1
|
Arrieta O, González-De la Rosa CH, Aréchaga-Ocampo E, Villanueva-Rodríguez G, Cerón-Lizárraga TL, Martínez-Barrera L, Vázquez-Manríquez ME, Ríos-Trejo MÁ, Álvarez-Avitia MÁ, Hernández-Pedro N, Rojas-Marín C, De la Garza J. Randomized Phase II Trial of All- Trans-Retinoic Acid With Chemotherapy Based on Paclitaxel and Cisplatin As First-Line Treatment in Patients With Advanced Non–Small-Cell Lung Cancer. J Clin Oncol 2010; 28:3463-3471. [DOI: 10.1200/jco.2009.26.6452] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
Purpose This randomized phase II trial evaluated whether the combination of cisplatin and paclitaxel (PC) plus all-trans retinoic acid (ATRA) increases response rate (RR) and progression-free survival (PFS) in patients with advanced non–small-cell lung cancer (NSCLC) with an acceptable toxicity profile and its association with the expression of retinoic acid receptor beta 2 (RAR-β2) as a response biomarker. Patients and Methods Patients with stages IIIB with pleural effusion and IV NSCLC were included to receive PC, and randomly assigned to receive ATRA 20 mg/m2/d (RA/PC) or placebo (P/PC) 1 week before treatment until two cycles were completed. RAR-β2 expression was analyzed in tumor and adjacent lung tissue. Results One hundred seven patients were included, 55 in the P/PC group and 52 in the RA/PC group. RR for RA/PC was 55.8% (95% CI, 46.6% to 64.9%) and for P/PC, 25.4% (95% CI, 21.3 to 29.5%; P = .001). The RA/PC group had a longer median PFS (8.9 v 6.0 months; P = .008). Multivariate analysis of PFS showed significant differences for the RA/PC group (hazard ratio, 0.62; 95% CI, 0.4 to 0.95). No significant differences in toxicity grade 3/4 were found between groups, except for hypertriglyceridemia (10% v 0%) in RA/PC (P = .05). Immunohistochemistry and reverse-transcriptase polymerase chain reaction assays showed expression of RAR-β2 in normal tissues of all tumor samples, but only 10% of samples in the tumor tissue. Conclusion Adding ATRA to chemotherapy could increase RR and PFS in patients with advanced NSCLC with an acceptable toxicity profile. A phase III clinical trial is warranted to confirm these findings.
Collapse
|
|
15 |
105 |
2
|
García-Regalado A, Vargas M, García-Carrancá A, Aréchaga-Ocampo E, González-De la Rosa CH. Activation of Akt pathway by transcription-independent mechanisms of retinoic acid promotes survival and invasion in lung cancer cells. Mol Cancer 2013; 12:44. [PMID: 23693014 PMCID: PMC3665688 DOI: 10.1186/1476-4598-12-44] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 05/10/2013] [Indexed: 12/21/2022] Open
Abstract
Background All-trans retinoic acid (ATRA) is currently being used in clinical trials for cancer treatment. The use of ATRA is limited because some cancers, such as lung cancer, show resistance to treatment. However, little is known about the molecular mechanisms that regulate resistance to ATRA treatment. Akt is a kinase that plays a key role in cell survival and cell invasion. Akt is often activated in lung cancer, suggesting its participation in resistance to chemotherapy. In this study, we explored the hypothesis that activation of the Akt pathway promotes resistance to ATRA treatment at the inhibition of cell survival and invasion in lung cancer. We aimed to provide guidelines for the proper use of ATRA in clinical trials and to elucidate basic biological mechanisms of resistance. Results We performed experiments using the A549 human lung adenocarcinoma cell line. We found that ATRA treatment promotes PI3k-Akt pathway activation through transcription-independent mechanisms. Interestingly, ATRA treatment induces the translocation of RARα to the plasma membrane, where it colocalizes with Akt. Immunoprecipitation assays showed that ATRA promotes Akt activation mediated by RARα-Akt interaction. Activation of the PI3k-Akt pathway by ATRA promotes invasion through Rac-GTPase, whereas pretreatment with 15e (PI3k inhibitor) or over-expression of the inactive form of Akt blocks ATRA-induced invasion. We also found that treatment with ATRA induces cell survival, which is inhibited by 15e or over-expression of an inactive form of Akt, through a subsequent increase in the levels of the active form of caspase-3. Finally, we showed that over-expression of the active form of Akt significantly decreases expression levels of the tumor suppressors RARβ2 and p53. In contrast, over-expression of the inactive form of Akt restores RARβ2 expression in cells treated with ATRA, indicating that activation of the PI3k-Akt pathway inhibits the expression of ATRA target genes. Conclusion Our results demonstrate that rapid activation of Akt blocks transcription-dependent mechanism of ATRA, promotes invasion and cell survival and confers resistance to retinoic acid treatment in lung cancer cells. These findings provide an incentive for the design and clinical testing of treatment regimens that combine ATRA and PI3k inhibitors for lung cancer treatment.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
