The veA gene activates sexual development in Aspergillus nidulans. Fungal Genet Biol 2002; 37:72-80. [PMID: 12223191 DOI: 10.1016/s1087-1845(02)00029-4] [Citation(s) in RCA: 208] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The previously isolated gene complementing the veA1 mutation was confirmed to be the veA gene. The determined nucleotide sequence of the gene demonstrated that there is an open reading frame (ORF) of a 573 amino acid polypeptide. The nucleotide sequence matched some clones of which functions were not assigned yet and the amino acid sequence matched that of Neurospora crassa VeA-related protein with 61% similarity. The nucleotide sequence of the veA1 mutant gene differed from that of the wild type gene by only one nucleotide and the nucleotide G in the initiation codon ATG of the VeA ORF was mutated to the nucleotide T. Then, the mutant ORF may use the 37th methionine codon of the wild type one as a new initiation codon. The veA transcript was present in the conidia and in mycelia cultured for up to 14h and expressed almost constitutively at an increased level throughout the asexual and sexual developmental processes, suggesting that it may act from a relatively early developmental stage. Null mutants of the gene never formed sexual structures, even under conditions where sexual development preferentially occurs in wild types. Over-expressors of the gene formed larger numbers of sexual structures with a much reduced number of conidial heads than a control strain (a veA1 mutant), even under conditions where wild type strains form little sexual structure but form conidial heads very well, such as in the presence of a salt at high concentration. Furthermore, over-expressors could form Hülle cells and cleistothecia, even in a liquid culture. These results indicated that the veA gene is a positive regulator in sexual development and simultaneously a negative one in asexual development.
Collapse
|
|
23 |
208 |
9
|
Wang J, Cao B, Han D, Sun M, Feng J. Long Non-coding RNA H19 Induces Cerebral Ischemia Reperfusion Injury via Activation of Autophagy. Aging Dis 2017; 8:71-84. [PMID: 28203482 PMCID: PMC5287389 DOI: 10.14336/ad.2016.0530] [Citation(s) in RCA: 195] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 05/30/2016] [Indexed: 12/16/2022] Open
Abstract
Long non-coding RNA H19 (lncRNA H19) was found to be upregulated by hypoxia, its expression and function have never been tested in cerebral ischemia and reperfusion (I/R) injury. This study intended to investigate the role of lncRNA H19 and H19 gene variation in cerebral I/R injury with focusing on its relationship with autophagy activation. Cerebral I/R was induced in rats by middle cerebral artery occlusion followed by reperfusion. SH-SY5Y cells were subjected to oxygen and glucose deprivation and reperfusion (OGD/R) to simulate I/R injury. Real-time PCR, flow cytometry, immunofluorescence and Western blot were used to evaluate the level of lncRNA H19, apoptosis, autophagy and some related proteins. The modified multiple ligase reaction was used to analyze the gene polymorphism of six SNPs in H19, rs217727, rs2067051, rs2251375, rs492994, rs2839698 and rs10732516 in ischemic stroke patients. We found that the expression of lncRNA H19 was upregulated by cerebral I/R in rats, as well as by OGD/R in vitro in the cells. Inhibition of lncRNA H19 and autophagy protected cells from OGD/R-induced death, respectively. Autophagy activation induced by OGD/R was prevented by H19 siRNA. Autophagy inducer, rapamycin, abolished lncRNA H19 effect. Furthermore, we found that lncRNA H19 inhibited autophagy through DUSP5-ERK1/2 axis. The result from blood samples of ischemic patients revealed that the variation of H19 gene increased the risk of ischemic stroke. Taken together, the results of present study suggest that LncRNA H19 could be a new therapeutic target of ischemic stroke.
