1
|
Liu J, Verma PJ, Evans-Galea MV, Delatycki MB, Michalska A, Leung J, Crombie D, Sarsero JP, Williamson R, Dottori M, Pébay A. Generation of induced pluripotent stem cell lines from Friedreich ataxia patients. Stem Cell Rev Rep 2011; 7:703-13. [PMID: 21181307 DOI: 10.1007/s12015-010-9210-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Friedreich ataxia (FRDA) is an autosomal recessive disorder characterised by neurodegeneration and cardiomyopathy. It is caused by a trinucleotide (GAA) repeat expansion in the first intron of the FXN gene that results in reduced synthesis of FXN mRNA and its protein product, frataxin. We report the generation of induced pluripotent stem (iPS) cell lines derived from skin fibroblasts from two FRDA patients. Each of the patient-derived iPS (FA-iPS) cell lines maintain the GAA repeat expansion and the reduced FXN mRNA expression that are characteristic of the patient. The FA-iPS cells are pluripotent and form teratomas when injected into nude mice. We demonstrate that following in vitro differentiation the FA-iPS cells give rise to the two cell types primarily affected in FRDA, peripheral neurons and cardiomyocytes. The FA-iPS cell lines have the potential to provide valuable models to study the cellular pathology of FRDA and to develop high-throughput drug screening assays. We have previously demonstrated that stable insertion of a functional human BAC containing the intact FXN gene into stem cells results in the expression of frataxin protein in differentiated neurons. As such, iPS cell lines derived from FRDA patients, following correction of the mutated gene, could provide a useful source of immunocompatible cells for transplantation therapy.
Collapse
|
|
14 |
71 |
2
|
Martin G, Poirier H, Hennuyer N, Crombie D, Fruchart JC, Heyman RA, Besnard P, Auwerx J. Induction of the fatty acid transport protein 1 and acyl-CoA synthase genes by dimer-selective rexinoids suggests that the peroxisome proliferator-activated receptor-retinoid X receptor heterodimer is their molecular target. J Biol Chem 2000; 275:12612-8. [PMID: 10777552 DOI: 10.1074/jbc.275.17.12612] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The intracellular fatty acid content of insulin-sensitive target tissues determines in part their insulin sensitivity. Uptake of fatty acids into cells is a controlled process determined in part by a regulated import/export system that is controlled at least by two key groups of proteins, i.e. the fatty acid transport protein (FATP) and acyl-CoA synthetase (ACS), which facilitate, respectively, the transport of fatty acids across the cell membrane and catalyze their esterification to prevent their efflux. Previously it was shown that the expression of the FATP-1 and ACS genes was controlled by insulin and by peroxisome proliferator-activated receptor (PPAR) agonists in liver or in adipose tissue. The aim of this investigation was to determine the effects of retinoic acid derivatives on the expression of FATP-1 and ACS. In several cultured cell lines, it was shown that the expression of both the FATP-1 and ACS mRNAs was specifically induced at the transcriptional level by selective retinoid X receptor (RXR) but not by retinoic acid receptor (RAR) ligands. This effect was most pronounced in hepatoma cell lines. A similar induction of FATP-1 and ACS mRNA levels was also observed in vivo in Zucker diabetic fatty rats treated with the RXR agonist, LGD1069 (4-[1-(3,5,5,8,8-pentamethyl-5,6,7, 8-tetrahydro-2-naphthyl)ethenyl]benzoic acid). Through the use of heterodimer-selective compounds, it was demonstrated that the modulatory effect of these rexinoids on FATP-1 and ACS gene expression was mediated through activation of RXR in the context of the PPAR-RXR heterodimer. The observation that both RXR and PPAR agonists can stimulate the transcription of genes implicated in lipid metabolism, suggest that rexinoids may also act as lipid-modifying agents and support a role of the permissive PPAR-RXR heterodimer in the control of insulin sensitivity.
Collapse
|
|
25 |
64 |
3
|
Neavin D, Nguyen Q, Daniszewski MS, Liang HH, Chiu HS, Wee YK, Senabouth A, Lukowski SW, Crombie DE, Lidgerwood GE, Hernández D, Vickers JC, Cook AL, Palpant NJ, Pébay A, Hewitt AW, Powell JE. Single cell eQTL analysis identifies cell type-specific genetic control of gene expression in fibroblasts and reprogrammed induced pluripotent stem cells. Genome Biol 2021; 22:76. [PMID: 33673841 PMCID: PMC7934233 DOI: 10.1186/s13059-021-02293-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 02/10/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The discovery that somatic cells can be reprogrammed to induced pluripotent stem cells (iPSCs) has provided a foundation for in vitro human disease modelling, drug development and population genetics studies. Gene expression plays a critical role in complex disease risk and therapeutic response. However, while the genetic background of reprogrammed cell lines has been shown to strongly influence gene expression, the effect has not been evaluated at the level of individual cells which would provide significant resolution. By integrating single cell RNA-sequencing (scRNA-seq) and population genetics, we apply a framework in which to evaluate cell type-specific effects of genetic variation on gene expression. RESULTS Here, we perform scRNA-seq on 64,018 fibroblasts from 79 donors and map expression quantitative trait loci (eQTLs) at the level of individual cell types. We demonstrate that the majority of eQTLs detected in fibroblasts are specific to an individual cell subtype. To address if the allelic effects on gene expression are maintained following cell reprogramming, we generate scRNA-seq data in 19,967 iPSCs from 31 reprogramed donor lines. We again identify highly cell type-specific eQTLs in iPSCs and show that the eQTLs in fibroblasts almost entirely disappear during reprogramming. CONCLUSIONS This work provides an atlas of how genetic variation influences gene expression across cell subtypes and provides evidence for patterns of genetic architecture that lead to cell type-specific eQTL effects.