32 |
3
|
Cabrera-Licona A, Pérez-Añorve IX, Flores-Fortis M, Moral-Hernández OD, González-de la Rosa CH, Suárez-Sánchez R, Chávez-Saldaña M, Aréchaga-Ocampo E. Deciphering the epigenetic network in cancer radioresistance. Radiother Oncol 2021; 159:48-59. [PMID: 33741468 DOI: 10.1016/j.radonc.2021.03.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 02/15/2021] [Accepted: 03/09/2021] [Indexed: 12/16/2022]
Abstract
Radiotherapy, in addition to surgery and systemic chemotherapy, remains the core of the current clinical management of cancer. Radioresistance is one of the major causes of disease progression and mortality in cancer; therefore, it is a significant challenge in the treatment of locally advanced, recurrent and metastatic cancer. Epigenetic mechanisms that control hallmarks of cancer have a key role in the development of radiation resistance of cancer cells. Recent advances in DNA methylation, histone modification, chromatin remodeling and non-coding RNAs identified in the control of signal transduction pathways in cancer and cancer stem cells have provided even greater promise in the improvement of understanding cancer radioresistance. Many epigenetic drugs that target epigenetic enzymes revert the radioresistant phenotypes decreasing the possibility that resistant cancer cells will develop refractory tumors to radiotherapy. Epigenetic profiles identified as regulators of DNA damage repair, hypoxia, cell survival, apoptosis and invasion are determinants in the development of tumor radioresistance; hence, they also are promising in personalized medicine to develop novel targeted therapies or biomarkers to follow-up the effectiveness of radiotherapy. Now, it is clear that radiotherapy can influence a complex epigenetic network for transcriptional reprogramming, enabling the cells to adapt and avoid the effect of radiotherapy. This review aims to highlight the epigenetic modifications identified in cancer radioresistance and to discuss approaches to disable epigenetic networks to increase the sensitivity and specificity of radiotherapy.
Collapse
|
Review |
4 |
30 |
4
|
Flores-Pérez A, Rafaelli LE, Ramírez-Torres N, Aréchaga-Ocampo E, Frías S, Sánchez S, Marchat LA, Hidalgo-Miranda A, Quintanar-Jurado V, Rodríguez-Cuevas S, Bautista-Piña V, Carlos-Reyes Á, López-Camarillo C. RAD50 targeting impairs DNA damage response and sensitizes human breast cancer cells to cisplatin therapy. Cancer Biol Ther 2014; 15:777-788. [PMID: 24642965 PMCID: PMC4049793 DOI: 10.4161/cbt.28551] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 03/04/2014] [Accepted: 03/16/2014] [Indexed: 02/06/2023] Open
Abstract
In tumor cells the effectiveness of anti-neoplastic agents that cause cell death by induction of DNA damage is influenced by DNA repair activity. RAD50 protein plays key roles in DNA double strand breaks repair (DSBs), which is crucial to safeguard genome integrity and sustain tumor suppression. However, its role as a potential therapeutic target has not been addressed in breast cancer. Our aim in the present study was to analyze the expression of RAD50 protein in breast tumors, and evaluate the effects of RAD50-targeted inhibition on the cytotoxicity exerted by cisplatin and anthracycline and taxane-based therapies in breast cancer cells. Immunohistochemistry assays on tissue microarrays indicate that the strong staining intensity of RAD50 was reduced in 14% of breast carcinomas in comparison with normal tissues. Remarkably, RAD50 silencing by RNA interference significantly enhanced the cytotoxicity of cisplatin. Combinations of cisplatin with doxorubicin and paclitaxel drugs induced synergistic effects in early cell death of RAD50-deficient MCF-7, SKBR3, and T47D breast cancer cells. Furthermore, we found an increase in the number of DSBs, and delayed phosphorylation of histone H2AX after cisplatin treatment in RAD50-silenced cells. These cellular events were associated to a dramatical increase in the frequency of chromosomal aberrations and a decrease of cell number in metaphase. In conclusion, our data showed that RAD50 abrogation impairs DNA damage response and sensitizes breast cancer cells to cisplatin-combined therapies. We propose that the development and use of inhibitors to manipulate RAD50 levels might represent a promising strategy to sensitize breast cancer cells to DNA damaging agents.