Collapse
|
Journal Article |
8 |
195 |
10
|
Liu H, Liu X, Meng J, Zhang P, Yang G, Su B, Sun K, Chen L, Han D, Wang S, Jiang L. Hydrophobic interaction-mediated capture and release of cancer cells on thermoresponsive nanostructured surfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:922-7. [PMID: 23161781 DOI: 10.1002/adma.201203826] [Citation(s) in RCA: 191] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Indexed: 05/16/2023]
|
|
12 |
191 |
11
|
Yamada K, Tanaka T, Han D, Senzaki K, Kameyama T, Nabeshima T. Protective effects of idebenone and alpha-tocopherol on beta-amyloid-(1-42)-induced learning and memory deficits in rats: implication of oxidative stress in beta-amyloid-induced neurotoxicity in vivo. Eur J Neurosci 1999; 11:83-90. [PMID: 9987013 DOI: 10.1046/j.1460-9568.1999.00408.x] [Citation(s) in RCA: 184] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Amyloid beta-peptide (A beta), the major constituent of the senile plaques in the brains of patients with Alzheimer's disease, is cytotoxic to neurons and has a central role in the pathogenesis of the disease. Previous studies have suggested that oxidative stress is involved in the mechanisms of A beta-induced neurotoxicity in vitro. In the present study, we examined whether oxidative stress contributes to learning and memory deficits caused by continuous intracerebroventricular infusion of A beta-(1-42). In the A beta-(1-42)-infused rats, spontaneous alternation behaviour in a Y-maze and spatial memory in a water maze task were significantly impaired, as compared with A beta-(40-1)-infused control rats. The retention of passive avoidance learning was also significantly impaired by treatment with A beta-(1-42). Potent antioxidants idebenone and alpha-tocopherol prevented the behavioural deficits in Y-maze and water maze, but not passive avoidance, tasks in A beta-(1-42)-infused rats when they were repeatedly administered by mouth once a day from 3 days before the start of A beta infusion to the end of behavioural experiments. Lipid peroxide levels in the hippocampus and cerebral cortex of A beta-(1-42)-infused rats did not differ from those in control animals, and neither idebenone nor alpha-tocopherol affected the lipid peroxide levels. These results suggest that treatment with antioxidants such as idebenone and alpha-tocopherol prevents learning and memory deficits caused by A beta.
Collapse
|
|
26 |
184 |
12
|
Chen L, Liu M, Bai H, Chen P, Xia F, Han D, Jiang L. Antiplatelet and Thermally Responsive Poly(N-isopropylacrylamide) Surface with Nanoscale Topography. J Am Chem Soc 2009; 131:10467-72. [DOI: 10.1021/ja9019935] [Citation(s) in RCA: 182] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
|
16 |
182 |
13
|
Shindo Y, Witt E, Han D, Packer L. Dose-response effects of acute ultraviolet irradiation on antioxidants and molecular markers of oxidation in murine epidermis and dermis. J Invest Dermatol 1994; 102:470-5. [PMID: 8151122 DOI: 10.1111/1523-1747.ep12373027] [Citation(s) in RCA: 178] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
There has not as yet been an integrated, comprehensive study of the responses of dermis and epidermis in vivo to a wide range of ultraviolet (UV) doses, encompassing all major antioxidants and a sensitive marker of oxidative damage. We have irradiated hairless mice with simulated solar light at doses of 2, 5, 12.5, and 25 J/cm2 combined UVA and UVB (0.8 to 10 MED) and measured enzymic and non-enzymic antioxidants as well as lipid hydroperoxides in both epidermis and dermis to elucidate the response of cutaneous antioxidant defense mechanisms to UV stress. Among the nonenzymic antioxidants two different dose-response patterns were seen. Ascorbate was rapidly depleted at doses between 0 and 5 J/cm2 but was less affected between 5 and 25 J/cm2. In contrast, glutathione, ubiquinol/one, and alpha-tocopherol levels remained approximately equal to control levels between 0 and 5 J/cm2, then decreased to varying degrees from 5 to 25 J/cm2; ubiquinol was almost completely depleted, whereas alpha-tocopherol dropped only 30%. The concentration of lipid hydroperoxides increased throughout the dose range. These results may be explained partly by direct destruction of some antioxidants by UV light, partly by the separate antioxidant functions of the compounds, and partly by recycling of some antioxidants (e.g., alpha-tocopherol) at the expense of others (e.g., ubiquinol). Even at the lowest dose (0.8 MED) lipid hydroperoxide formation was observed. Among the enzymic antioxidants, superoxide dismutase activity decreased significantly (to 63.6% of initial activity for epidermis and 51.5% for dermis at 25 J), whereas activities of glutathione peroxidase and glutathione reductase decreased slightly. Catalase activity decreased dramatically at doses above 5 J (to 11.8% of initial activity in epidermis and 27.7% in dermis at 25 J). The dramatic loss of catalase is almost entirely accounted for by direct destruction by the simulated solar light, but superoxide dismutase was unaffected by direct exposure; hence its destruction must be due to indirect effects, either mediated by free radicals or other harmful species formed upon irradiation. At low doses of UV light many components of the cutaneous antioxidant system were damaged, whereas at high doses all components were damaged and some were almost completely destroyed.
