1
|
Bhukhai K, Suksen K, Bhummaphan N, Janjorn K, Thongon N, Tantikanlayaporn D, Piyachaturawat P, Suksamrarn A, Chairoungdua A. A phytoestrogen diarylheptanoid mediates estrogen receptor/Akt/glycogen synthase kinase 3β protein-dependent activation of the Wnt/β-catenin signaling pathway. J Biol Chem 2012; 287:36168-78. [PMID: 22936801 DOI: 10.1074/jbc.m112.344747] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Estrogen promotes growth in many tissues by activating Wnt/β-catenin signaling. Recently, ASPP 049, a diarylheptanoid isolated from Curcuma comosa Roxb., has been identified as a phytoestrogen. This investigation determined the involvement of Wnt/β-catenin signaling in the estrogenic activity of this diarylheptanoid in transfected HEK 293T and in mouse preosteoblastic (MC3T3-E1) cells using a TOPflash luciferase assay and immunofluorescence. ASPP 049 rapidly activated T-cell-specific transcription factor/lymphoid enhancer binding factor-mediated transcription activity and induced β-catenin accumulation in the nucleus. Interestingly, the effects of ASPP 049 on the transcriptional activity and induction and accumulation of β-catenin protein in the nucleus of MC3T3-E1 cells were greater compared with estradiol. Activation of β-catenin in MC3T3-E1 cells was inhibited by ICI 182,780, suggesting that an estrogen receptor is required. In addition, ASPP 049 induced phosphorylations at serine 473 of Akt and serine 9 of GSK-3β. Moreover, ASPP 049 also induced proliferation and expressions of Wnt target genes Axin2 and Runx2 in MC3T3-E1 cells. In addition, ASPP 049 increased alkaline phosphatase expression, and activity that was abolished by DKK-1, a blocker of the Wnt/β-catenin receptor. Taken together, these results suggest that ASPP 049 from C. comosa induced osteoblastic cell proliferation and differentiation through ERα-, Akt-, and GSK-3β-dependent activation of β-catenin signaling. Our findings provide a scientific rationale for using C. comosa as a dietary supplement to prevent bone loss in postmenopausal women.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
58 |
2
|
Marupanthorn K, Tantrawatpan C, Kheolamai P, Tantikanlayaporn D, Manochantr S. Bone morphogenetic protein-2 enhances the osteogenic differentiation capacity of mesenchymal stromal cells derived from human bone marrow and umbilical cord. Int J Mol Med 2017; 39:654-662. [PMID: 28204808 PMCID: PMC5360390 DOI: 10.3892/ijmm.2017.2872] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 01/24/2017] [Indexed: 01/21/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) are multipotent cells that can give rise to different cell types of the mesodermal lineages. They are powerful sources for cell therapy in regenerative medicine as they can be isolated from various tissues, and can be expanded and induced to differentiate into multiple lineages. Recently, the umbilical cord has been suggested as an alternative source of MSCs. Although MSCs derived from the umbilical cord can be induced to differentiate into osteoblasts with a phenotypic similarity to that of bone marrow-derived MSCs, the differentiation ability is not consistent. In addition, MSCs from the umbilical cord require a longer period of time to differentiate into osteoblasts. Previous studies have demonstrated the benefits of bone morphogenetic protein-2 (BMP-2) in bone tissue regeneration. In addition, several studies have supported the use of BMP-2 in periodontal regeneration, sinus lift bone-grafting and non-unions in oral surgery. Although the use of BMP-2 for bone tissue regeneration has been extensively investigated, the BMP-2-induced osteogenic differentiation of MSCs derived from the umbilical cord has not yet been fully examined. Therefore, in this study, we aimed to examine the effects of BMP-2 on the osteogenic differentiation of MSCs derived from umbilical cord compared to that of MSCs derived from bone marrow. The degree of osteogenic differentiation following BMP-2 treatment was determined by assessing alkaline phosphatase (ALP) activity, and the expression profiles of osteogenic differentiation marker genes, osterix (Osx), Runt-related transcription factor 2 (Runx2) and osteocalcin (Ocn). The results revealed that BMP-2 enhanced the osteogenic differentiation capacity of MSCs derived from both bone marrow and umbilical cord as demonstrated by increased ALP activity and the upregulation of osteogenic differentiation marker genes. The enhancement of the osteogenic differentiation capacity of MSCs by BMP-2 suggests that these MSCs may be used as alternative sources for bone engineering or cell therapy in regenerative medicine.