Collapse
|
research-article |
4 |
51 |
4
|
Goldshmit Y, Matteo R, Sztal T, Ellett F, Frisca F, Moreno K, Crombie D, Lieschke GJ, Currie PD, Sabbadini RA, Pébay A. Blockage of lysophosphatidic acid signaling improves spinal cord injury outcomes. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:978-92. [PMID: 22819724 DOI: 10.1016/j.ajpath.2012.06.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 05/28/2012] [Accepted: 06/07/2012] [Indexed: 01/10/2023]
Abstract
Evidence suggests a proinflammatory role of lysophosphatidic acid (LPA) in various pathologic abnormalities, including in the central nervous system. Herein, we describe LPA as an important mediator of inflammation after spinal cord injury (SCI) in zebrafish and mice. Furthermore, we describe a novel monoclonal blocking antibody raised against LPA that potently inhibits LPA's effect in vitro and in vivo. This antibody, B3, specifically binds LPA, prevents it from interacting with its complement of receptors, and blocks LPA's effects on the neuronal differentiation of human neural stem/progenitor cells, demonstrating its specificity toward LPA signaling. When administered systemically to mice subjected to SCI, B3 substantially reduced glial inflammation and neuronal death. B3-treated animals demonstrated significantly more neuronal survival upstream of the lesion site, with some functional improvement. This study describes the use of anti-LPA monoclonal antibody as a novel therapeutic approach for the treatment of SCI.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
47 |
5
|
Lim SY, Sivakumaran P, Crombie DE, Dusting GJ, Pébay A, Dilley RJ. Trichostatin A enhances differentiation of human induced pluripotent stem cells to cardiogenic cells for cardiac tissue engineering. Stem Cells Transl Med 2013; 2:715-25. [PMID: 23884641 DOI: 10.5966/sctm.2012-0161] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human induced pluripotent stem (iPS) cells are a promising source of autologous cardiomyocytes to repair and regenerate myocardium for treatment of heart disease. In this study, we have identified a novel strategy to enhance cardiac differentiation of human iPS cells by treating embryoid bodies (EBs) with a histone deacetylase inhibitor, trichostatin A (TSA), together with activin A and bone morphogenetic protein 4 (BMP4). Over a narrow window of concentrations, TSA (1 ng/ml) directed the differentiation of human iPS cells into a cardiomyocyte lineage. TSA also exerted an additive effect with activin A (100 ng/ml) and BMP4 (20 ng/ml). The resulting cardiomyocytes expressed several cardiac-specific transcription factors and contractile proteins at both gene and protein levels. Functionally, the contractile EBs displayed calcium cycling and were responsive to the chronotropic agents isoprenaline (0.1 μM) and carbachol (1 μM). Implanting microdissected beating areas of iPS cells into tissue engineering chambers in immunocompromised rats produced engineered constructs that supported their survival, and they maintained spontaneous contraction. Human cardiomyocytes were identified as compact patches of muscle tissue incorporated within a host fibrocellular stroma and were vascularized by host neovessels. In conclusion, human iPS cell-derived cardiomyocytes can be used to engineer functional cardiac muscle tissue for studying the pathophysiology of cardiac disease, for drug discovery test beds, and potentially for generation of cardiac grafts to surgically replace damaged myocardium.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
46 |
6
|
Frugier T, Crombie D, Conquest A, Tjhong F, Taylor C, Kulkarni T, McLean C, Pébay A. Modulation of LPA receptor expression in the human brain following neurotrauma. Cell Mol Neurobiol 2011; 31:569-77. [PMID: 21234797 PMCID: PMC11498475 DOI: 10.1007/s10571-011-9650-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 01/05/2011] [Indexed: 01/07/2023]
Abstract
Lysophosphatidic acid (LPA) is involved in physiological and pathological states, including in neural development and inflammation. We assessed the expression pattern of the LPA receptors 1-3 and of LPA-producing enzyme autotaxin in post-mortem human brain tissue, both in normal individuals and in individuals who died following traumatic brain injury. We found that LPA receptors and autotaxin are weakly expressed in the normal control adult brain. Quantitative PCR for the LPA receptors and autotaxin mRNA showed an increase of LPAR(2) and a decrease of autotaxin mRNA expression in the cortex following brain injury. Immunohistochemical analysis showed that LPAR(1) colocalized with astrocytes and that LPAR(2) is present on the ependymal cells lining the lateral ventricle in the brain samples from individuals who died following severe head injury. This work shows for the first time that key components of the LPA pathway are modulated following TBI in humans.