Collapse
|
|
31 |
178 |
14
|
Zhang Z, Han D, Wei S, Zhang Y. Determination of active site densities and mechanisms for soot combustion with O2 on Fe-doped CeO2 mixed oxides. J Catal 2010. [DOI: 10.1016/j.jcat.2010.08.017] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
|
15 |
178 |
15
|
Kenyon NS, Fernandez LA, Lehmann R, Masetti M, Ranuncoli A, Chatzipetrou M, Iaria G, Han D, Wagner JL, Ruiz P, Berho M, Inverardi L, Alejandro R, Mintz DH, Kirk AD, Harlan DM, Burkly LC, Ricordi C. Long-term survival and function of intrahepatic islet allografts in baboons treated with humanized anti-CD154. Diabetes 1999; 48:1473-81. [PMID: 10389857 DOI: 10.2337/diabetes.48.7.1473] [Citation(s) in RCA: 169] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Clinical islet cell transplantation has resulted in insulin independence in a limited number of cases. Rejection, recurrence of autoimmunity, and impairment of normal islet function by conventional immunosuppressive drugs, e.g., steroids, tacrolimus, and cyclosporin A, may all contribute to islet allograft loss. Furthermore, intraportal infusion of allogeneic islets results in the activation of intrahepatic macrophages and endothelial cells, followed by production of proinflammatory mediators that can contribute to islet primary nonfunction. We reasoned that the beneficial effects of anti-CD154 treatment on autoimmunity, alloreactivity, and proinflammatory events mediated by macrophages and endothelial cells made it an ideal agent for the prevention of islet allograft failure. In this study, a nonhuman primate model (Papio hamadryas) was used to assess the effect of humanized anti-CD154 (hu5c8) on allogeneic islet engraftment and function. Nonimmunosuppressed and tacrolimus-treated recipients were insulin independent posttransplant, but rejected their islet allografts in 8 days. Engraftment and insulin independence were achieved in seven of seven baboon recipients of anti-CD154 induction therapy administered on days -1, 3, and 10 relative to the islet transplant. Three of three baboons treated with 20 mg/kg anti-CD154 induction therapy experienced delayed rejection episodes, first detected by elevations in postprandial blood glucose levels, on postoperative day (POD) 31 for one and on POD 58 for the other two. Re-treatment with three doses of anti-CD154 resulted in reversal of rejection in all three animals and in a return to normoglycemia and insulin independence in two of three baboons. It was possible to reverse multiple episodes of rejection with this approach. A loss of functional islet mass, as detected by reduced first-phase insulin release in response to intravenous glucose tolerance testing, was observed after each episode of rejection. One of two baboons treated with 10 mg/kg induction therapy became insulin independent post-transplant but rejected the islet graft on POD 10; the other animal experienced a reversible rejection episode on POD 58 and remained insulin independent and normoglycemic until POD 264. Two additional baboon recipients of allogeneic islets and donor bone marrow (infused on PODs 5 and 11) were treated with induction therapy (PODs -1, 3, 10), followed by initiation of monthly maintenance therapy (for a period of 6 months) on POD 28. Rejection-free graft survival and insulin independence was maintained for 114 and 238 days, with preservation of functional islet mass observed in the absence of rejection. Prevention and reversal of rejection, in the absence of the deleterious effects associated with the use of conventional immunosuppressive drugs, make anti-CD154 a unique agent for further study in islet cell transplantation.