Collapse
|
Journal Article |
8 |
56 |
3
|
Tantikanlayaporn D, Wichit P, Weerachayaphorn J, Chairoungdua A, Chuncharunee A, Suksamrarn A, Piyachaturawat P. Bone sparing effect of a novel phytoestrogen diarylheptanoid from Curcuma comosa Roxb. in ovariectomized rats. PLoS One 2013; 8:e78739. [PMID: 24244350 PMCID: PMC3823985 DOI: 10.1371/journal.pone.0078739] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 09/16/2013] [Indexed: 01/06/2023] Open
Abstract
Phytoestrogens have been implicated in the prevention of bone loss in postmenopausal osteoporosis. Recently, an active phytoestrogen from Curcuma comosa Roxb, diarylheptanoid (DPHD), (3R)-1,7-diphenyl-(4E,6E)-4,6-heptadien-3-ol, was found to strongly promote human osteoblast function in vitro. In the present study, we demonstrated the protective effect of DPHD on ovariectomy-induced bone loss (OVX) in adult female Sprague-Dawley rats with 17β-estradiol (E2, 10 µg/kg Bw) as a positive control. Treatment of OVX animals with DPHD at 25, 50, and 100 mg/kg Bw for 12 weeks markedly increased bone mineral density (BMD) of tibial metaphysis as measured by peripheral Quantitative Computed Tomography (pQCT). Histomorphometric analysis of bone structure indicated that DPHD treatment retarded the ovariectomy-induced deterioration of bone microstructure. Ovariectomy resulted in a marked decrease in trabecular bone volume, number and thickness and these changes were inhibited by DPHD treatment, similar to that seen with E2. Moreover, DPHD decreased markers of bone turnover, including osteocalcin and tartrate resistant acid phosphatase (TRAP) activity. These results suggest that DPHD has a bone sparing effect in ovariectomy-induced trabecular bone loss and prevents deterioration of bone microarchitecture by suppressing the rate of bone turnover. Therefore, DPHD appears to be a promising candidate for preserving bone mass and structure in the estrogen deficient women with a potential role in reducing postmenopausal osteoporosis.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
34 |
4
|
Thaweesapphithak S, Tantrawatpan C, Kheolamai P, Tantikanlayaporn D, Roytrakul S, Manochantr S. Human serum enhances the proliferative capacity and immunomodulatory property of MSCs derived from human placenta and umbilical cord. Stem Cell Res Ther 2019; 10:79. [PMID: 30845980 PMCID: PMC6407186 DOI: 10.1186/s13287-019-1175-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/07/2019] [Accepted: 02/12/2019] [Indexed: 12/29/2022] Open
Abstract
Background Mesenchymal stromal cells (MSCs) are considered potential candidates that hold great promise in the treatment of immune-related diseases. For therapeutic applications, it is necessary to isolate and expand MSCs with procedures complying with good manufacturing practice (GMP). Recent studies reported the use of human serum (HS) instead of fetal bovine serum (FBS) for the expansion of bone marrow-derived MSCs. Nevertheless, there are only limited data on HS as an alternative to FBS for the isolation and expansion of umbilical (UC-MSCs) and placenta-derived MSCs (PL-MSCs). In this study, we evaluate the effect of HS compared to FBS on the proliferative and immunosuppressive capacities of these MSCs. Methods PL-MSCs and UC-MSCs were isolated and cultured in HS- or FBS-supplemented media. The MSC characteristics, including morphology, immunophenotype, and differentiation ability, were verified. The proliferative and immunosuppressive capacities were also examined. In addition, the proliferative-enhancing factors in both sera were explored using proteomic analysis. Results PL-MSCs and UC-MSCs proliferated faster in HS-supplemented medium than in equivalent levels of FBS-supplemented medium. Adipogenic and osteogenic differentiations occurred at nearly identical levels in HS- and FBS-supplemented media. Interestingly, MSCs cultured in HS-supplemented medium had a similar immunosuppressive effect as MSCs cultured in FBS-supplemented medium. Proteomic analysis revealed that Con-A binding glycoproteins with a molecular weight > 100 kDa in FBS could significantly enhance MSC proliferation. In contrast, the proliferative enhancing factors in HS were found in the Con-A non-binding fraction and WGA binding fraction with a molecular weight > 100 kDa. Conclusions Taken together, our results suggest applications for the use of HS instead of FBS for the isolation and expansion of PL-MSCs and UC-MSCs for cell therapy in the future. Furthermore, this study identifies factors in HS that are responsible for its proliferative and immunosuppressive effects and might thus lead to the establishment of GMPs for the therapeutic use of MSCs.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
23 |
5
|
