1
|
Kim MS, Haney MJ, Zhao Y, Mahajan V, Deygen I, Klyachko NL, Inskoe E, Piroyan A, Sokolsky M, Okolie O, Hingtgen SD, Kabanov AV, Batrakova EV. Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 12:655-664. [PMID: 26586551 DOI: 10.1016/j.nano.2015.10.012] [Citation(s) in RCA: 1033] [Impact Index Per Article: 103.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/22/2015] [Accepted: 10/25/2015] [Indexed: 12/11/2022]
Abstract
UNLABELLED Exosomes have recently come into focus as "natural nanoparticles" for use as drug delivery vehicles. Our objective was to assess the feasibility of an exosome-based drug delivery platform for a potent chemotherapeutic agent, paclitaxel (PTX), to treat MDR cancer. Herein, we developed different methods of loading exosomes released by macrophages with PTX (exoPTX), and characterized their size, stability, drug release, and in vitro antitumor efficacy. Reformation of the exosomal membrane upon sonication resulted in high loading efficiency and sustained drug release. Importantly, incorporation of PTX into exosomes increased cytotoxicity more than 50 times in drug resistant MDCKMDR1 (Pgp+) cells. Next, our studies demonstrated a nearly complete co-localization of airway-delivered exosomes with cancer cells in a model of murine Lewis lung carcinoma pulmonary metastases, and a potent anticancer effect in this mouse model. We conclude that exoPTX holds significant potential for the delivery of various chemotherapeutics to treat drug resistant cancers. FROM THE CLINICAL EDITOR Exosomes are membrane-derived natural vesicles of ~40 - 200 nm size. They have been under extensive research as novel drug delivery vehicles. In this article, the authors developed exosome-based system to carry formulation of PTX and showed efficacy in the treatment of multi-drug resistant cancer cells. This novel system may be further developed to carry other chemotherapeutic agents in the future.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
1033 |
2
|
Kabanov AV, Batrakova EV, Alakhov VY. Pluronic block copolymers as novel polymer therapeutics for drug and gene delivery. J Control Release 2002; 82:189-212. [PMID: 12175737 DOI: 10.1016/s0168-3659(02)00009-3] [Citation(s) in RCA: 1009] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Pluronic block copolymers are found to be an efficient drug delivery system with multiple effects. The incorporation of drugs into the core of the micelles formed by Pluronic results in increased solubility, metabolic stability and circulation time for the drug. The interactions of the Pluronic unimers with multidrug-resistant cancer cells result in sensitization of these cells with respect to various anticancer agents. Furthermore, the single molecular chains of copolymer, unimers, inhibit drug efflux transporters in both the blood-brain barrier and in the small intestine, which provides for the enhanced transport of select drugs to the brain and increases oral bioavailability. These and other applications of Pluronic block copolymers in various drug delivery and gene delivery systems are considered.
Collapse
|
Review |
23 |
1009 |
3
|
Batrakova EV, Kabanov AV. Pluronic block copolymers: evolution of drug delivery concept from inert nanocarriers to biological response modifiers. J Control Release 2008; 130:98-106. [PMID: 18534704 DOI: 10.1016/j.jconrel.2008.04.013] [Citation(s) in RCA: 915] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Accepted: 04/16/2008] [Indexed: 01/10/2023]
Abstract
Polymer nanomaterials have sparked a considerable interest as vehicles used for diagnostic and therapeutic agents; research in nanomedicine has not only become a frontier movement but is also a revolutionizing drug delivery field. A common approach for building a drug delivery system is to incorporate the drug within the nanocarrier that results in increased solubility, metabolic stability, and improved circulation time. With this foundation, nanoparticles with stealth properties that can circumvent RES and other clearance and defense mechanisms are the most promising. However, recent developments indicate that select polymer nanomaterials can implement more than only inert carrier functions by being biological response modifiers. One representative of such materials is Pluronic block copolymers that cause various functional alterations in cells. The key attribute for the biological activity of Pluronics is their ability to incorporate into membranes followed by subsequent translocation into the cells and affecting various cellular functions, such as mitochondrial respiration, ATP synthesis, activity of drug efflux transporters, apoptotic signal transduction, and gene expression. As a result, Pluronics cause drastic sensitization of MDR tumors to various anticancer agents, enhance drug transport across the blood brain and intestinal barriers, and causes transcriptional activation of gene expression both in vitro and in vivo. Collectively, these studies suggest that Pluronics have a broad spectrum of biological response modifying activities which make it one of the most potent drug targeting systems available, resulting in a remarkable impact on the emergent field of nanomedicine.