Collapse
|
research-article |
11 |
19 |
5
|
Salgado-Albarrán M, González-Barrios R, Guerra-Calderas L, Alcaraz N, Estefanía Sánchez-Correa T, Castro-Hernández C, Sánchez-Pérez Y, Aréchaga-Ocampo E, García-Carrancá A, Cantú de León D, Herrera LA, Baumbach J, Soto-Reyes E. The epigenetic factor BORIS (CTCFL) controls the androgen receptor regulatory network in ovarian cancer. Oncogenesis 2019; 8:41. [PMID: 31406110 PMCID: PMC6690894 DOI: 10.1038/s41389-019-0150-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/08/2019] [Accepted: 06/01/2019] [Indexed: 01/24/2023] Open
Abstract
The identification of prognostic biomarkers is a priority for patients suffering from high-grade serous ovarian cancer (SOC), which accounts for >70% of ovarian cancer (OC) deaths. Meanwhile, borderline ovarian cancer (BOC) is a low malignancy tumor and usually patients undergo surgery with low probabilities of recurrence. However, SOC remains the most lethal neoplasm due to the lack of biomarkers for early diagnosis and prognosis. In this regard, BORIS (CTCFL), a CTCF paralog, is a promising cancer biomarker that is overexpressed and controls transcription in several cancer types, mainly in OC. Studies suggest that BORIS has an important function in OC by altering gene expression, but the effect and extent to which BORIS influences transcription in OC from a genome-wide perspective is unclear. Here, we sought to identify BORIS target genes in an OC cell line (OVCAR3) with potential biomarker use in OC tumor samples. To achieve this, we performed in vitro knockout and knockdown experiments of BORIS in OVCAR3 cell line followed by expression microarrays and bioinformatics network enrichment analysis to identify relevant BORIS target genes. In addition, ex vivo expression data analysis of 373 ovarian cancer patients were evaluated to identify the expression patterns of BORIS target genes. In vitro, we uncovered 130 differentially expressed genes and obtained the BORIS-associated regulatory network, in which the androgen receptor (AR) acts as a major transcription factor. Also, FN1, FAM129A, and CD97 genes, which are related to chemoresistance and metastases in OC, were identified. In SOC patients, we observed that malignancy is associated with high levels of BORIS expression while BOC patients show lower levels. Our study suggests that BORIS acts as a main regulator, and has the potential to be used as a prognostic biomarker and to yield novel drug targets among the genes BORIS controls in SOC patients.
Collapse
|
Journal Article |
6 |
16 |
6
|
Arrieta O, Michel Ortega RM, Ángeles-Sánchez J, Villarreal-Garza C, Avilés-Salas A, Chanona-Vilchis JG, Aréchaga-Ocampo E, Luévano-González A, Jiménez MÁ, Aguilar JL. Serum human chorionic gonadotropin is associated with angiogenesis in germ cell testicular tumors. J Exp Clin Cancer Res 2009; 28:120. [PMID: 19709439 PMCID: PMC2745378 DOI: 10.1186/1756-9966-28-120] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Accepted: 08/27/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Germ cell testicular tumors have survival rate that diminishes with high tumor marker levels, such as human chorionic gonadotropin (hCG). hCG may regulate vascular neoformation through vascular endothelial growth factor (VEGF). Our purpose was to determine the relationship between hCG serum levels, angiogenesis, and VEGF expression in germ cell testicular tumors. METHODS We conducted a retrospective study of 101 patients. Serum levels of hCG, alpha-fetoprotein (AFP), and lactate dehydrogenase were measured prior to surgery. Vascular density (VD) and VEGF tissue expression were determined by immunohistochemistry and underwent double-blind analysis. RESULTS Histologically, 46% were seminomas and 54%, non-seminomas. Median follow-up was 43 +/- 27 months. Relapse was present in 7.5% and mortality in 11.5%. Factors associated with high VD included non-seminoma type (p = 0.016), AFP > or = 14.7 ng/mL (p = 0.0001), and hCG > or = 25 mIU/mL (p = 0.0001). In multivariate analysis, the only significant VD-associated factor was hCG level (p = 0.04). When hCG levels were stratified, concentrations > or = 25 mIU/mL were related with increased neovascularization (p < 0.0001). VEGF expression was not associated with VD or hCG serum levels. CONCLUSION This is the first study that relates increased serum hCG levels with vascularization in testicular germ cell tumors. Hence, its expression might play a role in tumor angiogenesis, independent of VEGF expression, and may explain its association with poor prognosis. hCG might represent a molecular target for therapy.
Collapse
|
research-article |
16 |
16 |
7
|
Aréchaga-Ocampo E, Saenz-Rivera J, Sarath G, Klucas RV, Arredondo-Peter R. Cloning and expression analysis of hemoglobin genes from maize (Zea mays ssp. mays) and teosinte (Zea mays ssp. parviglumis). BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1522:1-8. [PMID: 11718894 DOI: 10.1016/s0167-4781(01)00288-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
With the exception of barley and rice, little is known about the existence of hemoglobins (Hbs) in cereals. This work reports the cloning and analysis of hb genes from maize (Zea mays ssp. mays) and teosinte (Zea mays ssp. parviglumis). Coding sequences of maize and teosinte hb genes (hbm and hbt, respectively) are highly similar to each other and are interrupted by three introns located at identical positions as other plant hb genes. Sequences of predicted Hbm and Hbt proteins are identical. The hydropathic profile of Hbm and Hbt is highly similar to that of rice Hb1, suggesting that Hbm, Hbt and Hb1 have the same tertiary structure and biochemical properties. Expression analysis showed that low levels of Hb transcripts, but considerable levels of Hb proteins exist in maize embryonic organs. No Hb transcripts and proteins were detected in teosinte embryonic organs. Low levels of Hb proteins, but no Hb transcripts, were detected in maize and teosinte vegetative organs. These observations suggest that the regulation of hb genes is different in maize and teosinte embryonic organs, and that the expression of hb genes is down- or up-regulated in maize and teosinte, respectively, from germination to vegetative growing.