Meesuk L, Suwanprateeb J, Thammarakcharoen F, Tantrawatpan C, Kheolamai P, Palang I, Tantikanlayaporn D, Manochantr S. Osteogenic differentiation and proliferation potentials of human bone marrow and umbilical cord-derived mesenchymal stem cells on the 3D-printed hydroxyapatite scaffolds. Sci Rep 2022; 12:19509. [PMID: 36376498 PMCID: PMC9663507 DOI: 10.1038/s41598-022-24160-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are a promising candidate for bone repair. However, the maintenance of MSCs injected into the bone injury site remains inefficient. A potential approach is to develop a bone-liked platform that incorporates MSCs into a biocompatible 3D scaffold to facilitate bone grafting into the desired location. Bone tissue engineering is a multistep process that requires optimizing several variables, including the source of cells, osteogenic stimulation factors, and scaffold properties. This study aims to evaluate the proliferation and osteogenic differentiation potentials of MSCs cultured on 2 types of 3D-printed hydroxyapatite, including a 3D-printed HA and biomimetic calcium phosphate-coated 3D-printed HA. MSCs from bone marrow (BM-MSCs) and umbilical cord (UC-MSCs) were cultured on the 3D-printed HA and coated 3D-printed HA. Scanning electron microscopy and immunofluorescence staining were used to examine the characteristics and the attachment of MSCs to the scaffolds. Additionally, the cell proliferation was monitored, and the ability of cells to differentiate into osteoblast was assessed using alkaline phosphatase (ALP) activity and osteogenic gene expression. The BM-MSCs and UC-MSCs attached to a plastic culture plate with a spindle-shaped morphology exhibited an immunophenotype consistent with the characteristics of MSCs. Both MSC types could attach and survive on the 3D-printed HA and coated 3D-printed HA scaffolds. The MSCs cultured on these scaffolds displayed sufficient osteoblastic differentiation capacity, as evidenced by increased ALP activity and the expression of osteogenic genes and proteins compared to the control. Interestingly, MSCs grown on coated 3D-printed HA exhibited a higher ALP activity and osteogenic gene expression than those cultured on the 3D-printed HA. The finding indicated that BM-MSCs and UC-MSCs cultured on the 3D-printed HA and coated 3D-printed HA scaffolds could proliferate and differentiate into osteoblasts. Thus, the HA scaffolds could provide a suitable and favorable environment for the 3D culture of MSCs in bone tissue engineering. Additionally, biomimetic coating with octacalcium phosphate may improve the biocompatibility of the bone regeneration scaffold.
Collapse
|
research-article |
3 |
23 |
6
|
Tantikanlayaporn D, Robinson LJ, Suksamrarn A, Piyachaturawat P, Blair HC. A diarylheptanoid phytoestrogen from Curcuma comosa, 1,7-diphenyl-4,6-heptadien-3-ol, accelerates human osteoblast proliferation and differentiation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2013; 20:676-682. [PMID: 23557993 PMCID: PMC3660539 DOI: 10.1016/j.phymed.2013.02.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 01/11/2013] [Accepted: 02/21/2013] [Indexed: 06/02/2023]
Abstract
Curcuma comosa Roxb. is ginger-family plant used to relieve menopausal symptoms. Previous work showed that C. comosa extracts protect mice from ovariectomy-induced osteopenia with minimal effects on reproductive organs, and identified the diarylheptanoid (3R)-1,7-diphenyl-(4E,6E)-4,6-heptadien-3-ol (DPHD) as the major active component of C. comosa rhizomes. At 1-10μM, DPHD increased differentiation in transformed mouse osteoblasts, but the effect of DPHD on normal bone cells was unknown. We examined the concentration dependency and mechanism of action of DPHD relative to 17β-estradiol in nontransformed human osteoblasts (h-OB). The h-OB were 10-100 fold more sensitive to DPHD than transformed osteoblasts: DPHD increased h-OB proliferation at 10nM and, at 100nM, activated MAP kinase signaling within 30 min. In long-term differentiation assays, responses of h-OB to DPHD were significant at 10nM, and optimal response in most cases was at 100 nM. At 7-21 days, DPHD accelerated osteoblast differentiation, indicated by alkaline phosphatase activity and osteoblast-specific mRNA production. Effects of DPHD were eliminated by the estrogen receptor antagonist ICI182780. During differentiation, DPHD promoted early expression of osteoblast transcription factors, RUNX2 and osterix. Subsequently, DPHD accelerated production of bone structural genes, including COL1A1 and osteocalcin comparably to 17β-estradiol. In h-OB, DPHD increased the osteoprotegerin to RANKL ratio and supported mineralization more efficiently than 10nM 17β-estradiol. We conclude that DPHD promotes human osteoblast function in vitro effectively at nanomolar concentrations, making it a promising compound to protect bone in menopausal women.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
19 |
7
|