Collapse
|
|
26 |
169 |
16
|
Han D, Gao X, Wang M, Qiao Y, Xu Y, Yang J, Dong N, He J, Sun Q, Lv G, Xu C, Tao J, Ma N. Long noncoding RNA H19 indicates a poor prognosis of colorectal cancer and promotes tumor growth by recruiting and binding to eIF4A3. Oncotarget 2017; 7:22159-73. [PMID: 26989025 PMCID: PMC5008352 DOI: 10.18632/oncotarget.8063] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/23/2016] [Indexed: 02/06/2023] Open
Abstract
The overall biological role and clinical significance of long non-coding RNA H19 in colorectal cancer (CRC) remain largely unknown. Here, we firstly report that the lncRNA H19 recruits eIF4A3 and promotes the CRC cell proliferation. We observed higher expression of H19 was significantly correlated with tumor differentiation and advanced TNM stage in a cohort of 83 CRC patients. Multivariate analyses revealed that expression of H19 served as an independent predictor for overall survival and disease-free survival. Further experiments revealed that overexpression of H19 promoted the proliferation of CRC cells, while depletion of H19 inhibited cell viability and induced growth arrest. Moreover, expression profile data showed that H19 upregulated a series of cell-cycle genes. Using bioinformatics prediction and RNA immunoprecipitation assays, we identified eIF4A3 as an RNA-binding protein that binds to H19. We confirmed that combining eIF4A3 with H19 obstructed the recruitment of eIF4A3 to the cell-cycle gene mRNA. Our results suggest that H19, as a growth regulator, could serve as a candidate prognostic biomarker and target for new therapies in human CRC.
Collapse
|
Journal Article |
8 |
164 |
17
|
Xiang Y, Ma N, Wang D, Zhang Y, Zhou J, Wu G, Zhao R, Huang H, Wang X, Qiao Y, Li F, Han D, Wang L, Zhang G, Gao X. MiR-152 and miR-185 co-contribute to ovarian cancer cells cisplatin sensitivity by targeting DNMT1 directly: a novel epigenetic therapy independent of decitabine. Oncogene 2013; 33:378-86. [DOI: 10.1038/onc.2012.575] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 10/09/2012] [Accepted: 10/23/2012] [Indexed: 12/15/2022]
|
|
12 |
160 |
18
|
Gao H, Zhao Z, Cai Y, Zhou J, Hua W, Chen L, Wang L, Zhang J, Han D, Liu M, Jiang L. Adaptive and freeze-tolerant heteronetwork organohydrogels with enhanced mechanical stability over a wide temperature range. Nat Commun 2017. [PMID: 28639615 PMCID: PMC5489716 DOI: 10.1038/ncomms15911] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Many biological organisms with exceptional freezing tolerance can resist the damages to cells from extra-/intracellular ice crystals and thus maintain their mechanical stability at subzero temperatures. Inspired by the freezing tolerance mechanisms found in nature, here we report a strategy of combining hydrophilic/oleophilic heteronetworks to produce self-adaptive, freeze-tolerant and mechanically stable organohydrogels. The organohydrogels can simultaneously use water and oil as a dispersion medium, and quickly switch between hydrogel- and organogel-like behaviours in response to the nature of the surrounding phase. Accordingly, their surfaces display unusual adaptive dual superlyophobic in oil/water system (that is, they are superhydrophobic under oil and superoleophobic under water). Moreover, the organogel component can inhibit the ice crystallization of the hydrogel component, thus enhancing the mechanical stability of organohydrogel over a wide temperature range (-78 to 80 °C). The organohydrogels may have promising applications in complex and harsh environments.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
158 |
19
|