Collapse
|
Comparative Study |
24 |
15 |
8
|
Aréchaga-Ocampo E, Pereira-Suárez AL, del Moral-Hernández O, Cedillo-Barrón L, Rodríguez-Sastre MA, Castillo-Álvarez A, López-Bayghen E, Villegas-Sepúlveda N. HPV+ cervical carcinomas and cell lines display altered expression of caspases. Gynecol Oncol 2008; 108:10-8. [DOI: 10.1016/j.ygyno.2007.08.070] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Revised: 08/16/2007] [Accepted: 08/17/2007] [Indexed: 11/28/2022]
|
|
17 |
14 |
9
|
Landero-Huerta DA, Vigueras-Villaseñor RM, Yokoyama-Rebollar E, García-Andrade F, Rojas-Castañeda JC, Herrera-Montalvo LA, Díaz-Chávez J, Pérez-Añorve IX, Aréchaga-Ocampo E, Chávez-Saldaña MD. Cryptorchidism and Testicular Tumor: Comprehensive Analysis of Common Clinical Features and Search of SNVs in the KIT and AR Genes. Front Cell Dev Biol 2020; 8:762. [PMID: 32850863 PMCID: PMC7426638 DOI: 10.3389/fcell.2020.00762] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/21/2020] [Indexed: 11/17/2022] Open
Abstract
Allelic variants in genes implicated in the development of testicular germ cell tumor (TGCT) could be present in patients with cryptorchidism (CO). Currently; the mechanisms explaining this relationship are still unknown. In this study the common clinical features in patients with CO and TGCT and 6 variants of KIT and AR genes associated to TGCT were analyzed. Population analyzed included 328 individuals: 91 patients with CO; 79 with TGCT, 13 of them with previous CO diagnosis, and 158 healthy males. Of the 13 patients with TGCT and history of CO, one patient (7.7%) presented the heterozygous form of the variant rs121913507 and two patients (15.4%) presented homozygote genotype for the variant rs121913506 in KIT gene. Interestingly, the heterozygous form for the variant rs121913506 of KIT gene was identifying in all of 13 patients. The rs201934623, rs774171864, and rs12014709 variants of the AR gene did not show any clinical association. Our results strongly support that genetic component in CO could be conditioning for the development of TGCT. Notably, KIT gene variants might be determinants in the pathological association between TGCT and CO.
Collapse
|
|
5 |
8 |
10
|
Luan P, Aréchaga-Ocampo E, Sarath G, Arredondo-Peter R, Klucas RV. Analysis of a ferric leghemoglobin reductase from cowpea (Vigna unguiculata) root nodules. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2000; 154:161-170. [PMID: 10729615 DOI: 10.1016/s0168-9452(99)00272-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Ferric leghemoglobin reductase (FLbR), an enzyme reducing ferric leghemoglobin (Lb) to ferrous Lb, was purified from cowpea (Vigna unguiculata) root nodules by sequential chromatography on hydroxylapatite followed by Mono-Q HR5/5 FPLC and Sephacryl S-200 gel filtration. The purified cowpea FLbR had a specific activity of 216 nmol Lb(2+)O(2) formed min(-1) mg(-1) of enzyme for cowpea Lb(3+) and a specific activity of 184 nmol Lb(2+)O(2) formed min(-1) mg(-1) of enzyme for soybean Lb(3+). A cDNA clone of cowpea FLbR was obtained by screening a cowpea root nodule cDNA library. The nucleotide sequence of cowpea FLbR cDNA exhibited about 88% similarity with soybean (Glycine max) FLbR and 85% with pea (Pisum sativum) dihydrolipoamide dehydrogenase (DLDH, EC 1.8.1.4) cDNAs. Conserved regions for the FAD-binding site, NAD(P)H-binding site, and disulfide active site were identified among the deduced amino acid sequences of cowpea FLbR, soybean FLbR, pea DLDH and other enzymes in the family of the pyridine nucleotide-disulfide oxido-reductases.