Tantikanlayaporn D, Tourkova IL, Larrouture Q, Luo J, Piyachaturawat P, Witt MR, Blair HC, Robinson LJ. Sphingosine-1-Phosphate Modulates the Effect of Estrogen in Human Osteoblasts. JBMR Plus 2018; 2:217-226. [PMID: 30123862 PMCID: PMC6095197 DOI: 10.1002/jbm4.10037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Production of sphingosine‐1‐phosphate (S1P) is linked to 17β‐estradiol (E2) activity in many estrogen‐responsive cells; in bone development, the role of S1P is unclear. We studied effects of S1P on proliferation and differentiation of human osteoblasts (hOB). Ten nM E2, 1 μM S1P, or 1 μM of the S1P receptor 1 (S1PR1) agonist SEW2871 increased hOB proliferation at 24 hours. S1PR 1, 2, and 3 mRNAs are expressed by hOB but not S1PR4 or S1PR5. Expression of S1PR2 was increased at 7 and 14 days of differentiation, in correspondence with osteoblast‐related mRNAs. Expression of S1PR1 was increased by E2 or S1P in proliferating hOB, whereas S1PR2 mRNA was unaffected in proliferating cells; S1PR3 was not affected by E2 or S1P. Inhibiting sphingosine kinase (SPHK) activity with sphingosine kinase inhibitor (Ski) greatly reduced the E2 proliferative effect. Both E2 and S1P increased SPHK mRNA at 24 hours in hOB. S1P promoted osteoblast proliferation via activating MAP kinase activity. Either E2 or S1P increased S1P synthesis in a fluorescent S1P assay. Interaction of E2 and S1P signaling was indicated by upregulation of E2 receptor mRNA after S1P treatment. E2 and S1P also promoted alkaline phosphatase expression. During osteoblast differentiation, S1P increased bone‐specific mRNAs, similarly to the effects of E2. However, E2 and S1P showed differences in the activation of some osteoblast pathways. Pathway analysis by gene expression arrays was consistent with regulation of pathways of osteoblast differentiation; collagen and cell adhesion proteins centered on Rho/Rac small GTPase signaling and Map kinase or signal transducer and activator of transcription (Stat) intermediates. Transcriptional activation also included significant increases in superoxide dismutase 1 and 2 transcription by either S1P or E2. We demonstrate that the SPHK system is a co‐mediator for osteoblast proliferation and differentiation, which is mainly, but not entirely, complementary to E2, whose effects are mediated by S1PR1 and S1PR2. © 2018 The Authors JBMR Plus is published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
|
Journal Article |
7 |
11 |
8
|
Tantikanlayaporn D, Wichit P, Suksen K, Suksamrarn A, Piyachaturawat P. Andrographolide modulates OPG/RANKL axis to promote osteoblastic differentiation in MC3T3-E1 cells and protects bone loss during estrogen deficiency in rats. Biomed Pharmacother 2020; 131:110763. [DOI: 10.1016/j.biopha.2020.110763] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/13/2020] [Accepted: 09/16/2020] [Indexed: 11/26/2022] Open
|
|
5 |
11 |
9
|
Phunikom N, Boonmuen N, Kheolamai P, Suksen K, Manochantr S, Tantrawatpan C, Tantikanlayaporn D. Andrographolide promotes proliferative and osteogenic potentials of human placenta-derived mesenchymal stem cells through the activation of Wnt/β-catenin signaling. Stem Cell Res Ther 2021; 12:241. [PMID: 33853681 PMCID: PMC8048284 DOI: 10.1186/s13287-021-02312-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/25/2021] [Indexed: 12/20/2022] Open
Abstract
Introduction The in vitro expansion and differentiation of mesenchymal stem cells derived from bone marrow (BM-hMSCs) are considered as potential therapeutic tools for clinical applications in bone tissue engineering and regenerative medicine. However, invasive sampling and reduction in number and proliferative capacity with age are the major limitations of BM-hMSCs. Recently, human placenta-derived MSCs (PL-hMSCs) obtained by a non-invasive procedure have attracted much interest. Attempts to increase the potential of PL-hMSCs would be an important paradigm in regenerative medicine. Herein, we examined the proliferative and osteogenic effect of andrographolide (AP) on PL-hMSCs. Methods Mesenchymal stem cells were isolated from full-term normal human placentas and were characterized before using. Cell cytotoxicity and proliferative effect of AP were examined by MTT and BrdU assay, respectively. The non-toxicity concentrations of AP were further assessed for osteogenic effect determined by alkaline phosphatase (ALP) expression and activity, alizarin red staining, and osteoblast-specific gene expressions. Screening of genes involved in osteogenic differentiation-related pathways modulated by AP was explored by a NanoString nCounter analysis. Results PL-hMSCs generated in this study met the MSC criteria set by the International Society of Cellular Therapy. The non-cytotoxic concentrations of AP on PL-hMSCs are up to 10 μM. The compound increased PL-hMSC proliferation concomitant with increases in Wnt/β-catenin level and activity. It also enhanced osteogenic differentiation in association with osteoblast-specific mRNA expression. Further, AP promoted bone formation and increased bone structural protein level, osteocalcin, in osteoblastic cells. Gene screening analysis showed the upregulation of genes related to Wnt/β-catenin, TGFβ/BMP, SMAD, and FGF signaling pathways. Conclusion We demonstrated, for the first time, the potential role of AP in promoting proliferation, osteogenic differentiation, and osteoblast bone formation of PL-hMSCs. This study suggests that AP may be an effective novel agent for the improvement of PL-hMSCs and stem cell-based therapy for bone regeneration. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02312-x.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