Collapse
|
research-article |
14 |
37 |
7
|
Frisca F, Crombie DE, Dottori M, Goldshmit Y, Pébay A. Rho/ROCK pathway is essential to the expansion, differentiation, and morphological rearrangements of human neural stem/progenitor cells induced by lysophosphatidic acid. J Lipid Res 2013; 54:1192-206. [PMID: 23463731 PMCID: PMC3622317 DOI: 10.1194/jlr.m032284] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 03/01/2013] [Indexed: 11/20/2022] Open
Abstract
We previously reported that lysophosphatidic acid (LPA) inhibits the neuronal differentiation of human embryonic stem cells (hESC). We extended these studies by analyzing LPA's effects on the expansion of neural stem/progenitor cells (NS/PC) derived from hESCs and human induced pluripotent stem cells (iPSC), and we assessed whether data obtained on the neural differentiation of hESCs were relevant to iPSCs. We showed that hESCs and iPSCs exhibited comparable mRNA expression profiles of LPA receptors and producing enzymes upon neural differentiation. We demonstrated that LPA inhibited the expansion of NS/PCs of both origins, mainly by increased apoptosis in a Rho/Rho-associated kinase (ROCK)-dependent mechanism. Furthermore, LPA inhibited the neuronal differentiation of iPSCs. Lastly, LPA induced neurite retraction of NS/PC-derived early neurons through Rho/ROCK, which was accompanied by myosin light chain (MLC) phosphorylation. Our data demonstrate the consistency of LPA effects across various sources of human NS/PCs, rendering hESCs and iPSCs valuable models for studying lysophospholipid signaling in human neural cells. Our data also highlight the importance of the Rho/ROCK pathway in human NS/PCs. As LPA levels are increased in the central nervous system (CNS) following injury, LPA-mediated effects on NS/PCs and early neurons could contribute to the poor neurogenesis observed in the CNS following injury.
Collapse
|
research-article |
12 |
36 |
8
|
Daniszewski M, Crombie DE, Henderson R, Liang HH, Wong RCB, Hewitt AW, Pébay A. Automated Cell Culture Systems and Their Applications to Human Pluripotent Stem Cell Studies. SLAS Technol 2017; 23:315-325. [PMID: 28574793 DOI: 10.1177/2472630317712220] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Pluripotent stem cells are an extremely powerful tool in modeling human diseases and hold much promise for personalized regenerative or cell replacement therapies. There is an increasing need for reproducible large-scale stem cell and differentiated progeny production, with minimal variation, rendering manual approaches impracticable. Here, we provide an overview of systems currently available for automated stem cell culture, and undertake a review of their capacities, capabilities, and relative limitations. With the merging of modern technology and stem cell biology, an increased demand and implementation of automated platforms for stem cell studies is anticipated.
Collapse
|
Review |
8 |
32 |
9
|
Hamann LG, Farmer LJ, Johnson MG, Bender SL, Mais DE, Wang MW, Crombie D, Goldman ME, Jones TK. Synthesis and biological activity of novel nonsteroidal progesterone receptor antagonists based on cyclocymopol monomethyl ether. J Med Chem 1996; 39:1778-89. [PMID: 8627601 DOI: 10.1021/jm950747d] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A novel class of nonsteroidal progesterone receptor antagonists has been synthesized and was shown to exhibit moderate binding affinity for hPR-A, the ability to inhibit the transcriptional activity of human progesterone receptor (hPR) in cell-based assays, and anti-progestational activity in a murine model. Cyclocymopol monomethyl ether, a component of the marine alga Cymopolia barbata was weakly active in random screening against PR. Investigations into the SAR surrounding the core of this natural product lead structure resulted in improved in vitro activity. In contrast to the cross-reactivity profiles observed with known steroidal antiprogestins, compounds of the general structural class described display a high degree of selectivity for the progesterone receptor and no functional activity on the glucocorticoid receptor.