Han KH, Han KY, Yu JH, Chae KS, Jahng KY, Han DM. The nsdD gene encodes a putative GATA-type transcription factor necessary for sexual development of Aspergillus nidulans. Mol Microbiol 2001; 41:299-309. [PMID: 11489119 DOI: 10.1046/j.1365-2958.2001.02472.x] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ability to reproduce both sexually and asexually is one of the characteristics of the homothalic ascomycete Aspergillus nidulans. Unlike the other Aspergillus species, A. nidulans undergoes sexual development that seems to be regulated by internal and external stimuli. To begin to understand the sexual reproduction of A. nidulans we previously isolated and characterized several NSD (never in sexual development) mutants that failed to produce any sexual reproductive organs, and identified four complementation groups, nsdA, nsdB, nsdC, and nsdD. The nsdD gene has been isolated, and it is predicted to encode a GATA-type transcription factor with the type IVb zinc finger DNA-binding domain. The mRNA of the nsdD gene started to accumulate in the early phase of vegetative growth, and the level increased as sexual development proceeded. However, it decreased during asexual sporulation and no nsdD mRNA was detected in conidia. Deletion of nsdD resulted in no cleistothecia (fruiting bodies) formation, even under the conditions that preferentially promoted sexual development, indicating that nsdD is necessary for sexual development. In contrast, when the nsdD gene was over-expressed, sexual-specific organ (Hülle cell) was formed even in submerged culture, which normally completely blocked sexual development, and the number of cleistothecia was also dramatically increased on solid medium. These results lead us to propose that the nsdD gene functions in activating sexual development of A. nidulans. Multiple copies of the nsdD gene could suppress nsdB5 and veA1, indicating that either nsdD acts downstream of these genes or possibly functions in overlapping pathway(s).
Collapse
|
|
24 |
153 |
20
|
Zhang QG, Laird MD, Han D, Nguyen K, Scott E, Dong Y, Dhandapani KM, Brann DW. Critical role of NADPH oxidase in neuronal oxidative damage and microglia activation following traumatic brain injury. PLoS One 2012; 7:e34504. [PMID: 22485176 PMCID: PMC3317633 DOI: 10.1371/journal.pone.0034504] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 03/05/2012] [Indexed: 01/20/2023] Open
Abstract
Background Oxidative stress is known to play an important role in the pathology of traumatic brain injury. Mitochondria are thought to be the major source of the damaging reactive oxygen species (ROS) following TBI. However, recent work has revealed that the membrane, via the enzyme NADPH oxidase can also generate the superoxide radical (O2−), and thereby potentially contribute to the oxidative stress following TBI. The current study thus addressed the potential role of NADPH oxidase in TBI. Methodology/Principal Findings The results revealed that NADPH oxidase activity in the cerebral cortex and hippocampal CA1 region increases rapidly following controlled cortical impact in male mice, with an early peak at 1 h, followed by a secondary peak from 24–96 h after TBI. In situ localization using oxidized hydroethidine and the neuronal marker, NeuN, revealed that the O2− induction occurred in neurons at 1 h after TBI. Pre- or post-treatment with the NADPH oxidase inhibitor, apocynin markedly inhibited microglial activation and oxidative stress damage. Apocynin also attenuated TBI-induction of the Alzheimer's disease proteins β-amyloid and amyloid precursor protein. Finally, both pre- and post-treatment of apocynin was also shown to induce significant neuroprotection against TBI. In addition, a NOX2-specific inhibitor, gp91ds-tat was also shown to exert neuroprotection against TBI. Conclusions/Significance As a whole, the study demonstrates that NADPH oxidase activity and superoxide production exhibit a biphasic elevation in the hippocampus and cortex following TBI, which contributes significantly to the pathology of TBI via mediation of oxidative stress damage, microglial activation, and AD protein induction in the brain following TBI.