Collapse
|
Review |
17 |
915 |
4
|
Batrakova EV, Kim MS. Using exosomes, naturally-equipped nanocarriers, for drug delivery. J Control Release 2015; 219:396-405. [PMID: 26241750 DOI: 10.1016/j.jconrel.2015.07.030] [Citation(s) in RCA: 751] [Impact Index Per Article: 75.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 07/20/2015] [Accepted: 07/29/2015] [Indexed: 02/06/2023]
Abstract
Exosomes offer distinct advantages that uniquely position them as highly effective drug carriers. Comprised of cellular membranes with multiple adhesive proteins on their surface, exosomes are known to specialize in cell-cell communications and provide an exclusive approach for the delivery of various therapeutic agents to target cells. In addition, exosomes can be amended through their parental cells to express a targeting moiety on their surface, or supplemented with desired biological activity. Development and validation of exosome-based drug delivery systems are the focus of this review. Different techniques of exosome isolation, characterization, drug loading, and applications in experimental disease models and clinic are discussed. Exosome-based drug formulations may be applied to a wide variety of disorders such as cancer, various infectious, cardiovascular, and neurodegenerative disorders. Overall, exosomes combine benefits of both synthetic nanocarriers and cell-mediated drug delivery systems while avoiding their limitations.
Collapse
|
Review |
10 |
751 |
5
|
Kabanov AV, Batrakova EV, Alakhov VY. Pluronic block copolymers for overcoming drug resistance in cancer. Adv Drug Deliv Rev 2002; 54:759-79. [PMID: 12204601 DOI: 10.1016/s0169-409x(02)00047-9] [Citation(s) in RCA: 491] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Pluronic block copolymers have been used extensively in a variety of pharmaceutical formulations including delivery of low molecular mass drugs and polypeptides. This review describes novel applications of Pluronic block copolymers in the treatment of drug-resistant tumors. It has been discovered that Pluronic block copolymers interact with multidrug-resistant cancer (MDR) tumors resulting in drastic sensitization of these tumors with respect to various anticancer agents, particularly, anthracycline antibiotics. Furthermore, Pluronic affects several distinct drug resistance mechanisms including inhibition of drug efflux transporters, abolishing drug sequestration in acidic vesicles as well as inhibiting the glutathione/glutathione S-transferase detoxification system. All these mechanisms of drug resistance are energy-dependent and therefore ATP depletion induced by Pluronic block copolymers in MDR cells is considered as one potential reason for chemosensitization of these cells. Following validation using in vitro and in vivo models, a formulation containing doxorubicin and Pluronic mixture (L61 and F127), SP1049C, has been evaluated in phase I clinical trials. Further mechanistic studies and clinical evaluations of these systems are in progress.
Collapse
|
Review |
23 |
491 |
6
|
Kim MS, Haney MJ, Zhao Y, Yuan D, Deygen I, Klyachko NL, Kabanov AV, Batrakova EV. Engineering macrophage-derived exosomes for targeted paclitaxel delivery to pulmonary metastases: in vitro and in vivo evaluations. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 14:195-204. [PMID: 28982587 DOI: 10.1016/j.nano.2017.09.011] [Citation(s) in RCA: 473] [Impact Index Per Article: 59.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 09/11/2017] [Accepted: 09/19/2017] [Indexed: 12/15/2022]
Abstract
Exosomes have recently emerged as a promising drug delivery system with low immunogenicity, high biocompatibility, and high efficacy of delivery. We demonstrated earlier that macrophage-derived exosomes (exo) loaded with a potent anticancer agent paclitaxel (PTX) represent a novel nanoformulation (exoPTX) that shows high anticancer efficacy in a mouse model of pulmonary metastases. We now report the manufacture of targeted exosome-based formulations with superior structure and therapeutic indices for systemic administration. Herein, we developed and optimized a formulation of PTX-loaded exosomes with incorporated aminoethylanisamide-polyethylene glycol (AA-PEG) vector moiety to target the sigma receptor, which is overexpressed by lung cancer cells. The AA-PEG-vectorized exosomes loaded with PTX (AA-PEG-exoPTX) possessed a high loading capacity, profound ability to accumulate in cancer cells upon systemic administration, and improved therapeutic outcomes. The combination of targeting ability with the biocompatibility of exosome-based drug formulations offers a powerful and novel delivery platform for anticancer therapy.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