Collapse
|
|
29 |
30 |
10
|
Gunewardene N, Bergen NV, Crombie D, Needham K, Dottori M, Nayagam BA. Directing human induced pluripotent stem cells into a neurosensory lineage for auditory neuron replacement. Biores Open Access 2014; 3:162-75. [PMID: 25126480 PMCID: PMC4120935 DOI: 10.1089/biores.2014.0019] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Emerging therapies for sensorineural hearing loss include replacing damaged auditory neurons (ANs) using stem cells. Ultimately, it is important that these replacement cells can be patient-matched to avoid immunorejection. As human induced pluripotent stem cells (hiPSCs) can be obtained directly from the patient, they offer an opportunity to generate patient-matched neurons for transplantation. Here, we used an established neural induction protocol to differentiate two hiPSC lines (iPS1 and iPS2) and one human embryonic stem cell line (hESC; H9) toward a neurosensory lineage in vitro. Immunocytochemistry and qRT-PCR were used to analyze the expression of key markers involved in AN development at defined time points of differentiation. The hiPSC- and hESC-derived neurosensory progenitors expressed the dorsal hindbrain marker (PAX7), otic placodal marker (PAX2), proneurosensory marker (SOX2), ganglion neuronal markers (NEUROD1, BRN3A, ISLET1, ßIII-tubulin, Neurofilament kDa 160), and sensory AN markers (GATA3 and VGLUT1) over the time course examined. The hiPSC- and hESC-derived neurosensory progenitors had the highest expression levels of the sensory neural markers at 35 days in vitro. Furthermore, the neurons generated from this assay were found to be electrically active. While all cell lines analyzed produced functional neurosensory-like progenitors, variabilities in the levels of marker expression were observed between hiPSC lines and within samples of the same cell line, when compared with the hESC controls. Overall, these findings indicate that this neural assay was capable of differentiating hiPSCs toward a neurosensory lineage but emphasize the need for improving the consistency in the differentiation of hiPSCs into the required lineages.
Collapse
|
Journal Article |
11 |
29 |
11
|
Amirahmadi SF, Pho MH, Gray RE, Crombie DE, Whittingham SF, Zuasti BB, Van Damme MP, Rowley MJ. An arthritogenic monoclonal antibody to type II collagen, CII‐C1, impairs cartilage formation by cultured chondrocytes. Immunol Cell Biol 2004; 82:427-34. [PMID: 15283854 DOI: 10.1111/j.0818-9641.2004.01267.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Antibodies to type II collagen (CII) cause articular damage in collagen-induced arthritis (CIA) in mice as judged by passive transfer to naive animals of mAb to CII. We tested the hypothesis that mAb degrade cartilage structure by reacting with functionally important regions of the collagen molecule by examining the effects of an arthritogenic mAb to CII, CII-C1, on cultured bovine chondrocytes at high density, at days 7 and 14. The effects were compared of CII-C1, an isotype-matched control mAb, or medium alone, on chondrocyte proliferation and viability, cell morphology, matrix structure by light and electron microscopy, and matrix synthesis by metabolic labelling with 3H-proline for collagen or 35SO4 for proteoglycans. Chondrocytes in culture remained viable, proliferated, and produced an extracellular matrix in which CII was the major collagen. The addition of CII-C1, but not a control mAb, increased the synthesis of CII and proteoglycan, and caused disorganization of the extracellular matrix and thin collagen fibrils ultrastructurally. Moreover, using a cell-free assay, CII-C1 inhibited the normal self-assembly of collagen fibrils from CII in solution. The finding that the mAb to CII, CII-C1 has striking degradative effects in vitro on cartilage synthesis suggests that antibodies to collagen perpetuate the chronic phase of CIA and that, in mice at least, such antibodies are an important component of pathogenesis.
Collapse
|
|
21 |
29 |
12
|
Crombie DE, Daniszewski M, Liang HH, Kulkarni T, Li F, Lidgerwood GE, Conquest A, Hernández D, Hung SS, Gill KP, De Smit E, Kearns LS, Clarke L, Sluch VM, Chamling X, Zack DJ, Wong RCB, Hewitt AW, Pébay A. Development of a Modular Automated System for Maintenance and Differentiation of Adherent Human Pluripotent Stem Cells. SLAS DISCOVERY 2017; 22:1016-1025. [PMID: 28287872 DOI: 10.1177/2472555217696797] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Patient-specific induced pluripotent stem cells (iPSCs) have tremendous potential for development of regenerative medicine, disease modeling, and drug discovery. However, the processes of reprogramming, maintenance, and differentiation are labor intensive and subject to intertechnician variability. To address these issues, we established and optimized protocols to allow for the automated maintenance of reprogrammed somatic cells into iPSCs to enable the large-scale culture and passaging of human pluripotent stem cells (PSCs) using a customized TECAN Freedom EVO. Generation of iPSCs was performed offline by nucleofection followed by selection of TRA-1-60-positive cells using a Miltenyi MultiMACS24 Separator. Pluripotency markers were assessed to confirm pluripotency of the generated iPSCs. Passaging was performed using an enzyme-free dissociation method. Proof of concept of differentiation was obtained by differentiating human PSCs into cells of the retinal lineage. Key advantages of this automated approach are the ability to increase sample size, reduce variability during reprogramming or differentiation, and enable medium- to high-throughput analysis of human PSCs and derivatives. These techniques will become increasingly important with the emergence of clinical trials using stem cells.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
28 |
13
|