Collapse
|
Journal Article |
13 |
151 |
21
|
Fang C, Pan J, Qu N, Lei Y, Han J, Zhang J, Han D. The AMPK pathway in fatty liver disease. Front Physiol 2022; 13:970292. [PMID: 36203933 PMCID: PMC9531345 DOI: 10.3389/fphys.2022.970292] [Citation(s) in RCA: 149] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/25/2022] [Indexed: 11/20/2022] Open
Abstract
Lipid metabolism disorders are the primary causes for the occurrence and progression of various liver diseases, including non-alcoholic fatty liver disease (NAFLD) and alcoholic fatty liver disease (AFLD) caused by a high-fat diet and ethanol. AMPK signaling pathway plays an important role in ameliorating lipid metabolism disorders. Progressive research has clarified that AMPK signal axes are involved in the prevention and reduction of liver injury. Upregulation of AMK can alleviate FLD in mice induced by alcohol or insulin resistance, type 2 diabetes, and obesity, and most natural AMPK agonists can regulate lipid metabolism, inflammation, and oxidative stress in hepatocytes, consequently regulating FLD in mice. In NAFLD and AFLD, increasing the activity of AMPK can inhibit the synthesis of fatty acids and cholesterol by down-regulating the expression of adipogenesis gene (FAS, SREBP-1c, ACC and HMGCR); Simultaneously, by increasing the expression of fatty acid oxidation and lipid decomposition genes (CPT1, PGC1, and HSL, ATGL) involved in fatty acid oxidation and lipid decomposition, the body’s natural lipid balance can be maintained. At present, some AMPK activators are thought to be beneficial during therapeutic treatment. Therefore, activation of AMPK signaling pathway is a potential therapeutic target for disorders of the liver. We summarized the most recent research on the role of the AMPK pathway in FLD in this review. Simultaneously, we performed a detailed description of each signaling axis of the AMPK pathway, as well as a discussion of its mechanism of action and therapeutic significance.
Collapse
|
|
3 |
149 |
22
|
Sun T, Tan H, Han D, Fu Q, Jiang L. No platelet can adhere--largely improved blood compatibility on nanostructured superhydrophobic surfaces. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2005; 1:959-63. [PMID: 17193377 DOI: 10.1002/smll.200500095] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
|
|
20 |
149 |
23
|
Mastrianni JA, Nixon R, Layzer R, Telling GC, Han D, DeArmond SJ, Prusiner SB. Prion protein conformation in a patient with sporadic fatal insomnia. N Engl J Med 1999; 340:1630-8. [PMID: 10341275 DOI: 10.1056/nejm199905273402104] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
Case Reports |
26 |
148 |
24
|
Ma S, Feng J, Zhang R, Chen J, Han D, Li X, Yang B, Li X, Fan M, Li C, Tian Z, Wang Y, Cao F. SIRT1 Activation by Resveratrol Alleviates Cardiac Dysfunction via Mitochondrial Regulation in Diabetic Cardiomyopathy Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:4602715. [PMID: 28883902 PMCID: PMC5572590 DOI: 10.1155/2017/4602715] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 05/31/2017] [Accepted: 06/06/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Diabetic cardiomyopathy (DCM) is a major threat for diabetic patients. Silent information regulator 1 (SIRT1) has a regulatory effect on mitochondrial dynamics, which is associated with DCM pathological changes. Our study aims to investigate whether resveratrol, a SRIT1 activator, could exert a protective effect against DCM. METHODS AND RESULTS Cardiac-specific SIRT1 knockout (SIRT1KO) mice were generated using Cre-loxP system. SIRT1KO mice displayed symptoms of DCM, including cardiac hypertrophy and dysfunction, insulin resistance, and abnormal glucose metabolism. DCM and SIRT1KO hearts showed impaired mitochondrial biogenesis and function, while SIRT1 activation by resveratrol reversed this in DCM mice. High glucose caused increased apoptosis, impaired mitochondrial biogenesis, and function in cardiomyocytes, which was alleviated by resveratrol. SIRT1 deletion by both SIRT1KO and shRNA abolished the beneficial effects of resveratrol. Furthermore, the function of SIRT1 is mediated via the deacetylation effect on peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), thus inducing increased expression of nuclear respiratory factor 1 (NRF-1), NRF-2, estrogen-related receptor-α (ERR-α), and mitochondrial transcription factor A (TFAM). CONCLUSIONS Cardiac deletion of SIRT1 caused phenotypes resembling DCM. Activation of SIRT1 by resveratrol ameliorated cardiac injuries in DCM through PGC-1α-mediated mitochondrial regulation. Collectively, SIRT1 may serve as a potential therapeutic target for DCM.
