1
|
Distelmaier F, Koopman WJ, van den Heuvel LP, Rodenburg RJ, Mayatepek E, Willems PH, Smeitink JA. Mitochondrial complex I deficiency: from organelle dysfunction to clinical disease. Brain 2008; 132:833-42. [DOI: 10.1093/brain/awp058] [Citation(s) in RCA: 232] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
|
17 |
232 |
2
|
Pietz J, Kreis R, Rupp A, Mayatepek E, Rating D, Boesch C, Bremer HJ. Large neutral amino acids block phenylalanine transport into brain tissue in patients with phenylketonuria. J Clin Invest 1999; 103:1169-78. [PMID: 10207169 PMCID: PMC408272 DOI: 10.1172/jci5017] [Citation(s) in RCA: 190] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Large neutral amino acids (LNAAs), including phenylalanine (Phe), compete for transport across the blood-brain barrier (BBB) via the L-type amino acid carrier. Accordingly, elevated plasma Phe impairs brain uptake of other LNAAs in patients with phenylketonuria (PKU). Direct effects of elevated brain Phe and depleted LNAAs are probably major causes for disturbed brain development and function in PKU. Competition for the carrier might conversely be put to use to lower Phe influx when the plasma concentrations of all other LNAAs are increased. This hypothesis was tested by measuring brain Phe in patients with PKU by quantitative 1H magnetic resonance spectroscopy during an oral Phe challenge with and without additional supplementation with all other LNAAs. Baseline plasma Phe was approximately 1,000 micromol/l and brain Phe was approximately 250 micromol/l in both series. Without LNAA supplementation, brain Phe increased to approximately 400 micromol/l after the oral Phe load. Electroencephalogram (EEG) spectral analysis revealed acutely disturbed brain activity. With concurrent LNAA supplementation, Phe influx was completely blocked and there was no slowing of EEG activity. These results are relevant for further characterization of the LNAA carrier and of the pathophysiology underlying brain dysfunction in PKU and for treatment of patients with PKU, as brain function might be improved by continued LNAA supplementation.
Collapse
|
research-article |
26 |
190 |
3
|
Spiekerkoetter U, Lindner M, Santer R, Grotzke M, Baumgartner MR, Boehles H, Das A, Haase C, Hennermann JB, Karall D, de Klerk H, Knerr I, Koch HG, Plecko B, Röschinger W, Schwab KO, Scheible D, Wijburg FA, Zschocke J, Mayatepek E, Wendel U. Treatment recommendations in long-chain fatty acid oxidation defects: consensus from a workshop. J Inherit Metab Dis 2009; 32:498-505. [PMID: 19452263 DOI: 10.1007/s10545-009-1126-8] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Revised: 03/24/2009] [Accepted: 03/25/2009] [Indexed: 12/13/2022]
Abstract
Published data on treatment of fatty acid oxidation defects are scarce. Treatment recommendations have been developed on the basis of observations in 75 patients with long-chain fatty acid oxidation defects from 18 metabolic centres in Central Europe. Recommendations are based on expert practice and are suggested to be the basis for further multicentre prospective studies and the development of approved treatment guidelines. Considering that disease complications and prognosis differ between different disorders of long-chain fatty acid oxidation and also depend on the severity of the underlying enzyme deficiency, treatment recommendations have to be disease-specific and depend on individual disease severity. Disorders of the mitochondrial trifunctional protein are associated with the most severe clinical picture and require a strict fat-reduced and fat-modified (medium-chain triglyceride-supplemented) diet. Many patients still suffer acute life-threatening events or long-term neuropathic symptoms despite adequate treatment, and newborn screening has not significantly changed the prognosis for these severe phenotypes. Very long-chain acyl-CoA dehydrogenase deficiency recognized in neonatal screening, in contrast, frequently has a less severe disease course and dietary restrictions in many patients may be loosened. On the basis of the collected data, recommendations are given with regard to the fat and carbohydrate content of the diet, the maximal length of fasting periods and the use of l-carnitine in long-chain fatty acid oxidation defects.