Amirahmadi SF, Whittingham S, Crombie DE, Nandakumar KS, Holmdahl R, Mackay IR, van Damme MP, Rowley MJ. Arthritogenic anti-type II collagen antibodies are pathogenic for cartilage-derived chondrocytes independent of inflammatory cells. ACTA ACUST UNITED AC 2005; 52:1897-906. [PMID: 15934095 DOI: 10.1002/art.21097] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Some monoclonal antibodies (mAb) to type II collagen (CII) are arthritogenic upon passive transfer to mice. We undertook this study to investigate whether such mAb are pathogenic in the absence of mediators of inflammation. METHODS The arthritogenic mAb CIIC1 and M2139, and the nonarthritogenic mAb CIIF4, each reactive with a distinct and well-defined conformational epitope on CII, were compared with control mAb GAD6. Bovine chondrocytes were cultured with one of the mAb, and on days 3, 6, and 9, antibody binding by chondrocytes and newly synthesized extracellular matrix (ECM) was examined by immunofluorescence, morphologic effects were studied by electron microscopy, and synthesis of matrix components was determined by metabolic labeling with (3)H-proline for collagen and (35)S-sulfate for proteoglycans. RESULTS All 3 mAb to CII bound to the matrix. CIIC1 and M2139 adversely affected the cultures, whereas CIIF4 did not. CIIC1 caused disorganization of CII fibrils in the ECM without affecting chondrocyte morphology, and increased matrix synthesis. M2139 caused thickening and aggregation of CII fibrils in the ECM and abnormal chondrocyte morphology but matrix synthesis was unaffected. CONCLUSION The unique arthritogenic capacity of particular anti-CII mAb upon passive transfer could be explained by their adverse, albeit differing, effects in primary cultures of chondrocytes. Such effects occur independent of inflammation mediators and are related to the epitope specificity of the mAb. Interference with the structural integrity of CII could precede, and even initiate, the inflammatory expression of disease.
Collapse
|
|
20 |
28 |
14
|
Crombie DE, Turer M, Zuasti BB, Wood B, McNaughton D, Nandakumar KS, Holmdahl R, Van Damme MP, Rowley MJ. Destructive effects of murine arthritogenic antibodies to type II collagen on cartilage explants in vitro. Arthritis Res Ther 2005; 7:R927-37. [PMID: 16207334 PMCID: PMC1257420 DOI: 10.1186/ar1766] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2005] [Revised: 04/12/2005] [Accepted: 05/10/2005] [Indexed: 01/07/2023] Open
Abstract
Certain monoclonal antibodies (mAbs) to type II collagen (CII) induce arthritis in vivo after passive transfer and have adverse effects on chondrocyte cultures and inhibit self assembly of collagen fibrils in vitro. We have examined whether such mAbs have detrimental effects on pre-existing cartilage. Bovine cartilage explants were cultured over 21 days in the presence of two arthritogenic mAbs to CII (CIIC1 or M2139), a non-arthritogenic mAb to CII (CIIF4) or a control mAb (GAD6). Penetration of cartilage by mAb was determined by immunofluorescence on frozen sections and correlated with changes to the extracellular matrix and chondrocytes by morphometric analysis of sections stained with toluidine blue. The effects of mAbs on matrix components were examined by Fourier transform infrared microspectroscopy (FTIRM). A possible role of Fc-binding was investigated using F(ab)2 from CIIC1. All three mAbs to CII penetrated the cartilage explants and CIIC1 and M2139, but not CIIF4, had adverse effects that included proteoglycan loss correlating with mAb penetration, the later development in cultures of an abnormal superficial cellular layer, and an increased proportion of empty chondrons. FTIRM showed depletion and denaturation of CII at the explant surface in the presence of CIIC1 or M2139, which paralleled proteoglycan loss. The effects of F(ab)2 were greater than those of intact CIIC1. Our results indicate that mAbs to CII can adversely affect preformed cartilage, and that the specific epitope on CII recognised by the mAb determines both arthritogenicity in vivo and adverse effects in vitro. We conclude that antibodies to CII can have pathogenic effects that are independent of inflammatory mediators or Fc-binding.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
26 |
15
|
Crombie DE, Curl CL, Raaijmakers AJA, Sivakumaran P, Kulkarni T, Wong RCB, Minami I, Evans-Galea MV, Lim SY, Delbridge L, Corben LA, Dottori M, Nakatsuji N, Trounce IA, Hewitt AW, Delatycki MB, Pera MF, Pébay A. Friedreich's ataxia induced pluripotent stem cell-derived cardiomyocytes display electrophysiological abnormalities and calcium handling deficiency. Aging (Albany NY) 2017; 9:1440-1452. [PMID: 28562313 PMCID: PMC5472743 DOI: 10.18632/aging.101247] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 05/27/2017] [Indexed: 01/12/2023]
Abstract
We sought to identify the impacts of Friedreich's ataxia (FRDA) on cardiomyocytes. FRDA is an autosomal recessive degenerative condition with neuronal and non-neuronal manifestations, the latter including progressive cardiomyopathy of the left ventricle, the leading cause of death in FRDA. Little is known about the cellular pathogenesis of FRDA in cardiomyocytes. Induced pluripotent stem cells (iPSCs) were derived from three FRDA individuals with characterized GAA repeats. The cells were differentiated into cardiomyocytes to assess phenotypes. FRDA iPSC- cardiomyocytes retained low levels of FRATAXIN (FXN) mRNA and protein. Electrophysiology revealed an increased variation of FRDA- cardiomyocyte beating rates which was prevented by addition of nifedipine, suggestive of a calcium handling deficiency. Finally, calcium imaging was performed and we identified small amplitude, diastolic and systolic calcium transients confirming a deficiency in calcium handling. We defined a robust FRDA cardiac-specific electrophysiological profile in patient-derived iPSCs which could be used for high throughput compound screening. This cell-specific signature will contribute to the identification and screening of novel treatments for this life-threatening disease.