473 |
7
|
Kabanov AV, Nazarova IR, Astafieva IV, Batrakova EV, Alakhov VY, Yaroslavov AA, Kabanov VA. Micelle Formation and Solubilization of Fluorescent Probes in Poly(oxyethylene-b-oxypropylene-b-oxyethylene) Solutions. Macromolecules 2002. [DOI: 10.1021/ma00111a026] [Citation(s) in RCA: 390] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
|
23 |
390 |
8
|
Kozlov MY, Melik-Nubarov NS, Batrakova EV, Kabanov AV. Relationship between Pluronic Block Copolymer Structure, Critical Micellization Concentration and Partitioning Coefficients of Low Molecular Mass Solutes. Macromolecules 2000. [DOI: 10.1021/ma991634x] [Citation(s) in RCA: 263] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
|
25 |
263 |
9
|
Kabanov AV, Batrakova EV, Miller DW. Pluronic block copolymers as modulators of drug efflux transporter activity in the blood-brain barrier. Adv Drug Deliv Rev 2003; 55:151-64. [PMID: 12535579 DOI: 10.1016/s0169-409x(02)00176-x] [Citation(s) in RCA: 241] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Drug efflux transporters can influence the absorption, tissue distribution and elimination of many therapeutic agents. Modulation of drug efflux transporter activity is being explored as a means for improving the pharmacokinetic and pharmacodynamic properties of various drugs. In this regard, several polymer formulations have been shown to inhibit drug efflux transporters such as P-glycoprotein (P-gp). The current review will focus on Pluronic block copolymers in particular, the mechanisms involved in the effects of Pluronic on drug efflux transporters, and the optimal polymer compositions required for inhibition of drug efflux transporters. Special emphasis will be placed on the potential applications of Pluronic in enhancing the blood-brain barrier (BBB) penetration of drugs.
Collapse
|
Review |
22 |
241 |
10
|
Abstract
Systemic delivery of oligonucleotides (ODN) to the central nervous system is needed for development of therapeutic and diagnostic modalities for treatment of neurodegenerative disorders. Macromolecules injected in blood are poorly transported across the blood-brain barrier (BBB) and rapidly cleared from circulation. In this work we propose a novel system for ODN delivery to the brain based on nanoscale network of cross-linked poly(ethylene glycol) and polyethylenimine ("nanogel"). The methods of synthesis of nanogel and its modification with specific targeting molecules are described. Nanogels can bind and encapsulate spontaneously negatively charged ODN, resulting in formation of stable aqueous dispersion of polyelectrolyte complex with particle sizes less than 100 nm. Using polarized monolayers of bovine brain microvessel endothelial cells as an in vitro model this study demonstrates that ODN incorporated in nanogel formulations can be effectively transported across the BBB. The transport efficacy is further increased when the surface of the nanogel is modified with transferrin or insulin. Importantly the ODN is transported across the brain microvessel cells through the transcellular pathway; after transport, ODN remains mostly incorporated in the nanogel and ODN displays little degradation compared to the free ODN. Using mouse model for biodistribution studies in vivo, this work demonstrated that as a result of incorporation into nanogel 1 h after intravenous injection the accumulation of a phosphorothioate ODN in the brain increases by over 15 fold while in liver and spleen decreases by 2-fold compared to the free ODN. Overall, this study suggests that nanogel is a promising system for delivery of ODN to the brain.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
237 |
11
|
Kabanov AV, Chekhonin VP, Alakhov VYu, Batrakova EV, Lebedev AS, Melik-Nubarov NS, Arzhakov SA, Levashov AV, Morozov GV, Severin ES. The neuroleptic activity of haloperidol increases after its solubilization in surfactant micelles. Micelles as microcontainers for drug targeting. FEBS Lett 1989; 258:343-5. [PMID: 2599097 DOI: 10.1016/0014-5793(89)81689-8] [Citation(s) in RCA: 233] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
It has been suggested to use surfactant micelles as microcontainers for increasing the efficiency of neuroleptic targeting from blood flow into the brain. The neuroleptic action of haloperidol, intraperitoneally injected into mice in micellar solution of non-ionic block copolymer surfactant (pluronic P-85) in water, increased several-fold if compared with that observed for haloperidol aqueous solution. Incorporation of brain-specific antibodies into haloperidol-containing micelles resulted in additional drastic increase (more than by 2 orders of magnitude) in the drug effect.