Collapse
|
|
25 |
5 |
11
|
Madrigal T, Ortega-Bernal D, Herrera LA, González-De la Rosa CH, Domínguez-Gómez G, Aréchaga-Ocampo E, Díaz-Chávez J. Mutant p53 Gain-of-Function Induces Migration and Invasion through Overexpression of miR-182-5p in Cancer Cells. Cells 2023; 12:2506. [PMID: 37887350 PMCID: PMC10605582 DOI: 10.3390/cells12202506] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/29/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
The master-key TP53 gene is a tumor suppressor that is mutated in more than 50% of human cancers. Some p53 mutants lose their tumor suppressor activity and acquire new oncogenic functions, known as a gain of function (GOF). Recent studies have shown that p53 mutants can exert oncogenic effects through specific miRNAs. We identified the differentially expressed miRNA profiles of the three most frequent p53 mutants (p53R273C, p53R248Q, and p53R175H) after their transfection into the Saos-2 cell line (null p53) as compared with p53WT transfected cells. The associations between these miRNAs and the signaling pathways in which they might participate were identified with miRPath Software V3.0. QRT-PCR was employed to validate the miRNA profiles. We observed that p53 mutants have an overall negative effect on miRNA expression. In the global expression profile of the human miRNome regulated by the p53R273C mutant, 72 miRNAs were underexpressed and 35 overexpressed; in the p53R175H miRNAs profile, our results showed the downregulation of 93 and upregulation of 10 miRNAs; and in the miRNAs expression profile regulated by the p53R248Q mutant, we found 167 decreased and 6 increased miRNAs compared with p53WT. However, we found overexpression of some miRNAs, like miR-182-5p, in association with processes such as cell migration and invasion. In addition, we explored whether the induction of cell migration and invasion by the p53R48Q mutant was dependent on miR-182-5p because we found overexpression of miR-182-5p, which is associated with processes such as cell migration and invasion. Inhibition of mutant p53R248Q and miR-182-5p increased FOXF2-MTSS1 levels and decreased cell migration and invasion. In summary, our results suggest that p53 mutants increase the expression of miR-182-5p, and this miRNA is necessary for the p53R248Q mutant to induce cell migration and invasion in a cancer cell model.
Collapse
|
research-article |
2 |
4 |
12
|
Vaisman CE, Del Moral-Hernandez O, Moreno-Campuzano S, Aréchaga-Ocampo E, Bonilla-Moreno R, Garcia-Aguiar I, Cedillo-Barron L, Berumen J, Nava P, Villegas-Sepúlveda N. C33-A cells transfected with E6*I or E6*II the short forms of HPV-16 E6, displayed opposite effects on cisplatin-induced apoptosis. Virus Res 2018; 247:94-101. [PMID: 29452161 DOI: 10.1016/j.virusres.2018.02.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 02/10/2018] [Accepted: 02/12/2018] [Indexed: 12/31/2022]
Abstract
The HPV-16 E6/E7 bicistronic immature transcript produces 4 mature RNAs: the unspliced HPV-16 E6/E7pre-mRNA product and 3 alternatively spliced mRNAs. The 3 spliced mRNAs encode short forms of the E6 oncoprotein, namely E6*I, E6*II and E6^E7. In this study we showed that transfection of C-33A cells with monocistronic constructs of these cDNAs fused to GFP, produced different effects on apoptosis, after the treatment with cisplatin. Transfection of C-33A cells with the full-length E6-GFP oncoprotein resulted in a 50% decrease in cell death, while the transfection with the E6*I-GFP construct showed only a 25% of diminution of cell death, compared to the control cells. Transfection with the E6^E7-GFP or E7-GFP construct had no effect on the number of the apoptotic cells, compared with control cells. Conversely, transfection with the E6*II construct resulted in higher cell death than the control cells. Taken together, these results suggested that E6*I or E6*II, the short forms of HPV-16 E6, displayed opposite effects on cisplatin-induced apoptosis, when transfected in C-33A cells.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
3 |
13
|
García-Andrade F, Vigueras-Villaseñor RM, Chávez-Saldaña MD, Rojas-Castañeda JC, Bahena-Ocampo IU, Aréchaga-Ocampo E, Díaz-Chávez J, Landero-Huerta DA. The Role of microRNAs in the Gonocyte Theory as Target of Malignancy: Looking for Potential Diagnostic Biomarkers. Int J Mol Sci 2022; 23:ijms231810526. [PMID: 36142439 PMCID: PMC9505168 DOI: 10.3390/ijms231810526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/30/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
Abstract
Some pediatric patients with cryptorchidism preserve cells with gonocyte characteristics beyond their differentiation period, which could support the theory of the gonocyte as a target for malignancy in the development of testicular neoplasia. One of the key molecules in gonocyte malignancy is represented by microRNAs (miRNAs). The goal of this review is to give an overview of miRNAs, a class of small non-coding RNAs that participate in the regulation of gene expression. We also aim to review the crucial role of several miRNAs that have been further described in the regulation of gonocyte differentiation to spermatogonia, which, when transformed, could give rise to germ cell neoplasia in situ, a precursor lesion to testicular germ cell tumors. Finally, the potential use of miRNAs as diagnostic and prognostic biomarkers in testicular neoplasia is addressed, due to their specificity and sensitivity compared to conventional markers, as well as their applications in therapeutics.