Collapse
|
research-article |
8 |
25 |
16
|
Sun CX, Daniel P, Bradshaw G, Shi H, Loi M, Chew N, Parackal S, Tsui V, Liang Y, Koptyra M, Adjumain S, Sun C, Chong WC, Fernando D, Drinkwater C, Tourchi M, Habarakada D, Sooraj D, Carvalho D, Storm PB, Baubet V, Sayles LC, Fernandez E, Nguyen T, Pörksen M, Doan A, Crombie DE, Panday M, Zhukova N, Dun MD, Ludlow LE, Day B, Stringer BW, Neeman N, Rubens JA, Raabe EH, Vinci M, Tyrrell V, Fletcher JI, Ekert PG, Dumevska B, Ziegler DS, Tsoli M, Syed Sulaiman NF, Loh AHP, Low SYY, Sweet-Cordero EA, Monje M, Resnick A, Jones C, Downie P, Williams B, Rosenbluh J, Gough D, Cain JE, Firestein R. Generation and multi-dimensional profiling of a childhood cancer cell line atlas defines new therapeutic opportunities. Cancer Cell 2023; 41:660-677.e7. [PMID: 37001527 DOI: 10.1016/j.ccell.2023.03.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/21/2022] [Accepted: 03/07/2023] [Indexed: 04/12/2023]
Abstract
Pediatric solid and central nervous system tumors are the leading cause of cancer-related death among children. Identifying new targeted therapies necessitates the use of pediatric cancer models that faithfully recapitulate the patient's disease. However, the generation and characterization of pediatric cancer models has significantly lagged behind adult cancers, underscoring the urgent need to develop pediatric-focused cell line resources. Herein, we establish a single-site collection of 261 cell lines, including 224 pediatric cell lines representing 18 distinct extracranial and brain childhood tumor types. We subjected 182 cell lines to multi-omics analyses (DNA sequencing, RNA sequencing, DNA methylation), and in parallel performed pharmacological and genetic CRISPR-Cas9 loss-of-function screens to identify pediatric-specific treatment opportunities and biomarkers. Our work provides insight into specific pathway vulnerabilities in molecularly defined pediatric tumor classes and uncovers biomarker-linked therapeutic opportunities of clinical relevance. Cell line data and resources are provided in an open access portal.
Collapse
|
|
2 |
25 |
17
|
Daniszewski M, Nguyen Q, Chy HS, Singh V, Crombie DE, Kulkarni T, Liang HH, Sivakumaran P, Lidgerwood GE, Hernández D, Conquest A, Rooney LA, Chevalier S, Andersen SB, Senabouth A, Vickers JC, Mackey DA, Craig JE, Laslett AL, Hewitt AW, Powell JE, Pébay A. Single-Cell Profiling Identifies Key Pathways Expressed by iPSCs Cultured in Different Commercial Media. iScience 2018; 7:30-39. [PMID: 30267684 PMCID: PMC6135898 DOI: 10.1016/j.isci.2018.08.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 08/09/2018] [Accepted: 08/17/2018] [Indexed: 02/08/2023] Open
Abstract
We assessed the pluripotency of human induced pluripotent stem cells (iPSCs) maintained on an automated platform using StemFlex and TeSR-E8 media. Analysis of transcriptome of single cells revealed similar expression of core pluripotency genes, as well as genes associated with naive and primed states of pluripotency. Analysis of individual cells from four samples consisting of two different iPSC lines each grown in the two culture media revealed a shared subpopulation structure with three main subpopulations different in pluripotency states. By implementing a machine learning approach, we estimated that most cells within each subpopulation are very similar between all four samples. The single-cell RNA sequencing analysis of iPSC lines grown in both media reports the molecular signature in StemFlex medium and how it compares to that observed in the TeSR-E8 medium.
