1
|
Feraru E, Paciorek T, Feraru MI, Zwiewka M, De Groodt R, De Rycke R, Kleine-Vehn J, Friml J. The AP-3 β adaptin mediates the biogenesis and function of lytic vacuoles in Arabidopsis. THE PLANT CELL 2010; 22:2812-24. [PMID: 20729380 PMCID: PMC2947184 DOI: 10.1105/tpc.110.075424] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 07/16/2010] [Accepted: 07/23/2010] [Indexed: 05/18/2023]
Abstract
Plant vacuoles are essential multifunctional organelles largely distinct from similar organelles in other eukaryotes. Embryo protein storage vacuoles and the lytic vacuoles that perform a general degradation function are the best characterized, but little is known about the biogenesis and transition between these vacuolar types. Here, we designed a fluorescent marker-based forward genetic screen in Arabidopsis thaliana and identified a protein affected trafficking2 (pat2) mutant, whose lytic vacuoles display altered morphology and accumulation of proteins. Unlike other mutants affecting the vacuole, pat2 is specifically defective in the biogenesis, identity, and function of lytic vacuoles but shows normal sorting of proteins to storage vacuoles. PAT2 encodes a putative β-subunit of adaptor protein complex 3 (AP-3) that can partially complement the corresponding yeast mutant. Manipulations of the putative AP-3 β adaptin functions suggest a plant-specific role for the evolutionarily conserved AP-3 β in mediating lytic vacuole performance and transition of storage into the lytic vacuoles independently of the main prevacuolar compartment-based trafficking route.
Collapse
|
research-article |
15 |
110 |
2
|
Naramoto S, Otegui MS, Kutsuna N, de Rycke R, Dainobu T, Karampelias M, Fujimoto M, Feraru E, Miki D, Fukuda H, Nakano A, Friml J. Insights into the localization and function of the membrane trafficking regulator GNOM ARF-GEF at the Golgi apparatus in Arabidopsis. THE PLANT CELL 2014; 26:3062-76. [PMID: 25012191 PMCID: PMC4145132 DOI: 10.1105/tpc.114.125880] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/28/2014] [Accepted: 06/04/2014] [Indexed: 05/19/2023]
Abstract
GNOM is one of the most characterized membrane trafficking regulators in plants, with crucial roles in development. GNOM encodes an ARF-guanine nucleotide exchange factor (ARF-GEF) that activates small GTPases of the ARF (ADP ribosylation factor) class to mediate vesicle budding at endomembranes. The crucial role of GNOM in recycling of PIN auxin transporters and other proteins to the plasma membrane was identified in studies using the ARF-GEF inhibitor brefeldin A (BFA). GNOM, the most prominent regulator of recycling in plants, has been proposed to act and localize at so far elusive recycling endosomes. Here, we report the GNOM localization in context of its cellular function in Arabidopsis thaliana. State-of-the-art imaging, pharmacological interference, and ultrastructure analysis show that GNOM predominantly localizes to Golgi apparatus. Super-resolution confocal live imaging microscopy identified GNOM and its closest homolog GNOM-like 1 at distinct subdomains on Golgi cisternae. Short-term BFA treatment stabilizes GNOM at the Golgi apparatus, whereas prolonged exposures results in GNOM translocation to trans-Golgi network (TGN)/early endosomes (EEs). Malformed TGN/EE in gnom mutants suggests a role for GNOM in maintaining TGN/EE function. Our results redefine the subcellular action of GNOM and reevaluate the identity and function of recycling endosomes in plants.