Collapse
|
Multicenter Study |
16 |
140 |
4
|
Schaefer F, Straube E, Oh J, Mehls O, Mayatepek E. Dialysis in neonates with inborn errors of metabolism. Nephrol Dial Transplant 1999; 14:910-8. [PMID: 10328469 DOI: 10.1093/ndt/14.4.910] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Certain inborn errors of metabolism become manifest during the neonatal period by acute accumulation of neurotoxic metabolites leading to coma and death or irreversible neurological damage. Outcome critically depends on the immediate elimination of the accumulated neurotoxins. Recent technological progress provides improved tools to optimize the efficacy of neonatal dialysis. METHODS We report our experience with continuous venovenous haemodialysis (CVVHD) in six neonates with hyperammonaemic coma due to urea-cycle disorders or propionic acidaemia and in one child with leucine accumulation due to maple-syrup urine disease (MSUD), in comparison with five patients managed by peritoneal dialysis (PD) (2 hyperammonaemia, 3 MSUD). Application of a new extracorporeal device specifically designed for use in small children permitted the establishment of stable blood circuits utilizing small-sized catheters, and the tight control of balanced dialysate flows over wide flow ranges. RESULTS Plasma ammonia or leucine levels were reduced by 50% within 7.1 +/- 4.1 h by CVVHD and within 17.9 +/- 12.4 h by PD (P<0.05). Also, total dialysis time was shorter with CVVHD (25 +/- 21 h) than with PD (73 +/- 35 h, P<0.02). A comparison of the CVVHD results with published literature confirmed superior metabolite removal compared to PD, and suggested comparable efficacy as achieved with continuous haemofiltration techniques. Apart from accidental pericardial tamponade during catheter insertion in one case, no major complications were noted with CVVHD. In three of the five PD patients, dialysis was compromised by mechanical complications. None of the MSUD patients but four children with urea-cycle disorders died, two during the acute period and two later during the first year of life, with signs of severe mental delay. Of the eight children presenting with hyperammonaemic coma, the four with the most rapid dialytic ammonia removal rate (50% reduction in < 7 h) survived with no or moderate mental retardation, whereas slower toxin removal was always associated with a lethal outcome. Simulation studies showed that the efficacy of neonatal CVVHD is limited mainly by blood-flow restrictions. CONCLUSIONS While CVVHD is the potentially most efficacious dialytic technique for treating acute metabolic crises in neonates, utmost care must be taken to provide an adequately sized vascular access.
Collapse
|
|
26 |
127 |
5
|
Spiekerkoetter U, Lindner M, Santer R, Grotzke M, Baumgartner MR, Boehles H, Das A, Haase C, Hennermann JB, Karall D, de Klerk H, Knerr I, Koch HG, Plecko B, Röschinger W, Schwab KO, Scheible D, Wijburg FA, Zschocke J, Mayatepek E, Wendel U. Management and outcome in 75 individuals with long-chain fatty acid oxidation defects: results from a workshop. J Inherit Metab Dis 2009; 32:488-97. [PMID: 19399638 DOI: 10.1007/s10545-009-1125-9] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Revised: 03/24/2009] [Accepted: 03/25/2009] [Indexed: 10/20/2022]
Abstract
At present, long-chain fatty acid oxidation (FAO) defects are diagnosed in a number of countries by newborn screening using tandem mass spectrometry. In the majority of cases, affected newborns are asymptomatic at time of diagnosis and acute clinical presentations can be avoided by early preventive measures. Because evidence-based studies on management of long-chain FAO defects are lacking, we carried out a retrospective analysis of 75 patients from 18 metabolic centres in Germany, Switzerland, Austria and the Netherlands with special regard to treatment and disease outcome. Dietary treatment is effective in many patients and can prevent acute metabolic derangements and prevent or reverse severe long-term complications such as cardiomyopathy. However, 38% of patients with very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency had intermittent muscle weakness and pain despite adhering to therapy. Seventy-six per cent of patients with disorders of the mitochondrial trifunctional protein (TFP)-complex including long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) deficiency, had long-term myopathic symptoms. Of these, 21% had irreversible peripheral neuropathy and 43% had retinopathy. The main principle of treatment was a fat-reduced and fat-modified diet. Fat restriction differed among patients with different enzyme defects and was strictest in disorders of the TFP-complex. Patients with a medium-chain fat-based diet received supplementation of essential long-chain fatty acids. l-Carnitine was supplemented in about half of the patients, but in none of the patients with VLCAD deficiency identified by newborn screening. In summary, in this cohort the treatment regimen was adapted to the severity of the underlying enzyme defect and thus differed among the group of long-chain FAO defects.
Collapse
|
Multicenter Study |
16 |
116 |
6
|
Schulze A, Hess T, Wevers R, Mayatepek E, Bachert P, Marescau B, Knopp MV, De Deyn PP, Bremer HJ, Rating D. Creatine deficiency syndrome caused by guanidinoacetate methyltransferase deficiency: diagnostic tools for a new inborn error of metabolism. J Pediatr 1997; 131:626-31. [PMID: 9386672 DOI: 10.1016/s0022-3476(97)70075-1] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hepatic guanidinoacetate methyltransferase deficiency induces a deficiency of creatine/phosphocreatine in muscle and brain and an accumulation of guanidinoacetic acid (GAA), the precursor of creatine. We describe a patient with this defect, a 4-year-old girl with a dystonic-dyskinetic syndrome in addition to developmental delay and therapy-resistant epilepsy. Several methods were used in the diagnosis of the disease: (1) the creatinine excretion in 24-hour urine was significantly lowered, whereas the creatinine concentration in plasma and in randomly collected urine was not strikingly different from control values; (2) the Sakaguchi staining reaction of guanidino compounds in random urine samples indicated an enhanced GAA excretion; (3) GAA excretion measured quantitatively by guanidino compound analysis using an amino acid analyzer was markedly elevated in random urine samples; (4) in vivo 1H magnetic resonance spectroscopy (MRS) revealed a strong depletion of creatine and an accumulation of GAA in brain; (5) in vivo phosphorus 31 MRS showed a strong decrease of the phosphocreatine resonance and a resonance identified as guanidinoacetate phosphate; and (6) in vitro 1H MRS showed an absence of creatine and creatinine resonances in cerebrospinal fluid and the occurrence of GAA in urine. For early detection of this disease, we recommend the Sakaguchi staining reaction of urine from patients with dystonic-dyskinetic syndrome, seizures, and psychomotor retardation. Positive results should result in further investigations including quantitative guanidino compound analysis and both in vivo and in vitro MRS. Although epilepsy was not affected by orally administered creatine (400 to 500 mg/kg per day), this treatment resulted in clinical improvement and an increase of creatine in cerebrospinal fluid and brain tissue.