Collapse
|
|
36 |
233 |
12
|
Abstract
INTRODUCTION Drug targeting to sites of tissue injury, tumor or infection with limited toxicity is the goal for successful pharmaceutics. Immunocytes (including mononuclear phagocytes (dendritic cells, monocytes and macrophages), neutrophils and lymphocytes) are highly mobile; they can migrate across impermeable barriers and release their drug cargo at sites of infection or tissue injury. Thus, immune cells can be exploited as Trojan horses for drug delivery. AREAS COVERED This paper reviews how immunocytes laden with drugs can cross the blood-brain or blood-tumor barriers to facilitate treatments for infectious diseases, injury, cancer, or inflammatory diseases. The promises and perils of cell-mediated drug delivery are reviewed, with examples of how immunocytes can be harnessed to improve therapeutic end points. EXPERT OPINION Using cells as delivery vehicles enables targeted drug transport and prolonged circulation times, along with reductions in cell and tissue toxicities. Such systems for drug carriage and targeted release represent a new disease-combating strategy being applied to a spectrum of human disorders. The design of nanocarriers for cell-mediated drug delivery may differ from those used for conventional drug delivery systems; nevertheless, engaging different defense mechanisms in drug delivery may open new perspectives for the active delivery of drugs.
Collapse
|
Review |
14 |
226 |
13
|
Luxenhofer R, Schulz A, Roques C, Li S, Bronich TK, Batrakova EV, Jordan R, Kabanov AV. Doubly amphiphilic poly(2-oxazoline)s as high-capacity delivery systems for hydrophobic drugs. Biomaterials 2010; 31:4972-9. [PMID: 20346493 PMCID: PMC2884201 DOI: 10.1016/j.biomaterials.2010.02.057] [Citation(s) in RCA: 220] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 02/18/2010] [Indexed: 11/24/2022]
Abstract
Solubilization of highly hydrophobic drugs with carriers that are non-toxic, non-immunogenic and well-defined remains a major obstacle in pharmaceutical sciences. Well-defined amphiphilic di- and triblock copolymers based on poly(2-oxazolines) were prepared and used for the solubilization of Paclitaxel (PTX) and other water-insoluble drugs. Probing the polymer micelles in water with the fluorescence probe pyrene, an unusual high polar microenvironment of the probe was observed. This coincides with an extraordinary large loading capacity for PTX of 45 wt.% active drug in the formulation as well as high water solubility of the resulting formulation. Physicochemical properties of the formulations, ease of preparation and stability upon lyophilization, low toxicity and immunogenicity suggest that poly(2-oxazoline)s are promising candidates for the delivery of highly challenging drugs. Furthermore, we demonstrate that PTX is fully active and provides superior tumor inhibition as compared to the commercial micellar formulation.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
220 |
14
|
Batrakova EV, Kabanov AV. Hypersensitization of multidrug resistant human ovarian carcinoma cells by pluronic P85 block copolymer. Bioconjug Chem 1996; 7:209-16. [PMID: 8983343 DOI: 10.1021/bc950093n] [Citation(s) in RCA: 219] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The chemosensitizing effect of Pluronic P85 block copolymer were studied using two human ovarian carcinoma sublines: the glycoprotein P (P-gp) multidrug resistant (MDR) SKVLB cells and non-MDR SKOV3 cells. The dramatic increase (up to 700 times) in the daunorubicin cytotoxic activity was observed in the presence of 0.01% (22 microM) to 1% (2.2 mM) copolymer in the case of SKVLB cells. By contrast, the copolymer induced a less than 3-fold increase in the drug activity in SKOV3 cells. As a result, the MDR subline demonstrated much higher response ("hypersensitivity") to the daunorubicin/ Pluronic compared to that of the non-MDR cells. The copolymer increased the cytotoxic effects of other MDR type drugs (doxorubicin, epirubicin, vinblastine, and mitomycin C) by a factor of 20-1000 and non-MDR type drugs (methotrexate and cisplatin) by a factor of 2-5.5. The daunorubicin influx in the cytoplasm and nuclei of SKVLB cells was also increased in the presence of the copolymer, while in SKOV3 cells, it remained practically unchanged. However, the hypersensitization of the MDR cells by the copolymer could not be merely explained by the P-gp modulation. Therefore, the possible role of the copolymer in inhibition of non-P-gp drug resistance is hypothesized, which may also explain the sensitization of MDR cells with respect to non-MDR type drugs as well as sensitization of parental cells. The concentration dependence of the IC50 in MDR cells indicates that just the copolymer unimers are responsible for the hypersensitization effect. The results obtained suggest that Pluronic P85 can be used as a delivery system to enhance the activity of antineoplastic agents against MDR tumors.