Collapse
|
research-article |
11 |
101 |
3
|
Feraru E, Friml J. PIN polar targeting. PLANT PHYSIOLOGY 2008; 147:1553-9. [PMID: 18678746 PMCID: PMC2492634 DOI: 10.1104/pp.108.121756] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Accepted: 06/24/2008] [Indexed: 05/20/2023]
|
Review |
17 |
101 |
4
|
Feraru E, Feraru MI, Asaoka R, Paciorek T, De Rycke R, Tanaka H, Nakano A, Friml J. BEX5/RabA1b regulates trans-Golgi network-to-plasma membrane protein trafficking in Arabidopsis. THE PLANT CELL 2012; 24:3074-86. [PMID: 22773752 PMCID: PMC3426133 DOI: 10.1105/tpc.112.098152] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 05/14/2012] [Accepted: 06/23/2012] [Indexed: 05/18/2023]
Abstract
Constitutive endocytic recycling is a crucial mechanism allowing regulation of the activity of proteins at the plasma membrane and for rapid changes in their localization, as demonstrated in plants for PIN-FORMED (PIN) proteins, the auxin transporters. To identify novel molecular components of endocytic recycling, mainly exocytosis, we designed a PIN1-green fluorescent protein fluorescence imaging-based forward genetic screen for Arabidopsis thaliana mutants that showed increased intracellular accumulation of cargos in response to the trafficking inhibitor brefeldin A (BFA). We identified bex5 (for BFA-visualized exocytic trafficking defective), a novel dominant mutant carrying a missense mutation that disrupts a conserved sequence motif of the small GTPase, RAS GENES FROM RAT BRAINA1b. bex5 displays defects such as enhanced protein accumulation in abnormal BFA compartments, aberrant endosomes, and defective exocytosis and transcytosis. BEX5/RabA1b localizes to trans-Golgi network/early endosomes (TGN/EE) and acts on distinct trafficking processes like those regulated by GTP exchange factors on ADP-ribosylation factors GNOM-LIKE1 and HOPM INTERACTOR7/BFA-VISUALIZED ENDOCYTIC TRAFFICKING DEFECTIVE1, which regulate trafficking at the Golgi apparatus and TGN/EE, respectively. All together, this study identifies Arabidopsis BEX5/RabA1b as a novel regulator of protein trafficking from a TGN/EE compartment to the plasma membrane.
Collapse
|
research-article |
13 |
92 |
5
|
Feraru E, Feraru MI, Barbez E, Waidmann S, Sun L, Gaidora A, Kleine-Vehn J. PILS6 is a temperature-sensitive regulator of nuclear auxin input and organ growth in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2019; 116:3893-3898. [PMID: 30755525 PMCID: PMC6397578 DOI: 10.1073/pnas.1814015116] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Temperature modulates growth and development throughout the entire lifecycle of a plant. High temperature (HT) triggers the auxin biosynthesis-dependent growth in aerial tissues. On the other hand, the contribution of auxin to HT-induced root growth is currently under debate. Here we show that the putative intracellular auxin carrier PIN-LIKES 6 (PILS6) is a negative regulator of organ growth and that its abundance is highly sensitive to HT. PILS6 localizes to the endoplasmic reticulum and limits the nuclear availability of auxin, consequently reducing the auxin signaling output. HT represses the PILS6 protein abundance, which impacts on PILS6-dependent auxin signaling in roots and root expansion. Accordingly, we hypothesize that PILS6 is part of an alternative mechanism linking HT to auxin responses in roots.