Collapse
|
Case Reports |
28 |
110 |
7
|
Willemsen MA, IJlst L, Steijlen PM, Rotteveel JJ, de Jong JG, van Domburg PH, Mayatepek E, Gabreëls FJ, Wanders RJ. Clinical, biochemical and molecular genetic characteristics of 19 patients with the Sjögren-Larsson syndrome. Brain 2001; 124:1426-37. [PMID: 11408337 DOI: 10.1093/brain/124.7.1426] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Sjögren-Larsson syndrome (SLS) is an autosomal recessively inherited neurocutaneous disorder caused by a deficiency of the microsomal enzyme fatty aldehyde dehydrogenase (FALDH). We report the clinical characteristics and the results of molecular studies in 19 SLS patients. Patients 1-17 show the classical triad of severe clinical abnormalities including ichthyosis, mental retardation and spasticity. Most patients were born preterm, and all patients exhibit ocular abnormalities and pruritus. Electro-encephalography shows a slow background activity, without other abnormalities. MRI of the brain shows an arrest of myelination, periventricular signal abnormalities of white matter and mild ventricular enlargement. Cerebral (1)H-MR spectroscopy reveals a characteristic, abnormal lipid peak. The degree of white matter abnormality in the MRIs and the height of the lipid peak in (1)H-MR spectra do not correlate with the severity of the neurological signs. The clinical presentation and the clinical course is strikingly similar in these patients. Patient 18 shows a mild phenotype that essentially contains the same, but less severe, clinical features. Patient 19 exhibits the typical, but very mild, dermatological and ocular abnormalities, without any clinical neurological involvement. The diagnosis of SLS was confirmed by demonstration of the enzyme defect in cultured skin fibroblasts. Furthermore, as might be predicted from the essential role of FALDH in leucotriene B(4) (LTB(4)) metabolism, elevated urinary concentrations of LTB(4) and 20-OH-LTB(4) were found in all patients studied. Molecular studies of the FALDH gene revealed eight different mutations, including three new ones: a large 26-base pair deletion (21-46del), a missense mutation (80C-->T) and an insertion mutation (487-488insA). The vast majority of SLS patients seem to be severely affected independent of their genotype.
Collapse
|
Review |
24 |
105 |
8
|
Schulze A, Ebinger F, Rating D, Mayatepek E. Improving treatment of guanidinoacetate methyltransferase deficiency: reduction of guanidinoacetic acid in body fluids by arginine restriction and ornithine supplementation. Mol Genet Metab 2001; 74:413-9. [PMID: 11749046 DOI: 10.1006/mgme.2001.3257] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Guanidinoacetate methyltransferase (GAMT) deficiency (McKusick 601240), an inborn error of creatine biosynthesis, is characterized by creatine depletion and accumulation of guanidinoacetate (GAA) in the brain. Treatment by oral creatine supplementation had no effect on the intractable seizures. Based on the possible role of GAA as an epileptogenic agent, we evaluated a dietary treatment with arginine restriction and ornithine supplementation in order to achieve reduction of GAA. In an 8-year-old Kurdish girl with GAMT deficiency arginine intake was restricted to 15 mg/kg/day (0.4 g natural protein/kg/day) and ornithine was supplemented with 100 mg/kg/day over a period of 14 months. The diet was enriched with 0.4 g/kg/day of arginine-free essential amino acid mixture and creatine treatment remained unchanged (1.1 g/kg/day). Guanidino compounds in blood, urine, and CSF were measured by means of cation-exchange chromatography. The combination of arginine restriction and ornithine supplementation led to a substantial and permanent decrease of arginine without disturbance of nitrogen detoxification. Formation of GAA was effectively reduced after 4 weeks of treatment and sustained thereafter. Biochemical effects were accompanied by a marked clinical improvement. Distinctly reduced epileptogenic activities in electroencephalography accompanied by almost complete disappearance of seizures demonstrates the positive effect of GAA reduction. This indicates for the first time that GAA may exert an important epileptogenic potential in man. Arginine restriction in combination with ornithine supplementation represents a new and rationale therapeutic approach in GAMT deficiency.