9 |
10
|
Marupanthorn K, Tantrawatpan C, Kheolamai P, Tantikanlayaporn D, Manochantr S. MicroRNA treatment modulates osteogenic differentiation potential of mesenchymal stem cells derived from human chorion and placenta. Sci Rep 2021; 11:7670. [PMID: 33828198 PMCID: PMC8027176 DOI: 10.1038/s41598-021-87298-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/25/2021] [Indexed: 01/08/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are important in regenerative medicine because of their potential for multi-differentiation. Bone marrow, chorion and placenta have all been suggested as potential sources for clinical application. However, the osteogenic differentiation potential of MSCs derived from chorion or placenta is not very efficient. Bone morphogenetic protein-2 (BMP-2) plays an important role in bone development. Its effect on osteogenic augmentation has been addressed in several studies. Recent studies have also shown a relationship between miRNAs and osteogenesis. We hypothesized that miRNAs targeted to Runt-related transcription factor 2 (Runx-2), a major transcription factor of osteogenesis, are responsible for regulating the differentiation of MSCs into osteoblasts. This study examines the effect of BMP-2 on the osteogenic differentiation of MSCs isolated from chorion and placenta in comparison to bone marrow-derived MSCs and investigates the role of miRNAs in the osteogenic differentiation of MSCs from these sources. MSCs were isolated from human bone marrow, chorion and placenta. The osteogenic differentiation potential after BMP-2 treatment was examined using ALP staining, ALP activity assay, and osteogenic gene expression. Candidate miRNAs were selected and their expression levels during osteoblastic differentiation were examined using real-time RT-PCR. The role of these miRNAs in osteogenesis was investigated by transfection with specific miRNA inhibitors. The level of osteogenic differentiation was monitored after anti-miRNA treatment. MSCs isolated from chorion and placenta exhibited self-renewal capacity and multi-lineage differentiation potential similar to MSCs isolated from bone marrow. BMP-2 treated MSCs showed higher ALP levels and osteogenic gene expression compared to untreated MSCs. All investigated miRNAs (miR-31, miR-106a and miR148) were consistently downregulated during the process of osteogenic differentiation. After treatment with miRNA inhibitors, ALP activity and osteogenic gene expression increased over the time of osteogenic differentiation. BMP-2 has a positive effect on osteogenic differentiation of chorion- and placenta-derived MSCs. The inhibition of specific miRNAs enhanced the osteogenic differentiation capacity of various MSCs in culture and this strategy might be used to promote bone regeneration. However, further in vivo experiments are required to assess the validity of this approach.
Collapse
|
Journal Article |
4 |
5 |
11
|
Jantalika T, Manochantr S, Kheolamai P, Tantikanlayaporn D, Saijuntha W, Pinlaor S, Chairoungdua A, Paraoan L, Tantrawatpan C. Human chorion-derived mesenchymal stem cells suppress JAK2/STAT3 signaling and induce apoptosis of cholangiocarcinoma cell lines. Sci Rep 2022; 12:11341. [PMID: 35790790 PMCID: PMC9256624 DOI: 10.1038/s41598-022-15298-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/22/2022] [Indexed: 11/09/2022] Open
Abstract
Cholangiocarcinoma (CCA) is an aggressive malignancy arising from the damaged epithelial cells of the biliary tract. Previous studies have reported that the multi-potent mesenchymal stem cells (MSCs) activate a series of tumor signaling pathways by releasing several cytokines to influence tumor cell development. However, the roles and mechanisms of human chorion-derived MSCs (CH-MSCs) in cholangiocarcinoma progression have not been fully addressed. This present study aims to examine the effects of conditioned media derived from CH-MSCs (CH-CM) on CCA cell lines and investigate the respective underlying mechanism of action. For this purpose, MSCs were isolated from chorion tissue, and three cholangiocarcinoma cell lines, namely KKU100, KKU213A, and KKU213B, were used. MTT assay, annexin V/PI analysis, and JC-1 staining were used to assess the effects of CH-CM on proliferation and apoptosis of CCA cells, respectively. Moreover, the effect of CH-CM on caspase-dependent apoptotic pathways was also evaluated. The western blotting assay was also used for measuring the expression of JAK2/STAT3 signaling pathway-associated proteins. The results showed that CH-CM suppressed proliferation and promoted apoptosis of CCA cell lines. CH-CM treatment-induced loss of mitochondrial membrane potential (∆Ψm) in CCA cell lines. The factors presented in the CH-CM also inhibited JAK2/STAT3 signaling, reduced the expression of BCL-2, and increased BAX expression in CCA cells. In conclusion, our study suggests that the CH-CM has a potent anti-cancer effect on cholangiocarcinoma cells and thus provides opportunities for use in alternative cell therapy or in combination with a conventional chemotherapeutic drug to increase the efficiency of CCA treatment.