Collapse
|
research-article |
6 |
73 |
6
|
Viaene T, Landberg K, Thelander M, Medvecka E, Pederson E, Feraru E, Cooper E, Karimi M, Delwiche C, Ljung K, Geisler M, Sundberg E, Friml J. Directional Auxin Transport Mechanisms in Early Diverging Land Plants. Curr Biol 2014; 24:2786-91. [DOI: 10.1016/j.cub.2014.09.056] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 08/20/2014] [Accepted: 09/16/2014] [Indexed: 10/24/2022]
|
|
11 |
67 |
7
|
Sun L, Feraru E, Feraru MI, Waidmann S, Wang W, Passaia G, Wang ZY, Wabnik K, Kleine-Vehn J. PIN-LIKES Coordinate Brassinosteroid Signaling with Nuclear Auxin Input in Arabidopsis thaliana. Curr Biol 2020; 30:1579-1588.e6. [PMID: 32169207 PMCID: PMC7198975 DOI: 10.1016/j.cub.2020.02.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/12/2019] [Accepted: 02/03/2020] [Indexed: 11/15/2022]
Abstract
Auxin and brassinosteroids (BR) are crucial growth regulators and display overlapping functions during plant development. Here, we reveal an alternative phytohormone crosstalk mechanism, revealing that BR signaling controls PIN-LIKES (PILS)-dependent nuclear abundance of auxin. We performed a forward genetic screen for imperial pils (imp) mutants that enhance the overexpression phenotypes of PILS5 putative intracellular auxin transport facilitator. Here, we report that the imp1 mutant is defective in the BR-receptor BRASSINOSTEROID INSENSITIVE 1 (BRI1). Our set of data reveals that BR signaling transcriptionally and post-translationally represses the accumulation of PILS proteins at the endoplasmic reticulum, thereby increasing nuclear abundance and signaling of auxin. We demonstrate that this alternative phytohormonal crosstalk mechanism integrates BR signaling into auxin-dependent organ growth rates and likely has widespread importance for plant development.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
44 |
8
|
Feraru E, Vosolsobě S, Feraru MI, Petrášek J, Kleine-Vehn J. Evolution and Structural Diversification of PILS Putative Auxin Carriers in Plants. FRONTIERS IN PLANT SCIENCE 2012; 3:227. [PMID: 23091477 PMCID: PMC3470039 DOI: 10.3389/fpls.2012.00227] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 09/21/2012] [Indexed: 05/21/2023]
Abstract
The phytohormone auxin contributes to virtually every aspect of the plant development. The spatiotemporal distribution of auxin depends on a complex interplay between auxin metabolism and intercellular auxin transport. Intracellular auxin compartmentalization provides another link between auxin transport processes and auxin metabolism. The PIN-LIKES (PILS) putative auxin carriers localize to the endoplasmic reticulum (ER) and contribute to cellular auxin homeostasis. PILS proteins regulate intracellular auxin accumulation, the rate of auxin conjugation and, subsequently, affect nuclear auxin signaling. Here, we investigate sequence diversification of the PILS family in Arabidopsis thaliana and provide insights into the evolution of these novel putative auxin carriers in plants. Our data suggest that PILS proteins are conserved throughout the plant lineage and expanded during higher plant evolution. PILS proteins diversified early during plant evolution into three clades. Besides the ancient Clade I encompassing non-land plant species, PILS proteins evolved into two clades. The diversification of Clade II and Clade III occurred already at the level of non-vascular plant evolution and, hence, both clades contain vascular and non-vascular plant species. Nevertheless, Clade III contains fewer non- and increased numbers of vascular plants, indicating higher importance of Clade III for vascular plant evolution. Notably, PILS proteins are distinct and appear evolutionarily older than the prominent PIN-FORMED auxin carriers. Moreover, we revealed particular PILS sequence divergence in Arabidopsis and assume that these alterations could contribute to distinct gene regulations and protein functions.
Collapse
|
review-article |
13 |
41 |
9
|
Mikati MA, Feraru E, Krishnamoorthy K, Lombroso CT. Neonatal herpes simplex meningoencephalitis: EEG investigations and clinical correlates. Neurology 1990; 40:1433-7. [PMID: 2392231 DOI: 10.1212/wnl.40.9.1433] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We studied the sequential EEGs of 15 neonatal herpes simplex virus meningoencephalitis (NHSV-ME) patients and correlated them with corresponding clinical and laboratory findings. During days 1 to 4 of the illness, 8 had EEGs. All but 1 had abnormal tracings and 3 (38%) showed the multifocal periodic pattern (MPP). Three had an early abnormal EEG at a time when their cranial CT/ultrasound studies were normal. During days 5 to 11, 13 had EEGs: all were abnormal and 3 showed the MPP. After day 11, EEGs (available on 10) showed a very low voltage background in 9, and only 1 had normal EEG and development. During 1 year in which 1 patient with NHSV-ME was observed, we noted that 9/324 (2.8%) of neonates with other CNS conditions manifested the MPP. All, however, had CSF findings that distinguished them from herpes cases. We conclude that: (1) In patients with suspected NHSV-ME, EEG is a sensitive test that is superior to radiologic procedures in detecting early cerebral involvement. Most of the early EEGs show nonspecific background and paroxysmal abnormalities. (2) In the presence of inflammatory CSF, the MPP, an otherwise nonspecific finding, is highly suggestive of NHSV-ME. (3) Sequential EEGs may be important in the follow-up of neonates with NHSV-ME.