Collapse
|
Case Reports |
24 |
103 |
9
|
Schulze A, Hoffmann GF, Bachert P, Kirsch S, Salomons GS, Verhoeven NM, Mayatepek E. Presymptomatic treatment of neonatal guanidinoacetate methyltransferase deficiency. Neurology 2006; 67:719-21. [PMID: 16924036 DOI: 10.1212/01.wnl.0000230152.25203.01] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Prospective observation in a neonate with guanidinoacetate methyltransferase deficiency (GAMT-D), a severe neurometabolic disorder, revealed increased guanidinoacetate levels at birth. After 14-month treatment with creatine, high-dose ornithine, benzoate, and an arginine-restricted diet, the patient's development is normal and she does not present any symptoms of GAMT-D. The authors' observation indicates that early detection of GAMT-D is possible in the neonatal period, and presymptomatic treatment may prevent its manifestation.
Collapse
|
|
19 |
81 |
10
|
Zschocke J, Ruiter JP, Brand J, Lindner M, Hoffmann GF, Wanders RJ, Mayatepek E. Progressive infantile neurodegeneration caused by 2-methyl-3-hydroxybutyryl-CoA dehydrogenase deficiency: a novel inborn error of branched-chain fatty acid and isoleucine metabolism. Pediatr Res 2000; 48:852-5. [PMID: 11102558 DOI: 10.1203/00006450-200012000-00025] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We report a novel inborn error of metabolism identified in a child with an unusual neurodegenerative disease. The male patient was born at term and recovered well from a postnatal episode of metabolic decompensation and lactic acidosis. Psychomotor development in the first year of life was only moderately delayed. After 14 mo of age, there was progressive loss of mental and motor skills; at 2 years of age, he was severely retarded with marked restlessness, choreoathetoid movements, absence of directed hand movements, marked hypotonia and little reaction to external stimuli. Notable laboratory findings included marked elevations of urinary 2-methyl-3-hydroxybutyrate and tiglylglycine without elevation of 2-methylacetoacetate, mild elevations of lactate in CSF and blood, and a slightly abnormal acylcarnitine profile. These abnormalities became more apparent after isoleucine challenge. Enzyme studies showed absent activity of 2-methyl-3-hydroxybutyryl-CoA dehydrogenase (MHBD) in the mitochondrial oxidation of 2-methyl branched-chain fatty acids and isoleucine. Under dietary isoleucine restriction, neurologic symptoms stabilized over the next 7 months.
Collapse
|
Case Reports |
25 |
78 |
11
|
|
review-article |
30 |
71 |
12
|
Swango KL, Demirkol M, Hüner G, Pronicka E, Sykut-Cegielska J, Schulze A, Mayatepek E, Wolf B. Partial biotinidase deficiency is usually due to the D444H mutation in the biotinidase gene. Hum Genet 1998; 102:571-5. [PMID: 9654207 DOI: 10.1007/s004390050742] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Newborn screening for biotinidase deficiency has identified children with profound biotinidase deficiency (<10% of mean normal serum activity) and those with partial biotinidase deficiency (10%-30% of mean normal serum activity). Children with partial biotinidase deficiency and who are not treated with biotin do not usually exhibit symptoms unless they are stressed (i.e., prolonged infection). We found that 18 of 19 randomly selected individuals with partial deficiency have the transversion missense mutation G1330>C, which substitutes a histidine for aspartic acid444 (D444H) in one allele of the biotinidase gene. We have previously estimated that the D444H mutation results in 48% of normal enzyme activity for that allele and occurs with an estimated frequency of 0.039 in the general population. The D444H mutation in biotinidase deficiency is similar to the Duarte variant in galactosemia. The D444H mutation in one allele in combination with a mutation for profound deficiency in the other allele is the common cause of partial biotinidase deficiency.
Collapse
|
|
27 |
64 |
13
|
Al Sawaf S, Mayatepek E, Hoffmann B. Neurological findings in Hunter disease: pathology and possible therapeutic effects reviewed. J Inherit Metab Dis 2008; 31:473-80. [PMID: 18618289 DOI: 10.1007/s10545-008-0878-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 05/03/2008] [Accepted: 05/20/2008] [Indexed: 12/17/2022]
Abstract
Hunter disease (mucopolysaccharidosis type II, MPS II) is an X-linked lysosomal storage disease caused by deficiency of iduronate-2-sulfatase. Accumulation of chondroitin sulfate B and heparan sulfate in various tissues is the biochemical consequence of MPS II. Children with Hunter disease are normal at birth, and symptoms occur between 2 and 10 years of age. Typical symptoms include coarse facies with enlarged tongue and prominent forehead as well as a short, stocky built stature with short neck. The cardiovascular, respiratory and gastrointestinal systems may be affected, and oral, dermatological and psychiatric as well as neurological complications are described. Life expectancy is markedly reduced and may be limited to 12 years for severely affected patients. The most common causes of death are airway obstruction and cardiac failure. The most severe symptoms may result from neurological symptoms or complications including hydrocephalus, spinal cord compression, cervical myelopathy, optic nerve compression, and hearing impairment. Patients may also develop carpal tunnel syndrome, sleep apnoea, seizures or mental retardation. This review describes characteristic neurological manifestations in MPS II and its underlying pathophysiology. In addition, an appraisal is given whether or not enzyme replacement therapy may be able to improve in particular the neurological symptoms of Hunter disease.