Collapse
|
|
3 |
1 |
12
|
Kaewkittikhun M, Boonmuen N, Kheolamai P, Manochantr S, Tantrawatpan C, Sutjarit N, Tantikanlayaporn D. Andrographolide Reduces Lipid Droplet Accumulation in Adipocytes Derived from Human Bone Marrow Mesenchymal Stem Cells by Suppressing Regulators of Adipogenesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9259-9269. [PMID: 34357771 DOI: 10.1021/acs.jafc.1c02724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Obesity has become a major public health concern; so, a strategy to prevent or reduce obesity is a priority. The inhibition of lipid droplet accumulation and adipogenesis process provides a target for the treatment of obesity. Herein, the effect of andrographolide (AP) on lipid accumulation in adipocytes derived from human bone marrow mesenchymal stem cells (hBM-MSCs) was examined. AP at concentrations of 1, 2.5, 5, and 10 μM reduced lipid droplet accumulation in the adipocytes by suppressing the adipogenic differentiation of hBM-MSCs. Concurrently, the expressions of adipogenic marker genes and the level of adipokines secreted by adipocytes were suppressed. Gene screening analysis showed a negative regulation of genes involved in the adipogenesis process. In conclusion, we demonstrated for the first time an antilipid accumulation in adipocytes from hBM-MSCs by AP. The compound may potentially be a novel therapeutic agent for the treatment of obesity as well as obesity-related diseases.
Collapse
|
|
4 |
1 |
13
|
Sirithammajak S, Manochantr S, Tantrawatpan C, Tantikanlayaporn D, Kheolamai P. Human Mesenchymal Stem Cells Derived from the Placenta and Chorion Suppress the Proliferation while Enhancing the Migration of Human Breast Cancer Cells. Stem Cells Int 2022; 2022:4020845. [PMID: 36406002 PMCID: PMC9674426 DOI: 10.1155/2022/4020845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 10/21/2022] [Accepted: 10/31/2022] [Indexed: 12/29/2023] Open
Abstract
BACKGROUND Breast cancer is the most frequently diagnosed malignancy among women, resulting from abnormal proliferation of mammary epithelial cells. The highly vascularized nature of breast tissue leads to a high incidence of breast cancer metastases, resulting in a poor survival rate. Previous studies suggest that human mesenchymal stem cells (hMSCs) play essential roles in the growth, metastasis, and drug responses of many cancers, including breast cancer. However, hMSCs from different sources may release different combinations of cytokines that affect breast cancer differently. METHODS In this study, we have isolated hMSCs from the placenta (PL-hMSCs) and the chorion (CH-hMSCs) and determined how these hMSCs affect the proliferation, migration, invasion, and gene expression of two human breast cancer cells, MCF-7 and MDA-MB-231, as well as the possible mechanisms underlying those effects. RESULTS The results showed that the soluble factors derived from PL-hMSCs and CH-hMSCs inhibited the proliferation of MCF-7 and MDA-MB-231 cells but increased the migration of MDA-MB-231 cells. The study of gene expression showed that PL-hMSCs and CH-hMSCs downregulated the expression levels of the protooncogene CyclinD1 while upregulating the expression levels of tumor suppressor genes, P16 and P21 in MCF-7 and MDA-MB-231 cells. Furthermore, hMSCs from both sources also increased the expression levels of MYC, SNAI1, and TWIST, which promote the epithelial-mesenchymal transition and migration of breast cancer cells in both cell lines. The functional study suggests that the suppressive effect of CH-hMSCs and PL-hMSCs on MCF-7 and MDA-MB231 cell proliferation was mediated, at least in part, through IFN-γ. CONCLUSIONS Our study suggests that CH-hMSCs and PL-hMSCs inhibited breast cancer cell proliferation by negatively regulating CYCLIND1 expression and upregulating the expression of the P16 and P21 genes. In contrast, hMSCs from both sources enhanced breast cancer cell migration, possibly by increasing the expression of MYC, SNAI1, and TWIST genes in those cells.