Collapse
|
|
35 |
22 |
10
|
Zaharescu T, Feraru E, Podină C. Thermal stability of gamma irradiated ethylene-propylene-diene monomer/divinyl benzene systems. Polym Degrad Stab 2005. [DOI: 10.1016/j.polymdegradstab.2004.04.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
|
20 |
15 |
11
|
Feraru E, Feraru MI, Moulinier-Anzola J, Schwihla M, Ferreira Da Silva Santos J, Sun L, Waidmann S, Korbei B, Kleine-Vehn J. PILS proteins provide a homeostatic feedback on auxin signaling output. Development 2022; 149:275949. [PMID: 35819066 PMCID: PMC9340555 DOI: 10.1242/dev.200929] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/07/2022] [Indexed: 11/29/2022]
Abstract
Multiple internal and external signals modulate the metabolism, intercellular transport and signaling of the phytohormone auxin. Considering this complexity, it remains largely unknown how plant cells monitor and ensure the homeostasis of auxin responses. PIN-LIKES (PILS) intracellular auxin transport facilitators at the endoplasmic reticulum are suitable candidates to buffer cellular auxin responses because they limit nuclear abundance and signaling of auxin. We used forward genetics to identify gloomy and shiny pils (gasp) mutants that define the PILS6 protein abundance in a post-translational manner. Here, we show that GASP1 encodes an uncharacterized RING/U-box superfamily protein that impacts on auxin signaling output. The low auxin signaling in gasp1 mutants correlates with reduced abundance of PILS5 and PILS6 proteins. Mechanistically, we show that high and low auxin conditions increase and reduce PILS6 protein levels, respectively. Accordingly, non-optimum auxin concentrations are buffered by alterations in PILS6 abundance, consequently leading to homeostatic auxin output regulation. We envision that this feedback mechanism provides robustness to auxin-dependent plant development. Summary: Auxin exerts a posttranslational feedback regulation on the PILS proteins, contributing to cellular auxin homeostasis and providing robustness to plant growth and development.
Collapse
|
|
3 |
8 |
12
|
D E Lima CFF, Kleine-Vehn J, De Smet I, Feraru E. Getting to the Root of Belowground High Temperature Responses in Plants. JOURNAL OF EXPERIMENTAL BOTANY 2021:erab202. [PMID: 33970267 DOI: 10.1093/jxb/erab202] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Indexed: 06/12/2023]
Abstract
The environment is continuously challenging plants. As a response, plants use various coping strategies, such as adaptation of their growth. Thermomorphogenesis is a specific growth adaptation that promotes organ growth in response to moderately high temperature. This would eventually enable plants to cool down by dissipating the heat. Although well understood for shoot organs, the thermomorphogenesis response in roots only recently obtained increasing research attention. Accordingly, in the last few years, the hormonal responses and underlying molecular players important for root thermomorphogenesis were revealed. Other responses triggered by high temperature in the root encompass modifications of overall root architecture and interactions with the soil environment, with consequences on the whole plant. Here, we review the scientific knowledge and highlight the current understanding on roots responding to moderately high and extreme temperature.
Collapse
|
|
4 |
6 |
13
|
Zaharescu T, Feraru E, Podină C, Jipa S. High energy radiation processing of EPDM in a hydrocarbon environment. Part 1. Methylcyclopentane. Polym Degrad Stab 2005. [DOI: 10.1016/j.polymdegradstab.2004.09.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
|
20 |
5 |
14
|
Feraru MI, Kleine-Vehn J, Feraru E. Auxin carrier and signaling dynamics during gravitropic root growth. Methods Mol Biol 2015; 1309:71-80. [PMID: 25981769 DOI: 10.1007/978-1-4939-2697-8_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Plant growth relates to gravity, ensuring that roots grow downwards into the soil and shoots expand aerially. The phytohormone auxin mediates tropistic growth responses, such as root gravitropism. Gravity perception in the very tip of the roots triggers carrier-dependent, asymmetric redistribution of auxin, leading to differential auxin responses and growth regulation at the upper and lower root flanks. This cellular, asymmetry-breaking event will eventually lead to root bending towards the gravity vector. Here, we show how to investigate auxin signaling and auxin carrier dynamics during root gravitropic response, using a chambered cover glass in combination with a confocal live cell imaging approach. To exemplify this method, we used established lines expressing transcriptional and translational green fluorescent protein (GFP) fusions to the auxin responsive promoter element DR5rev and the prominent auxin carrier PIN-FORMED2 (PIN2), respectively. Transgenic seedlings were placed and grown in the chambered cover glasses, enabling defined gravitropic stimulations prior to imaging. This method is optimal for inverted microscopes and significantly reduces stressful manipulations during specimen preparation.