Collapse
|
Journal Article |
7 |
19 |
18
|
Cesario RM, Klausing K, Razzaghi H, Crombie D, Rungta D, Heyman RA, Lala DS. The rexinoid LG100754 is a novel RXR:PPARgamma agonist and decreases glucose levels in vivo. Mol Endocrinol 2001; 15:1360-9. [PMID: 11463859 DOI: 10.1210/mend.15.8.0677] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The RXR serves as a heterodimer partner for the PPARgamma and the dimer is a molecular target for insulin sensitizers such as the thiazolidinediones. Ligands for either receptor can activate PPAR-dependent pathways via PPAR response elements. Unlike PPARgamma agonists, however, RXR agonists like LG100268 are promiscuous and activate multiple RXR heterodimers. Here, we demonstrate that LG100754, a RXR:RXR antagonist and RXR:PPARalpha agonist, also functions as a RXR:PPARgamma agonist. It does not activate other LG100268 responsive heterodimers like RXR:liver X receptoralpha, RXR:liver X receptorbeta, RXR:bile acid receptor/farnesoid X receptor and RXR:nerve growth factor induced gene B. This unique RXR ligand triggers cellular RXR:PPARgamma-dependent pathways including adipocyte differentiation and inhibition of TNFalpha-mediated hypophosphorylation of the insulin receptor, but does not activate key farnesoid X receptor and liver X receptor target genes. Also, LG100754 treatment of db/db animals leads to an improvement in insulin resistance in vivo. Interestingly, activation of RXR:PPARgamma by LG100268 and LG100754 occurs through different mechanisms. Therefore, LG100754 represents a novel class of insulin sensitizers that functions through RXR but exhibits greater heterodimer selectivity compared with LG100268. These results establish an approach to the design of novel RXR-based insulin sensitizers with greater specificity.
Collapse
|
Comparative Study |
24 |
19 |
19
|
Croxford AM, Crombie D, McNaughton D, Holmdahl R, Nandakumar KS, Rowley MJ. Specific antibody protection of the extracellular cartilage matrix against collagen antibody-induced damage. ACTA ACUST UNITED AC 2010; 62:3374-84. [PMID: 20662051 DOI: 10.1002/art.27671] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVE The type II collagen (CII)-specific monoclonal antibodies (mAb) M2139 and CIIC1 induce arthritis in vivo and degrade bovine cartilage explants in vitro, whereas mAb CIIF4 is nonarthritogenic and prevents arthritis development when given in combination with M2139 and CIIC1. To determine the nature of the protective capacity of CIIF4 antibody, we examined the effects of adding CIIF4 to cartilage explants cultured in vitro with M2139 and CIIC1. METHODS Bovine cartilage explants were cultured in the presence of M2139 and CIIC1, with or without CIIF4. Histologic changes were examined, and chemical changes to collagens and proteoglycans were assessed by Fourier transform infrared microspectroscopy (FTIRM). Fresh cartilage and cartilage that had been freeze-thawed to kill chondrocytes cultured with or without the addition of GM6001, a broad-spectrum inhibitor of matrix metalloproteinases (MMPs), were compared using FTIRM analysis. RESULTS M2139 and CIIC1 caused progressive degradation of the cartilage surface and loss of CII, even in the absence of viable chondrocytes. CIIF4 did not cause cartilage damage, and when given with the arthritogenic mAb, it prevented their damage and permitted matrix regeneration, a process that required viable chondrocytes. Inhibition of MMP activity reduced cartilage damage but did not mimic the effects of CIIF4. CONCLUSION CII-reactive antibodies can cause cartilage damage or can be protective in vivo and in vitro, depending on their epitope specificity. Since CII antibodies of similar specificity also occur in rheumatoid arthritis in humans, more detailed studies should unravel the regulatory mechanisms operating at the effector level of arthritis pathogenesis.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
18 |
20
|
Lidgerwood GE, Lim SY, Crombie DE, Ali R, Gill KP, Hernández D, Kie J, Conquest A, Waugh HS, Wong RCB, Liang HH, Hewitt AW, Davidson KC, Pébay A. Defined Medium Conditions for the Induction and Expansion of Human Pluripotent Stem Cell-Derived Retinal Pigment Epithelium. Stem Cell Rev Rep 2017; 12:179-88. [PMID: 26589197 DOI: 10.1007/s12015-015-9636-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We demonstrate that a combination of Noggin, Dickkopf-1, Insulin Growth Factor 1 and basic Fibroblast Growth Factor, promotes the differentiation of human pluripotent stem cells into retinal pigment epithelium (RPE) cells. We describe an efficient one-step approach that allows the generation of RPE cells from both human embryonic stem cells and human induced pluripotent stem cells within 40-60 days without the need for manual excision, floating aggregates or imbedded cysts. Compared to methods that rely on spontaneous differentiation, our protocol results in faster differentiation into RPE cells. This pro-retinal culture medium promotes the growth of functional RPE cells that exhibit key characteristics of the RPE including pigmentation, polygonal morphology, expression of mature RPE markers, electrophysiological membrane potential and the ability to phagocytose photoreceptor outer segments. This protocol can be adapted for feeder, feeder-free and serum-free conditions. This method thereby provides a rapid and simplified production of RPE cells for downstream applications such as disease modelling and drug screening.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
18 |
21
|
Crombie DE, Pera MF, Delatycki MB, Pébay A. Using human pluripotent stem cells to study Friedreich ataxia cardiomyopathy. Int J Cardiol 2016; 212:37-43. [PMID: 27019046 DOI: 10.1016/j.ijcard.2016.03.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 03/02/2016] [Accepted: 03/13/2016] [Indexed: 12/16/2022]
Abstract
Friedreich ataxia (FRDA) is the most common of the inherited ataxias. It is an autosomal recessive disease characterised by degeneration of peripheral sensory neurons, regions of the central nervous system and cardiomyopathy. FRDA is usually due to homozygosity for trinucleotide GAA repeat expansions found within first intron of the FRATAXIN (FXN) gene, which results in reduced levels of the mitochondrial protein FXN. Reduced FXN protein results in mitochondrial dysfunction and iron accumulation leading to increased oxidative stress and cell death in the nervous system and heart. Yet the precise functions of FXN and the underlying mechanisms leading to disease pathology remain elusive. This is particularly true of the cardiac aspect of FRDA, which remains largely uncharacterized at the cellular level. Here, we summarise current knowledge on experimental models in which to study FRDA cardiomyopathy, with a particular focus on the use of human pluripotent stem cells as a disease model.