Collapse
|
Review |
17 |
62 |
14
|
Sass JO, Hofmann M, Skladal D, Mayatepek E, Schwahn B, Sperl W. Propionic acidemia revisited: a workshop report. Clin Pediatr (Phila) 2004; 43:837-43. [PMID: 15583780 DOI: 10.1177/000992280404300908] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Propionic acidemia (PA) is one of the most frequent organic acidurias, but information on the outcome of individuals with PA is rather limited. We present data of 49 patients with PA, which were gathered from 18 metabolic centers throughout Central Europe on the occasion of an international workshop. All patients were identified by selective metabolic screening, and 86% of them were classified as having early-onset PA owing to their presentation with clinical symptoms within the first 90 days of life. Mortality rate was one third, and details of symptoms and treatment of the surviving patients are discussed. The great variation of phenotypic expression of the disease and different therapeutic strategies (especially in regard to the degree of protein restriction) used at the various institutions involved in this study imply the need for a registry of PA patients and for a multicenter prospective treatment study.
Collapse
|
Congress |
21 |
61 |
15
|
Willemsen MA, Lutt MA, Steijlen PM, Cruysberg JR, van der Graaf M, Nijhuis-van der Sanden MW, Pasman JW, Mayatepek E, Rotteveel JJ. Clinical and biochemical effects of zileuton in patients with the Sjögren-Larsson syndrome. Eur J Pediatr 2001; 160:711-7. [PMID: 11795678 DOI: 10.1007/s004310100838] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
UNLABELLED The Sjögren-Larsson syndrome (SLS) is an inborn error of lipid metabolism, characterised clinically by congenital ichthyosis, mental retardation and spasticity. Patients also suffer from severe pruritus. The degradation of leukotriene (LT) B4 is one of the defective metabolic routes in SLS. Zileuton inhibits the synthesis of LTB4 and the cysteinyl leukotrienes. Five SLS patients were treated with zileuton for 3 months. Favourable effects were found on pruritus score (P = 0.006), general well-being, and background activity of electroencephalographic studies. Neuropsychological test results did not change significantly. There was, however, a clinically important trend towards improvement in the speed of information processing. Results of cerebral MRI and proton magnetic resonance spectroscopy did not change during therapy. Urinary concentrations of LTB4 and omega-OH-LTB4 decreased significantly (P=0.02 and P=0.003 respectively), while their concentrations in CSF were normal at baseline and remained so after therapy. CONCLUSION Patients with Sjögren-Larsson syndrome might benefit from treatment with zileuton, especially with respect to the agonising pruritus. The findings reported here, point to a crucial role for leukotriene B4 in the pathogenesis of pruritus.
Collapse
|
Comparative Study |
24 |
57 |
16
|
Mayatepek E, Lehmann WD, Fauler J, Tsikas D, Frölich JC, Schutgens RB, Wanders RJ, Keppler D. Impaired degradation of leukotrienes in patients with peroxisome deficiency disorders. J Clin Invest 1993; 91:881-8. [PMID: 8450067 PMCID: PMC288040 DOI: 10.1172/jci116309] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The degradation of leukotrienes by beta-oxidation from the omega-end proceeds in peroxisomes (Jedlitschky et al. J. Biol. Chem. 1991. 266:24763-24772). Peroxisomal degradation of leukotrienes was studied in humans by analyses of endogenous leukotrienes in urines from eight patients with biochemically established peroxisome deficiency disorder and eight age- and sex-matched healthy infant controls. Leukotriene metabolites were separated by high-performance liquid chromatography, quantified by radioimmunoassays, and identified as well as quantified by gas chromatography-mass spectrometry. Urinary leukotriene E4 (LTE4) and N-acetyl-LTE4 excretions, relative to creatinine, were increased > 10-fold in the patients in comparison to healthy infants. The beta-oxidation product omega-carboxy-tetranor-LTE3 averaged 0.05 mumol/mol creatinine in the controls but was not detectable in the patients. However, omega-carboxy-LTE4 (median 13.6 mumol/mol creatinine) was significantly increased in the patients' urine, whereas LTB4 (median 0.07 mumol/mol creatinine) and omega-carboxy-LTB4 were detected exclusively in the urines of the patients. These data indicate an impairment of the inactivation and degradation of both LTE4 and LTB4 in patients with peroxisomal deficiency. The increased levels of the biologically active, proinflammatory mediators LTE4 and LTB4 might be of pathophysiological significance in peroxisome deficiency disorders. This is the first and so far only condition with a pronounced urinary excretion of omega-carboxy-LTE4, omega-carboxy-LTB4, and LTB4. This impaired catabolism of leukotrienes and the altered pattern of metabolites may be of diagnostic value. These findings underline the essential role of peroxisomes in the catabolism of leukotrienes in humans.