Collapse
|
|
10 |
4 |
15
|
Waidmann S, Béziat C, Ferreira Da Silva Santos J, Feraru E, Feraru MI, Sun L, Noura S, Boutté Y, Kleine-Vehn J. Endoplasmic reticulum stress controls PIN-LIKES abundance and thereby growth adaptation. Proc Natl Acad Sci U S A 2023; 120:e2218865120. [PMID: 37487064 PMCID: PMC10400986 DOI: 10.1073/pnas.2218865120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 06/21/2023] [Indexed: 07/26/2023] Open
Abstract
Extreme environmental conditions eventually limit plant growth [J. R. Dinneny, Annu. Rev. Cell Dev. Biol. 35, 1-19 (2019), N. Gigli-Bisceglia, C. Testerink, Curr. Opin. Plant Biol. 64, 102120 (2021)]. Here, we reveal a mechanism that enables multiple external cues to get integrated into auxin-dependent growth programs in Arabidopsis thaliana. Our forward genetics approach on dark-grown hypocotyls uncovered that an imbalance in membrane lipids enhances the protein abundance of PIN-LIKES (PILS) [E. Barbez et al., Nature 485, 119 (2012)] auxin transport facilitators at the endoplasmic reticulum (ER), which thereby limits nuclear auxin signaling and growth rates. We show that this subcellular response relates to ER stress signaling, which directly impacts PILS protein turnover in a tissue-dependent manner. This mechanism allows PILS proteins to integrate environmental input with phytohormone auxin signaling, contributing to stress-induced growth adaptation in plants.
Collapse
|
research-article |
2 |
4 |
16
|
Schöller M, Sarkel E, Kleine-Vehn J, Feraru E. Growth Rate Normalization Method to Assess Gravitropic Root Growth. Methods Mol Biol 2018. [PMID: 29525959 DOI: 10.1007/978-1-4939-7747-5_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Time-lapse imaging of roots is highly suitable for depicting gravitropic growth behaviors. However, roots may show faster or slower bending kinetics when compared to control as a result of differences in overall root growth. Accordingly, conditions that cause differential organ growth require growth rate normalization to compare gravitropic curvature. Here, we describe a simple normalization method for gravitropic root growth evaluation. We exemplify this method by exposing seedlings to distinct environmental conditions or disturbing the cellular auxin contents. This data shows that the method is suitable to discriminate between gravitropic and overall organ growth defects.
Collapse
|
|
7 |
2 |
17
|
Bilanovičová V, Rýdza N, Koczka L, Hess M, Feraru E, Friml J, Nodzyński T. The Hydrophilic Loop of Arabidopsis PIN1 Auxin Efflux Carrier Harbors Hallmarks of an Intrinsically Disordered Protein. Int J Mol Sci 2022; 23:6352. [PMID: 35683031 PMCID: PMC9181416 DOI: 10.3390/ijms23116352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/31/2022] [Accepted: 06/04/2022] [Indexed: 02/01/2023] Open
Abstract
Much of plant development depends on cell-to-cell redistribution of the plant hormone auxin, which is facilitated by the plasma membrane (PM) localized PIN FORMED (PIN) proteins. Auxin export activity, developmental roles, subcellular trafficking, and polarity of PINs have been well studied, but their structure remains elusive besides a rough outline that they contain two groups of 5 alpha-helices connected by a large hydrophilic loop (HL). Here, we focus on the PIN1 HL as we could produce it in sufficient quantities for biochemical investigations to provide insights into its secondary structure. Circular dichroism (CD) studies revealed its nature as an intrinsically disordered protein (IDP), manifested by the increase of structure content upon thermal melting. Consistent with IDPs serving as interaction platforms, PIN1 loops homodimerize. PIN1 HL cytoplasmic overexpression in Arabidopsis disrupts early endocytic trafficking of PIN1 and PIN2 and causes defects in the cotyledon vasculature formation. In summary, we demonstrate that PIN1 HL has an intrinsically disordered nature, which must be considered to gain further structural insights. Some secondary structures may form transiently during pairing with known and yet-to-be-discovered interactors.