Collapse
|
research-article |
8 |
147 |
25
|
Chen J, Zhan Y, Wang Y, Han D, Tao B, Luo Z, Ma S, Wang Q, Li X, Fan L, Li C, Deng H, Cao F. Chitosan/silk fibroin modified nanofibrous patches with mesenchymal stem cells prevent heart remodeling post-myocardial infarction in rats. Acta Biomater 2018; 80:154-168. [PMID: 30218777 DOI: 10.1016/j.actbio.2018.09.013] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 09/01/2018] [Accepted: 09/11/2018] [Indexed: 01/23/2023]
Abstract
Poor functional survival of the engrafted stem cells limits the therapeutic efficacy of stem-cell-based therapy for myocardial infarction (MI). Cardiac patch-based system for cardiac repair has emerged as a potential regenerative strategy for MI. This study aimed to design a cardiac patch to improve the retention of the engrafted stem cells and provide mechanical scaffold for preventing the ventricular remodeling post-MI. The patches were fabricated with electrospinning cellulose nanofibers modified with chitosan/silk fibroin (CS/SF) multilayers via layer-by-layer (LBL) coating technology. The patches engineered with adipose tissue-derived mesenchymal stem cells (AD-MSCs) (cell nano-patch) were adhered to the epicardium of the infarcted region in rat hearts. Bioluminescence imaging (BLI) revealed higher cell viability in the cell nano-patch group compared with the intra-myocardial injection group. Echocardiography demonstrated less ventricular remodeling in cell nano-patch group, with a decrease in the left ventricular end-diastolic volume and left ventricular end-systolic volume compared with the control group. Additionally, left ventricular ejection fraction and fractional shortening were elevated after cell nano-patch treatment compared with the control group. Histopathological staining demonstrated that cardiac fibrosis and apoptosis were attenuated, while local neovascularization was promoted in the cell nano-patch group. Western blot analysis illustrated that the expression of biomarkers for myocardial fibrosis (TGF-β1, P-smad3 and Smad3) and ventricular remodeling (BNP, β-MHC: α-MHC ratio) were decreased in cell nano patch-treated hearts. This study suggests that CS/SF-modified nanofibrous patches promote the functional survival of engrafted AD-MSCs and restrain ventricular remodeling post-MI through attenuating myocardial fibrosis. STATEMENT OF SIGNIFICANCE: First, the nanofibrous patches fabricated from the electrospun cellulose nanofibers could mimic the natural extracellular matrix (ECM) of hearts to improve the microenvironment post-MI and provide three dimensional (3D) scaffolds for the engrafted AD-MSCs. Second, CS and SF which have exhibited excellent properties in previous tissue engineering research, such as nontoxicity, biodegradability, anti-inflammatory, strong hydrophilic nature, high cohesive strength, and intrinsic antibacterial properties further optimized the biocompatibility of the nanofibrous patches via LBL modification. Finally, the study revealed that beneficial microenvironment and biomimetic ECM improve the retention and viability of the engrafted AD-MSCs and the mechanical action of the cell nano-patches for the expanding ventricular post-MI leads to suppression of HF progression by inhibition of ventricular remodeling.
Collapse
|
|
7 |
147 |