Collapse
|
research-article |
32 |
56 |
17
|
Beltrán-Valero de Bernabé D, Granadino B, Chiarelli I, Porfirio B, Mayatepek E, Aquaron R, Moore MM, Festen JJ, Sanmartí R, Peñalva MA, de Córdoba SR. Mutation and polymorphism analysis of the human homogentisate 1, 2-dioxygenase gene in alkaptonuria patients. Am J Hum Genet 1998; 62:776-84. [PMID: 9529363 PMCID: PMC1377044 DOI: 10.1086/301805] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Alkaptonuria (AKU), a rare hereditary disorder of phenylalanine and tyrosine catabolism, was the first disease to be interpreted as an inborn error of metabolism. AKU patients are deficient for homogentisate 1,2 dioxygenase (HGO); this deficiency causes homogentisic aciduria, ochronosis, and arthritis. We cloned the human HGO gene and characterized two loss-of-function mutations, P230S and V300G, in the HGO gene in AKU patients. Here we report haplotype and mutational analysis of the HGO gene in 29 novel AKU chromosomes. We identified 12 novel mutations: 8 (E42A, W97G, D153G, S189I, I216T, R225H, F227S, and M368V) missense mutations that result in amino acid substitutions at positions conserved in HGO in different species, 1 (F10fs) frameshift mutation, 2 intronic mutations (IVS9-56G-->A, IVS9-17G-->A), and 1 splice-site mutation (IVS5+1G-->T). We also report characterization of five polymorphic sites in HGO and describe the haplotypic associations of alleles at these sites in normal and AKU chromosomes. One of these sites, HGO-3, is a variable dinucleotide repeat; IVS2+35T/A, IVS5+25T/C, and IVS6+46C/A are intronic sites at which single nucleotide substitutions (dimorphisms) have been detected; and c407T/A is a relatively frequent nucleotide substitution in the coding sequence, exon 4, resulting in an amino acid change (H80Q). These data provide insight into the origin and evolution of the various AKU alleles.
Collapse
|
research-article |
27 |
53 |
18
|
Abstract
OBJECTIVE The objective was to determine the long-term clinical outcome and the effects of treatment of patients with glutathione synthetase (GS) deficiency (n = 28). METHODS The diagnosis was based on demonstration of a marked decrease in GS activity in erythrocytes or cultured fibroblasts in all patients and was supported by finding a decrease in erythrocyte or fibroblast glutathione, presence of 5-oxoprolinuria, or both. The treatment varied but usually included correction of acidosis and supplementation with vitamins C and/or E. RESULTS Sixteen patients were severely affected with neurologic symptoms such as seizures and psychomotor retardation; 7 had died at the time of the study. None of the severely affected patients had been treated with both vitamins C and E from the neonatal period. No significant difference was found in GS activity between patients with or without neurologic symptoms or in erythrocyte or fibroblast glutathione levels. Five patients had recurrent bacterial infections. CONCLUSION On the basis of clinical symptoms, patients with GS deficiency can be classified into 3 phenotypes: mild, moderate, and severe. Our results indicate that early supplementation with vitamins C and E may improve the long-term clinical outcome.
Collapse
|
|
24 |
53 |
19
|
Lindner M, Haas D, Mayatepek E, Zschocke J, Burgard P. Tetrahydrobiopterin responsiveness in phenylketonuria differs between patients with the same genotype. Mol Genet Metab 2001; 73:104-6. [PMID: 11350190 DOI: 10.1006/mgme.2001.3168] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recently, BH(4)-responsive phenylalanine hydroxylase (PAH) deficiency was reported in patients with specific mutations in the PAH gene, and it was suggested that BH(4) responsiveness may be determined by the respective genotypes. We now report on three patients with PAH deficiency and the same genotype but different responses to standardized BH(4) loading. Our results suggest that BH(4) responsiveness in PAH deficiency is at least partly independent from PAH genotype.