Collapse
|
research-article |
3 |
1 |
14
|
Marupanthorn K, Tantrawatpan C, Tantikanlayaporn D, Kheolamai P, Manochantr S. The Effects of TNF-α on Osteogenic Differentiation of Umbilical Cord Derived Mesenchymal Stem Cells. JOURNAL OF THE MEDICAL ASSOCIATION OF THAILAND = CHOTMAIHET THANGPHAET 2015; 98 Suppl 3:S34-S40. [PMID: 26387386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Mesenchymal stem cells (MSCs) are multipotent stem cells which are able to differentiate into various lineages including osteoblasts, adipocytes and chondrocytes. They can be isolated from several tissues including bone marrow, adipose tissue, placenta and umbilical cord. Although MSCs could be diferentiated into osteoblasts under appropriate culture condition, their osteogenic differentiation capacity is still not very efficient. Previous studies reported that TNF-α could promote osteogenic differentiation of bone marrow derived MSCs by triggering NF-κB signaling pathway. However, the effect of TNF-α on the osteogenic differentiation ability ofumbilical cord derived MSCs has not been investigated. This study aimed to examine the effect of TNF-α on osteogenic differentiation of umbilical cord derived MSCs (UC-MSCs). The results demonstrated that TNF-α has osteopromotive effect for umbilical cord derived MSCs as evidenced by more matrix mineralization and alkaline phosphatase staining. Interestingly, UC-MSCs cultured in osteogenic differentiation medium supplemented with TNF-α had significantly increase expression of Osteocalcin, the marker of mature osteoblasts, when it was compared to UC-MSCs cultured in osteogenic differentiation medium without TNF-α (p < 0.05). On the contrary, the UC- MSCs cultured in osteogenic differentiation medium supplemented with TNF-α had significantly lower levels of Runx2 and Osterix (the markers of immature osteoblasts) than UC-MSCs cultured with osteogenic differentiation medium without TNF-α. The present study suggested that TNF-α promotes osteogenic differentiation of UC-MSCs. The data add a possibilityfor the use of UC-MSCs as an alternative source for cell replacement therapy in bone defect.
Collapse
|
|
10 |
|
15
|
Uthanaphun T, Manochantr S, Tantrawatpan C, Tantikanlayaporn D, Kheolamai P. PL-hMSC and CH-hMSC derived soluble factors inhibit proliferation but improve hGBM cell migration by activating TGF-β and inhibiting Wnt signaling. Biosci Rep 2024; 44:BSR20231964. [PMID: 38687607 PMCID: PMC11130542 DOI: 10.1042/bsr20231964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/18/2024] [Accepted: 04/30/2024] [Indexed: 05/02/2024] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most common and aggressive brain tumors. GBM resists most chemotherapeutic agents, resulting in a high mortality rate in patients. Human mesenchymal stem cells (hMSCs), which are parts of the cancer stroma, have been shown to be involved in the development and progression of GBM. However, different sources of hMSCs might affect GBM cells differently. In the present study, we established hMSCs from placenta (PL-hMSC) and chorion (CH-hMSC) to study the effects of their released soluble factors on the proliferation, migration, invasion, gene expression, and survival of human GBM cells, U251. We found that the soluble factors derived from CH-hMSCs and PL-hMSCs suppressed the proliferation of U251 cells in a dose-dependent manner. In contrast, soluble factors derived from both hMSC sources increased U251 migration without affecting their invasive property. The soluble factors derived from these hMSCs decreased the expression levels of CyclinD1, E2Fs and MYC genes that promote GBM cell proliferation but increased the expression level of TWIST gene, which promotes EMT and GBM cell migration. The functional study suggests that both hMSCs might exert their effects, at least in part, by activating TGF-β and suppressing Wnt/β-catenin signaling in U251 cells. Our study provides a better understanding of the interaction between GBM cells and gestational tissue-derived hMSCs. This knowledge might be used to develop safer and more effective stem cell therapy that improves the survival and quality of life of patients with GBM by manipulating the interaction between hMSCs and GBM cells.