Collapse
|
research-article |
3 |
1 |
18
|
Moulinier-Anzola J, Schwihla M, Lugsteiner R, Leibrock N, Feraru MI, Tkachenko I, Luschnig C, Arcalis E, Feraru E, Lozano-Juste J, Korbei B. Modulation of abscisic acid signaling via endosomal TOL proteins. THE NEW PHYTOLOGIST 2024; 243:1065-1081. [PMID: 38874374 DOI: 10.1111/nph.19904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/25/2024] [Indexed: 06/15/2024]
Abstract
The phytohormone abscisic acid (ABA) functions in the control of plant stress responses, particularly in drought stress. A significant mechanism in attenuating and terminating ABA signals involves regulated protein turnover, with certain ABA receptors, despite their main presence in the cytosol and nucleus, subjected to vacuolar degradation via the Endosomal Sorting Complex Required for Transport (ESCRT) machinery. Collectively our findings show that discrete TOM1-LIKE (TOL) proteins, which are functional ESCRT-0 complex substitutes in plants, affect the trafficking for degradation of core components of the ABA signaling and transport machinery. TOL2,3,5 and 6 modulate ABA signaling where they function additively in degradation of ubiquitinated ABA receptors and transporters. TOLs colocalize with their cargo in different endocytic compartments in the root epidermis and in guard cells of stomata, where they potentially function in ABA-controlled stomatal aperture. Although the tol2/3/5/6 quadruple mutant plant line is significantly more drought-tolerant and has a higher ABA sensitivity than control plant lines, it has no obvious growth or development phenotype under standard conditions, making the TOL genes ideal candidates for engineering to improved plant performance.
Collapse
|
|
1 |
|
19
|
Cimino C, Lipton RB, Williams A, Feraru E, Harris C, Hirschfeld A. The evaluation of patients with human immunodeficiency virus-related disorders and brain mass lesions. ARCHIVES OF INTERNAL MEDICINE 1991; 151:1381-4. [PMID: 2064489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In patients at risk for acquired immunodeficiency syndrome who present with a mass lesion, a dilemma arises as to whether to treat empirically for toxoplasmosis or perform a brain biopsy. We present data that further define the indications for performing brain biopsy vs empiric treatment. We reviewed charts on 59 patients with acquired immunodeficiency syndrome--related disorders and cerebral mass lesions. Thirty-two patients met diagnostic criteria for toxoplasmosis. Bayesian analysis demonstrated that the prior probability of toxoplasmosis was increased by the presence of contrast enhancement on computed tomographic scans (0.68) and toxoplasmosis titers greater than 1:64 (0.81). Features associated with decreasing probabilities of toxoplasmosis included the absence of contrast enhancement on computed tomographic scans (0.29) and toxoplasmosis titers less than or equal to 1:64 (0.14). Ten percent of patients had complications of brain biopsy. Treatment with pyrimethamine and sulfadiazine produced complications in 29% and serious complications in 8% of treated patients. These data favor empiric therapy for patients with typical features of toxoplasmosis and brain biopsy for defined subsets of patients with atypical features.
Collapse
|
|
34 |
|
20
|
Weiss G, Chabria M, Aronow H, Feraru E, Solomon S, Lipton R. Headaches in AIDS and Related Disorders. Cephalalgia 1991. [DOI: 10.1177/0333102491011s11154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
|
34 |
|