Collapse
|
Review |
3 |
3 |
14
|
Landero-Huerta DA, Vigueras-Villaseñor RM, Taja-Chayeb L, García-Andrade F, Aréchaga-Ocampo E, Yokoyama-Rebollar E, Díaz-Chávez J, Herrera LA, Chávez-Saldaña MD. Analysis of the CAG tract length in the Androgen Receptor gene in Mexican patients with nonsyndromic cryptorchidism. J Pediatr Endocrinol Metab 2021; 34:843-849. [PMID: 33838085 DOI: 10.1515/jpem-2020-0378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 03/05/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Cryptorchidism is the most common genitourinary birth defect in live newborn males and is considered as an important risk factor for testicular germ cell tumors and infertility. The Androgen Receptor gene is important in this pathology due to its participation, mainly, in the inguinoscrotal phase of testicular descent. We determine the length of the CAG tract in the Androgen Receptor (AR) gene in Mexican patients with nonsyndromic cryptorchidism. METHODS One hundred and 15 males were included; of these, 62 had nonsyndromic cryptorchidism and 53 were healthy volunteers. DNA was extracted from a peripheral blood samples, subsequently, the CAG tract in exon 1 of AR gene was amplified by PCR and sequenced. RESULTS Mexican patients with nonsyndromic cryptorchidism presented 25.03 ± 2.58 repeats of CAG tract in the AR gene compared to 22.72 ± 3.17 repeats of CAG tract in Mexican healthy individuals (p≤0.0001; t value of 4.3). Furthermore, the deletion of codon 57 that corresponds to the deletion of a leucine residue at position 57 (Del L57) in the AR gene was found for the first time in a nonsyndromic cryptorchidism patient. This molecular alteration has been related previously to testicular germ cell tumor (TGCT). CONCLUSIONS The CAG tract in the AR gene is longer in patients with nonsyndromic cryptorchidism than in healthy individuals, supporting the association between this polymorphism of the AR gene and nonsyndromic cryptorchidism in the Mexican population.
Collapse
|
|
4 |
1 |
15
|
García-Andrade F, Vigueras-Villaseñor RM, Chávez-Saldaña MD, Rojas-Castañeda JC, Bahena-Ocampo IU, Aréchaga-Ocampo E, Flores-Fortis M, Díaz-Chávez J, Herrera LA, Landero-Huerta DA. Molecular Characterization of Patients with Cryptorchidism: Preliminary Search for an Expression Profile Related to That of Testicular Germ-Cell Tumors. Diagnostics (Basel) 2023; 13:3020. [PMID: 37761387 PMCID: PMC10529510 DOI: 10.3390/diagnostics13183020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/30/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Cryptorchidism (CO) is a risk factor for the development of testicular germ-cell tumors (TGCT). This is supported by reports showing the persistence of gonocytes in CO patients. These cells are proposed to be related to the development of germ-cell neoplasia in situ (GCNIS), which is considered the precursor stage/lesion of TGCT. Therefore, it is proposed that some patients with CO could express some molecular markers related to TGCT. In this study, we analyzed testicular tissue samples from CO, TGCT, and controls. We determined the expression of POU5F1, PLAP, and KIT by immunohistochemistry and that of the hsa-miR-371-373 cluster, hsa-miR-367, and LATS2, PTEN, and IGFR1 genes by RT-qPCR. We then carried out a bioinformatic analysis to identify other possible candidate genes as tumor biomarkers. We found that 16.7% (2/12) of the CO patients presented increased expression of POU5F1, KIT, PLAP, hsa-miR-371-373, and hsa-miR-367 and decreased expression of LATS2 and IGF1R. Finally, the genes ARID4B, GALNT3, and KPNA6 were identified as other possible candidate tumor biomarkers. This is the first report describing the expression of the hsa-miR-371-373 cluster, hsa-miR-367, LATS2, and IGF1R in the testicular tissues of two CO patients with cells immune-positive to POU5F1, PLAP, and KIT, which is similar to what is observed in TGCT.
Collapse
|
research-article |
2 |
1 |
16
|
Cortés-Camacho F, Zambrano-Vásquez OR, Aréchaga-Ocampo E, Castañeda-Sánchez JI, Gonzaga-Sánchez JG, Sánchez-Gloria JL, Sánchez-Lozada LG, Osorio-Alonso H. Sodium-Glucose Cotransporter Inhibitors: Cellular Mechanisms Involved in the Lipid Metabolism and the Treatment of Chronic Kidney Disease Associated with Metabolic Syndrome. Antioxidants (Basel) 2024; 13:768. [PMID: 39061837 PMCID: PMC11274291 DOI: 10.3390/antiox13070768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Metabolic syndrome (MetS) is a multifactorial condition that significantly increases the risk of cardiovascular disease and chronic kidney disease (CKD). Recent studies have emphasized the role of lipid dysregulation in activating cellular mechanisms that contribute to CKD progression in the context of MetS. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) have demonstrated efficacy in improving various components of MetS, including obesity, dyslipidemia, and insulin resistance. While SGLT2i have shown cardioprotective benefits, the underlying cellular mechanisms in MetS and CKD remain poorly studied. Therefore, this review aims to elucidate the cellular mechanisms by which SGLT2i modulate lipid metabolism and their impact on insulin resistance, mitochondrial dysfunction, oxidative stress, and CKD progression. We also explore the potential benefits of combining SGLT2i with other antidiabetic drugs. By examining the beneficial effects, molecular targets, and cytoprotective mechanisms of both natural and synthetic SGLT2i, this review provides a comprehensive understanding of their therapeutic potential in managing MetS-induced CKD. The information presented here highlights the significance of SGLT2i in addressing the complex interplay between metabolic dysregulation, lipid metabolism dysfunction, and renal impairment, offering clinicians and researchers a valuable resource for developing improved treatment strategies and personalized approaches for patients with MetS and CKD.