Collapse
|
Case Reports |
24 |
52 |
20
|
Abstract
++Electrospray-tandem mass spectrometry represents a powerful method for detection of inborn errors of fatty acid metabolism. In the present study, it was used to examine neonatal carnitine metabolism, which reflects fatty acid metabolism. In 70 healthy neonates, blood samples were taken from the umbilical cord and by heel-stick puncture in full-term neonates on postnatal d 5. Cord blood specimens were also obtained from 15 preterm and 10 small-for-gestational-age infants. Acylcarnitine concentrations were measured in dried blood spots by electrospray tandem mass spectrometry. Compared with cord blood, the levels of nearly all acylcarnitine species were significantly higher on the postnatal d 5, whereas free carnitine remained unchanged. Total acylcarnitine/free carnitine-ratio increased, whereas the free carnitine/total carnitine-ratio (0.54 +/- 0.05; p < 0.01) further decreased. A reduced availability of free carnitine in the early neonatal period may affect fatty acid oxidation and thus be of potential pathophysiological relevance under conditions with higher energy demands, e.g. in sepsis. Cord blood concentrations of free carnitine, total carnitine, and total acylcarnitines were strongly related to birth weight (p < 0.01). Lower umbilical artery pH, i.e. mild hypoxia, caused accumulation of mainly long-chain acylcarnitines. This implicates that long-chain acylcarnitines could serve as a parameter of perinatal asphyxia.
Collapse
|
|
24 |
51 |
21
|
Schuelke M, Mayatepek E, Inter M, Becker M, Pfeiffer E, Speer A, Hübner C, Finckh B. Treatment of ataxia in isolated vitamin E deficiency caused by alpha-tocopherol transfer protein deficiency. J Pediatr 1999; 134:240-4. [PMID: 9931538 DOI: 10.1016/s0022-3476(99)70424-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dysfunction of the alpha-tocopherol transfer protein causes ataxia with isolated vitamin E deficiency. A 14-year-old male patient presented with ataxia and mental symptoms caused by a homozygous (552G-->A) alpha-tocopherol transfer protein mutation. After initiation of high-dosage alpha-tocopherol therapy, the organic mental syndrome disappeared and cognitive function improved rapidly. Neurologic recovery, however, was slow and incomplete.
Collapse
|
Case Reports |
26 |
50 |
22
|
Kölker S, Ahlemeyer B, Hühne R, Mayatepek E, Krieglstein J, Hoffmann GF. Potentiation of 3-hydroxyglutarate neurotoxicity following induction of astrocytic iNOS in neonatal rat hippocampal cultures. Eur J Neurosci 2001; 13:2115-22. [PMID: 11422452 DOI: 10.1046/j.0953-816x.2001.01595.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neuronal damage in glutaryl-CoA dehydrogenase deficiency (GDD) has previously been addressed to N-methyl-D-aspartate (NMDA) receptor-mediated neurotoxicity of the accumulating neurotoxic metabolite 3-hydroxyglutarate. However, acute encephalopathic crises in GDD patients are typically precipitated by febrile illness or even routine vaccinations, suggesting a potentiating role of inflammatory cytokines. In the present study we investigated the effect of interleukin-1beta and interferon-gamma on 3-hydroxyglutarate toxicity in rat cortical astrocyte cultures and neonatal rat hippocampal cultures. A cotreatment of both culture systems with interleukin-1beta and interferon-gamma induced the protein expression of astrocytic inducible nitric oxide synthase (iNOS), resulting in increased nitric oxide (NO) production. Cytokine pretreatment alone had no effect on cell viability but potentiated 3-hydroxyglutarate neurotoxicity. NOS inhibition by aminoguanidine and L-NAME prevented an iNOS-mediated potentiation of 3-hydroxyglutarate neurotoxicity but failed to protect neurons against 3-hydroxyglutarate alone. In contrast, superoxide dismutase/catalase as well as MK-801 prevented toxicity of 3-hydroxyglutarate alone as well as its potentiation by iNOS, supporting a central role of NMDA receptor stimulation with subsequently increased superoxide anion production. It is concluded that the potentiation of 3-hydroxyglutarate neurotoxicity is most probably due to an induction of astrocytic iNOS and concomitantly increased NO production, enabling enhanced peroxynitrite formation. Thus, we provide evidence for a neuroimmunological approach to the precipitation of acute encephalopathic crises in GDD by inflammatory cytokines.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Astrocytes/drug effects
- Astrocytes/enzymology
- Astrocytes/pathology
- Brain Diseases, Metabolic, Inborn/enzymology
- Brain Diseases, Metabolic, Inborn/pathology
- Brain Diseases, Metabolic, Inborn/physiopathology
- Cell Survival/drug effects
- Cell Survival/physiology
- Cells, Cultured/drug effects
- Cells, Cultured/enzymology
- Cells, Cultured/pathology
- Cerebral Cortex/drug effects
- Cerebral Cortex/enzymology
- Cerebral Cortex/pathology
- Cytokines/metabolism
- Cytokines/pharmacology
- Drug Interactions/physiology
- Enzyme Inhibitors/pharmacology
- Glutarates/metabolism
- Glutarates/pharmacology
- Glutaryl-CoA Dehydrogenase