Collapse
|
Review |
9 |
5 |
22
|
Crombie DE, Van Bergen N, Davidson KC, Anjomani Virmouni S, Mckelvie PA, Chrysostomou V, Conquest A, Corben LA, Pook MA, Kulkarni T, Trounce IA, Pera MF, Delatycki MB, Pébay A. Characterization of the retinal pigment epithelium in Friedreich ataxia. Biochem Biophys Rep 2015; 4:141-147. [PMID: 29124197 PMCID: PMC5668915 DOI: 10.1016/j.bbrep.2015.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 08/31/2015] [Accepted: 09/09/2015] [Indexed: 11/04/2022] Open
Abstract
We assessed structural elements of the retina in individuals with Friedreich ataxia (FRDA) and in mouse models of FRDA, as well as functions of the retinal pigment epithelium (RPE) in FRDA using induced pluripotent stem cells (iPSCs). We analyzed the retina of the FRDA mouse models YG22R and YG8R containing a human FRATAXIN (FXN) transgene by histology. We complemented this work with post-mortem evaluation of eyes from FRDA patients. Finally, we derived RPE cells from patient FRDA-iPSCs to assess oxidative phosphorylation (OXPHOS) and phagocytosis. We showed that whilst the YG22R and YG8R mouse models display elements of retinal degeneration, they do not recapitulate the loss of retinal ganglion cells (RGCs) found in the human disease. Further, RPE cells differentiated from human FRDA-iPSCs showed normal OXPHOS and we did not observe functional impairment of the RPE in Humans.
We examined the retinal pigment epithelium in Friedreich ataxia. We used mouse models, human postmortem eyes and human induced pluripotent stem cell-derived retinal pigment epithelium cells. We did not find evidence of retinal pigment epithelium impairment in humans. We described elements of degeneration in YG22R and YG8R mouse retina and human eyes.
Collapse
|
Journal Article |
10 |
3 |
23
|
Crombie DE, Mackay IR, Wood BR, McNaughton D, Rowley MJ. Images of interest. Hepatobiliary and pancreatic: Liver histopathology: Fourier transform infrared microspectroscopic imaging for objective and quantifiable assessment of liver biopsies. J Gastroenterol Hepatol 2005; 20:485. [PMID: 15740498 DOI: 10.1111/j.1440-1746.2005.03820.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
Review |
20 |
2 |
24
|
Fleming D, Crombie D, Cross K. An examination of practice referral rates in relation to practice structure, patient demography and case mix. HEALTH TRENDS 1991; 23:100-4. [PMID: 10119942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
This paper examines the variation in practice referral rates from 53 practices over a twelve-month period. Data from the Second National Morbidity Study were used in relation to practice structure; age, sex and Social Class composition of the patient population; and the case mix by practice. The results show that the age of the patient is an important determinant of the probability of referral, whereas Social Class has little influence. Analysis of the practice-based data showed that practices were highly concordant in their referral activity across sex and age (greater or less than 45 years), sex and Social Class (manual or non-manual), and across chapters of the disease classification. This degree of concordance points to characteristics of the practices rather than patients, and their problems as the main source of variation in practice referral behaviour.
Collapse
|
|
34 |
|
25
|
Fleming D, Crombie D, Cross K. The measurement of referrals for practice audit. HEALTH TRENDS 1991; 23:66-9. [PMID: 10116895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
The Royal College of General Practitioners and the Office of Population Censuses and Surveys have collaborated in three national studies of morbidity in general practice at approximately ten-year intervals. This paper presents data derived from the second survey conducted in 1970/71. A comparison of practice referral rates based on different measures is reported, and consideration given to the consequences of the choice of measure on how practices may be perceived. The findings of this study emphasise the need for caution in the interpretation of practice referral data while providing encouragement for general practitioners to engage in open peer review of their practice activities.
Collapse
|
|
34 |
|