Collapse
|
Review |
1 |
|
17
|
Zambrano-Vásquez OR, Cortés-Camacho F, Castañeda-Sánchez JI, Aréchaga-Ocampo E, Valle-Velázquez E, Cabrera-Angeles JC, Sánchez-Gloria JL, Sánchez-Muñoz F, Arellano-Buendia AS, Sánchez-Lozada LG, Osorio-Alonso H. Update in non-alcoholic fatty liver disease management: role of sodium-glucose cotransporter 2 inhibitors. Life Sci 2025; 372:123638. [PMID: 40246191 DOI: 10.1016/j.lfs.2025.123638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/28/2025] [Accepted: 04/09/2025] [Indexed: 04/19/2025]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is characterized by excessive lipid accumulation in hepatocytes without significant alcohol consumption. It is closely associated with sedentarism, hypercaloric diets, obesity, dyslipidemia, insulin resistance, type 2 diabetes mellitus, and genetic predisposition. NAFLD comprises a spectrum of liver disorders, from simple steatosis to non-alcoholic (NASH) and liver cirrhosis. The complex etiological mechanisms include oxidative stress, inflammation, apoptosis, and fibrosis; therefore, its management is challenging. Sodium-glucose cotransporter type 2 inhibitors (SGLT2i), a class of antidiabetic drugs, have emerged as promising therapeutic agents due to their ability to improve key metabolic parameters, including obesity, dyslipidemia, insulin resistance, and hyperglycemia. This review explores the cellular mechanisms by which SGLT2i, either as monotherapy or combined with other treatments, modulate signaling pathways involved in lipid and carbohydrate metabolism. Additionally, we examine their effects on oxidative stress, inflammation, fibrosis, and apoptosis, which are critical drivers of NAFLD progression. This review is intended to summarize the multiple benefits of SGLT2 inhibitors and to educate healthcare providers on the therapeutic potential of these drugs in order to foster their incorporation into effective NAFLD management plans.
Collapse
|
Review |
1 |
|
18
|
Quintero Barceinas RS, García-Regalado A, Aréchaga-Ocampo E, González-De la Rosa CH. Abstract 4975: All-trans retinoic acid induces proliferation, survival and migration in A549 lung cancer cells by activating the ERK signaling pathway through a transcription independent mechanism. Cancer Res 2015. [DOI: 10.1158/1538-7445.am2015-4975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
All-trans retinoic acid (ATRA) have tumor-suppressive capacity by their ability to promote differentiation and inhibit proliferation, mainly in leukemia, however in other tumor types the treatment with ATRA is restricted because not all the patients have the same results. ATRA is able to modulate the PI3K and ERK signaling pathways and promote differentiation in neuronal cells by a transcription independent mechanism. In lung cancer cells this non genomic mechanism by ATRA is able to active the PI3K signaling pathway and trigger cellular processes like invasion and survival. Nevertheless is unknown if ERK could be modulated by ATRA in lung cancer cells. We investigated the effects of ATRA on the activation of ERK pathway in the ATRA-resistant A549 lung adenocarcinoma cell line. The phosphorylated form of ERK was detected by western blot within 5 and 15 min after ATRA treatment. Further evaluation using specific RAR antagonists, AGN 193109 and Ro 41-5253, which prevent expression of ATRA target genes, showed the same effect over ERK. To elucidate the potential crosstalk between PI3K and ERK signaling, we used cells pretreated with wortmannin, a potent and specific PI3K inhibitor, and showed that wortmannin alone or in combination with ATRA increased the activation of ERK. These data suggest that PI3K negatively regulate ERK phosphorylation through the signaling complex ATRA/RARα. As we reported previously, ATRA does not induce significant changes on proliferation, however, the combination of ATRA with PD98059, the pharmacological inhibitor of MEK-ERK, decreases proliferation by 50%. These results suggest that activation of ERK is involved in blocking the classical anti-proliferative effects of ATRA in A549 cell line. Moreover, ERK pathway activation promotes anti-apoptosis in response to ATRA treatment in A549 cells. In addition, wound healing assay in presence of PD98059 showed that migration promoted by ATRA in A549 cells can be delayed. Our results indicate that ATRA activates the ERK signaling pathway by a transcription independent mechanism through signaling cascade, which involves RARα and PI3K modulating the ERK activation. This signaling pathway promotes proliferation, survival and migration in lung cancer cells. The inhibition of ERK signaling pathway restores the anti-tumoral effects of ATRA. It is interesting to speculate that using a combination of ERK and PI3K inhibitors may improve the tumor-suppressive activity of ATRA in lung cancer patients.