Collapse
|
research-article |
1 |
|
16
|
Jantalika T, Manochantr S, Kheolamai P, Tantikanlayaporn D, Thongsepee N, Warnnissorn N, Saijuntha W, Pinlaor S, Tantrawatpan C. The Human Placental Amniotic Membrane Mesenchymal-Stromal-Cell-Derived Conditioned Medium Inhibits Growth and Promotes Apoptosis of Human Cholangiocarcinoma Cells In Vitro and In Vivo by Suppressing IL-6/JAK2/STAT3 Signaling. Cells 2023; 12:2788. [PMID: 38132108 PMCID: PMC10742162 DOI: 10.3390/cells12242788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) have recently been shown to play an important role in the growth and progression of many solid tumors, including cholangiocarcinoma (CCA). The human placental amniotic membrane (hPAM) is one of the most favorable sources of MSCs due to its availability and non-invasive harvesting procedure. However, the role of human placental amniotic membrane mesenchymal stromal cells (hPAMSCs) in the growth and progression of human CCA has not yet been determined. This study investigates the effects of conditioned medium derived from hPAMSCs (PA-CM) on the properties of three human CCA cell lines and explores possible mechanisms of action. Varying concentrations of PA-CM were used to treat CCA cells to determine their effects on the proliferation and apoptosis of CCA cells. The results showed that PA-CM inhibited the proliferation and colony-forming capacity of KKU100, KKU213A, and KKU213B cells. PA-CM also promoted the apoptosis of these CCA cells by causing the loss of mitochondrial membrane potential. Western Blotting confirmed that PA-CM induced CCA cell apoptosis by increasing the levels of the Bax/Bcl-2 ratio, cleaved caspase 3, and cleaved PARP, possibly by inhibiting the IL-6/JAK2/STAT3 signaling pathway. Moreover, our in vivo study also confirmed the suppressive effect of hPAMSCs on CCA cells by showing that PA-CM reduced tumor volume in nude mice transplanted with human CCA cells. Taken together, our results demonstrate that PA-CM has potent tumor-suppressive effects on human CCA cells and could potentially be used in combination with chemotherapy to develop a more effective treatment for CCA patients.
Collapse
|
research-article |
2 |
|
17
|
Thaweesapphithak S, Tantrawatpan C, Kheolamai P, Tantikanlayaporn D, Manochantr S. The Biological Characteristics of Placenta Derived Mesenchymal Stem Cells Cultured in Human Serum. JOURNAL OF THE MEDICAL ASSOCIATION OF THAILAND = CHOTMAIHET THANGPHAET 2016; 99 Suppl 4:S75-S83. [PMID: 29917345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
OBJECTIVE Evidence exists indicating that mesenchymal stem cells (MSCs) are promising candidate for therapeutic applications. One major obstacle for their clinical use is the biosafety of fetal bovine serum (FBS), which is a crucial part of all media currently used for culture of MSCs. Although some recent studies recommended substituting FBS with human serum (HS) for the expansion of MSCs for clinical use, the characteristics and functional capacity of the expanded cells has only been partially explored. In addition, limited experience indicates that HS may replace FBS in some but not all culture systems. Currently, relatively little is known about using HS instead of FBS for isolation and expansion of placenta derived MSCs. Therefore, this study aimed to compare the exploit of HS and FBS as a supplement in terms of their impact on biological characteristics of MSCs. MATERIAL AND METHOD MSCs derived from placenta were cultured in Dulbecco’s Modified Eagle’s Medium supplemented with 10% fetal bovine serum or 10% human serum. The morphology, the expression of MSC markers, the differentiation ability and the proliferation characteristics were examined. RESULTS The results demonstrated that MSCs cultured in DMEM supplemented with 10% HS had similar characteristics to MSCs cultured in DMEM supplemented with 10% FBS. Interestingly, MSCs cultured in DMEM supplemented with 10% HS had greater expansion potential than that of MSCs cultured in DMEM supplemented with 10% FBS. CONCLUSION The results obtained from this study imply some application in the use of HS instead of FBS for expansion of placenta derived MSCs. The HS-expanded MSCs might be useful and safe for use as a therapeutic tool in regenerative medicine.
Collapse
|
|
9 |
|
18
|
Boonmuen N, Suksen K, Kaewkittikhun M, Ruknarong L, Silalai P, Saeeng R, Chairoungdua A, Soodvilai S, Tantikanlayaporn D. Genipin Analogue (G300) Inhibits Adipogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells through the Suppression of Adipogenic Promoting Factors. JOURNAL OF NATURAL PRODUCTS 2023; 86:1335-1344. [PMID: 37137165 DOI: 10.1021/acs.jnatprod.3c00143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
While obesity is a well-known health threatening condition worldwide, effective pharmacological interventions for obesity suppression have been limited due to adverse effects. Therefore, it is important to explore alternative medical treatments for combating obesity. Inhibition of the adipogenesis process and lipid accumulation are critical targets for controlling and treating obesity. Gardenia jasminoides Ellis is a traditional herbal remedy for various ailments. A natural product from its fruit, genipin, has major pharmacological properties; it is anti-inflammatory and antidiabetic. We investigated the effects of a genipin analogue, G300, on adipogenic differentiation in human bone marrow mesenchymal stem cells (hBM-MSCs). G300 suppressed the expression of adipogenic marker genes and adipokines secreted by adipocytes at concentrations of 10 and 20 μM, which effectively reduced the adipogenic differentiation of hBM-MSCs and lipid accumulation in adipocytes. It also improved adipocyte function by lowering inflammatory cytokine secretion and increasing glucose uptake. For the first time, we show that G300 has the potential to be a novel therapeutic agent for the treatment of obesity and its related disorders.
Collapse
|
|
2 |
|