- Hippocampus/drug effects
- Hippocampus/enzymology
- Hippocampus/pathology
- Interferon-gamma/metabolism
- Interferon-gamma/pharmacology
- Interleukin-1/metabolism
- Interleukin-1/pharmacology
- Neurons/drug effects
- Neurons/enzymology
- Neurons/pathology
- Neuroprotective Agents/pharmacology
- Neurotoxins/metabolism
- Neurotoxins/pharmacology
- Nitric Oxide/metabolism
- Nitric Oxide Synthase/biosynthesis
- Nitric Oxide Synthase/drug effects
- Oxidoreductases/deficiency
- Oxidoreductases Acting on CH-CH Group Donors
- Rats
- Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
- Receptors, N-Methyl-D-Aspartate/metabolism
Collapse
|
|
24 |
50 |
23
|
Spiekerkoetter U, Tokunaga C, Wendel U, Mayatepek E, Exil V, Duran M, Wijburg FA, Wanders RJA, Strauss AW. Changes in blood carnitine and acylcarnitine profiles of very long-chain acyl-CoA dehydrogenase-deficient mice subjected to stress. Eur J Clin Invest 2004; 34:191-6. [PMID: 15025677 DOI: 10.1111/j.1365-2362.2004.01308.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND In humans with deficiency of the very long-chain acyl-CoA dehydrogenase (VLCAD), C14-C18 acylcarnitines accumulate. In this paper we have used the VLCAD knockout mouse as a model to study changes in blood carnitine and acylcarnitine profiles under stress. DESIGN VLCAD knockout mice exhibit stress-induced hypoglycaemia and skeletal myopathy; symptoms resembling human VLCADD. To study the extent of biochemical derangement in response to different stressors, we determined blood carnitine and acylcarnitine profiles after exercise on a treadmill, fasting, or exposure to cold. RESULTS Even in a nonstressed, well-fed state, knockout mice presented twofold higher C14-C18 acylcarnitines and a lower free carnitine of 72% as compared to wild-type littermates. After 1 h of intense exercise, the C14-C18 acylcarnitines in blood significantly increased, but free carnitine remained unchanged. After 8 h of fasting at 4 degrees C, the long-chain acylcarnitines were elevated 5-fold in knockout mice in comparison with concentrations in unstressed wild-type mice (P < 0.05), and four out of 12 knockout mice died. Free carnitine decreased to 44% as compared with unstressed wild-type mice. An increase in C14-C18 acylcarnitines and a decrease of free carnitine were also observed in fasted heterozygous and wild-type mice. CONCLUSIONS Long-chain acylcarnitines in blood increase in knockout mice in response to different stressors and concentrations correlate with the clinical condition. A decrease in blood free carnitine in response to severe stress is observed in knockout mice but also in wild-type littermates. Monitoring blood acylcarnitine profiles in response to different stressors may allow systematic analysis of therapeutic interventions in VLCAD knockout mice.
Collapse
|
|
21 |
49 |
24
|
Mayatepek E, Schröder M, Kohlmüller D, Bieger WP, Nützenadel W. Continuous mannose infusion in carbohydrate-deficient glycoprotein syndrome type I. Acta Paediatr 1997; 86:1138-40. [PMID: 9350901 DOI: 10.1111/j.1651-2227.1997.tb14825.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The effects on isoelectrofocusing patterns of serum glycoproteins were studied in a patient with CDG syndrome type I and phosphomannomutase deficiency during 3 weeks of continuous intravenous mannose infusion. Doses of 5.7 g/kg/day led to stable serum mannose levels up to 2.0 mmol/l and were well tolerated without signs of liver or renal toxicity. While most of the pathological glycoprotein patterns, including alpha1-antitrypsin, typical for CDG syndrome type I remained unchanged, mannose infusion led to a unique change of the isoelectrofocusing pattern of serum sialotransferrins with appearance of two extra bands after 3 weeks of treatment.
Collapse
|
Case Reports |
28 |
48 |
25
|
Zschocke J, Schulze A, Lindner M, Fiesel S, Olgemöller K, Hoffmann GF, Penzien J, Ruiter JP, Wanders RJ, Mayatepek E. Molecular and functional characterisation of mild MCAD deficiency. Hum Genet 2001; 108:404-8. [PMID: 11409868 DOI: 10.1007/s004390100501] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report a novel mild variant of medium-chain acyl-CoA dehydrogenase deficiency (MCADD) diagnosed in four infants who, in neonatal screening, showed abnormal acylcarnitine profiles indicative of MCADD. Three patients showed completely normal urinary organic acids and phenylpropionic acid loading tests were normal in all four patients. Enzyme studies showed residual MCAD activities between "classical" MCADD and heterozygotes. ACADM gene analysis revealed compound heterozygosity for the common mutation K329E and a novel mutation, Y67H, in two cases, and homozygosity for mutation G267R and the novel mutation S245L, respectively, in two children of consanguineous parents. As in other metabolic disorders, the distinction between "normal" and "disease" in MCAD deficiency is blurring into a spectrum of enzyme deficiency states caused by different mutations in the ACADM gene potentially influenced by factors affecting intracellular protein processing.
Collapse
|
|
24 |
45 |