Note: This abstract was not presented at the meeting.
Citation Format: Reyna S. Quintero Barceinas, Alejandro García-Regalado, Elena Aréchaga-Ocampo, Claudia H. González-De la Rosa. All-trans retinoic acid induces proliferation, survival and migration in A549 lung cancer cells by activating the ERK signaling pathway through a transcription independent mechanism. [abstract]. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18-22; Philadelphia, PA. Philadelphia (PA): AACR; Cancer Res 2015;75(15 Suppl):Abstract nr 4975. doi:10.1158/1538-7445.AM2015-4975
Collapse
|
|
10 |
|
19
|
Álvarez-Hilario LG, Salmerón-Bárcenas EG, Ávila-López PA, Hernández-Montes G, Aréchaga-Ocampo E, Herrera-Goepfert R, Albores-Saavedra J, Manzano-Robleda MDC, Saldívar-Cerón HI, Martínez-Frías SP, Thompson-Bonilla MDR, Vargas M, Hernández-Rivas R. Circulating miRNAs as Noninvasive Biomarkers for PDAC Diagnosis and Prognosis in Mexico. Int J Mol Sci 2023; 24:15193. [PMID: 37894871 PMCID: PMC10607652 DOI: 10.3390/ijms242015193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/20/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
Among malignant neoplasms, pancreatic ductal adenocarcinoma (PDAC) has one of the highest fatality rates due to its late detection. Therefore, it is essential to discover a noninvasive, early, specific, and sensitive diagnostic method. MicroRNAs (miRNAs) are attractive biomarkers because they are accessible, highly specific, and sensitive. It is crucial to find miRNAs that could be used as possible biomarkers because PDAC is the eighth most common cause of cancer death in Mexico. With the help of microRNA microarrays, differentially expressed miRNAs (DEmiRNAs) were found in PDAC tissues. The presence of these DEmiRNAs in the plasma of Mexican patients with PDAC was determined using RT-qPCR. Receiver operating characteristic curve analysis was performed to determine the diagnostic capacity of these DEmiRNAs. Gene Expression Omnibus datasets (GEO) were employed to verify our results. The Prisma V8 statistical analysis program was used. Four DEmiRNAs in plasma from PDAC patients and microarray tissues were found. Serum samples from patients with PDAC were used to validate their overexpression in GEO databases. We discovered a new panel of the two miRNAs miR-222-3p and miR-221-3p that could be used to diagnose PDAC, and when miR-221-3p and miR-222-3p were overexpressed, survival rates decreased. Therefore, miR-222-3p and miR-221-3p might be employed as noninvasive indicators for the diagnosis and survival of PDAC in Mexican patients.
Collapse
|
research-article |
2 |
|
20
|
Arias-Pérez O, Escobedo-Tapia T, Cintora-Ahumada C, León-Solís L, Leyva-García N, Aréchaga-Ocampo E, Franco-Cendejas R, Hernández-Hernández O, Suárez-Sánchez R. Enrichment of H3S28p and H3K9me2 Epigenetic Marks on Inflammatory-Associated Gene Promoters in Response to Severe Burn Injury. Life (Basel) 2024; 14:1581. [PMID: 39768289 PMCID: PMC11677237 DOI: 10.3390/life14121581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/23/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Severe burns activate systemic inflammation and lead to an increase in cytokine levels. Epigenetic elements are key regulators of inflammation; however, their involvement in severe burns has not been studied. In this work, we aimed to unveil the histone H3 posttranslational modifications (PTM) profile and their enrichment in promoters of inflammatory genes in response to severe burns. METHODS The levels of H3 PTMs were analyzed by ELISA assays in circulating cells from burn patients. ChIP assays were conducted to evaluate the enrichment of H3K9me2 and H3S28p at the promoter of CXCL8, IL-17, TNFA, IL-6, FOS, and IL-1B genes. RESULTS We found that eight H3 PTMs decreased at 5 days post-burn. Burn patients showed a decreased enrichment of H3K9me2 in CXCL8, IL-17, and TNFA promoters, whereas IL-6, FOS, and IL-1B promoters displayed an H3S28p enrichment diminution during the first 10 days post-burn. Interestingly, burn-injured septic patients exhibited an increased enrichment of H3K9me2 in TNFA, IL-1B, CXCL8, and IL-17 promoters, whereas H3S28p was increased in promoters of TNFA and IL-1B at 1 dpb. CONCLUSION Severe burns trigger epigenetic changes and differential H3 PTM enrichment at inflammation gene promoters. Epigenetic misregulation of H3 may be involved in sepsis occurrence after severe burn injury.
Collapse
|
research-article |
1 |
|