Collapse
|
|
29 |
219 |
15
|
Batrakova EV, Li S, Alakhov VY, Miller DW, Kabanov AV. Optimal structure requirements for pluronic block copolymers in modifying P-glycoprotein drug efflux transporter activity in bovine brain microvessel endothelial cells. J Pharmacol Exp Ther 2003; 304:845-54. [PMID: 12538842 DOI: 10.1124/jpet.102.043307] [Citation(s) in RCA: 185] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pluronic block copolymer P85 was shown to inhibit the P-glycoprotein (Pgp) drug efflux system and to increase the permeability of a broad spectrum of drugs in the blood-brain barrier (BBB). However, there is an entire series of Pluronics varying in lengths of propylene oxide and ethylene oxide and overall lipophilicity. This study identifies those structural characteristics of Pluronics required for maximal impact on drug efflux transporter activity in bovine brain microvessel endothelial cells (BBMECs). Using a wide range of block copolymers, differing in hydrophilic-lipophilic balance (HLB), this study shows that lipophilic Pluronics with intermediate length of propylene oxide block (from 30 to 60 units) and HLB <20 are the most effective at inhibiting Pgp efflux in BBMECs. The methods used included 1) cellular accumulation studies with the Pgp substrate rhodamine 123 in BBMECs to assess Pgp activity; 2) luciferin/luciferase ATP assay to evaluate changes in cellular ATP; 3) 1,6-diphenyl-1,3,5-hexatriene membrane microviscosity studies to determine alterations in membrane fluidity; and 4) Pgp ATPase assays using human Pgp-expressing membranes. Pluronics with intermediate lipophilic properties showed the strongest fluidization effect on the cell membranes along with the most efficient reduction of intracellular ATP synthesis in BBMEC monolayers. The relationship between the structure of Pluronic block copolymers and their biological response-modifying effects in BBMECs are useful for determining formulations with maximal efficacy for increasing BBB permeability.
Collapse
|
|
22 |
185 |
16
|
Batrakova EV, Li S, Elmquist WF, Miller DW, Alakhov VY, Kabanov AV. Mechanism of sensitization of MDR cancer cells by Pluronic block copolymers: Selective energy depletion. Br J Cancer 2001; 85:1987-97. [PMID: 11747344 PMCID: PMC2364003 DOI: 10.1054/bjoc.2001.2165] [Citation(s) in RCA: 180] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This paper, for the first time, demonstrates that exposure of cells to the poly(ethylene oxide)-poly(propylene oxide) block copolymer, Pluronic P85, results in a substantial decrease in ATP levels selectively in MDR cells. Cells expressing high levels of functional P-glycoprotein (MCF-7/ADR, KBv; LLC-MDR1; Caco-2, bovine brain microvessel endothelial cells [BBMECs]) are highly responsive to Pluronic treatment, while cells with low levels of P-glycoprotein expression (MCF-7, KB, LLC-PK1, human umbilical vein endothelial cells [HUVECs] C2C12 myoblasts) are much less responsive to such treatment. Cytotoxicity studies suggest that Pluronic acts as a chemosensitizer and potentiates cytotoxic effects of doxorubicin in MDR cells. The ability of Pluronic to inhibit P-glycoprotein and sensitize MDR cells appears to be a result of ATP depletion. Because many mechanisms of drug resistance are energy dependent, a successful strategy for treating MDR cancer could be based on selective energy depletion in MDR cells. Therefore, the finding of the energy-depleting effects of Pluronic P85, in combination with its sensitization effects is of considerable theoretical and practical significance.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Adenosine Triphosphatases/metabolism
- Adenosine Triphosphate/deficiency
- Adenosine Triphosphate/metabolism
- Adenosine Triphosphate/pharmacology
- Animals
- Antibiotics, Antineoplastic/therapeutic use
- Biological Transport, Active/drug effects
- Brain/blood supply
- Capillaries/cytology
- Cattle
- Cell Line/drug effects
- Cell Line/metabolism
- Doxorubicin/pharmacology
- Drug Resistance, Multiple
- Drug Resistance, Neoplasm
- Endothelium, Vascular/cytology
- Energy Metabolism/drug effects
- Humans
- KB Cells/drug effects
- KB Cells/metabolism
- Kinetics
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/metabolism
- Neoplasms/pathology
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Poloxalene/pharmacology
- Swine
- Tumor Cells, Cultured/drug effects
- Tumor Cells, Cultured/metabolism
- Umbilical Veins/cytology
Collapse
|
research-article |
24 |
180 |
17
|
Batrakova EV, Dorodnych TY, Klinskii EY, Kliushnenkova EN, Shemchukova OB, Goncharova ON, Arjakov SA, Alakhov VY, Kabanov AV. Anthracycline antibiotics non-covalently incorporated into the block copolymer micelles: in vivo evaluation of anti-cancer activity. Br J Cancer 1996; 74:1545-52. [PMID: 8932333 PMCID: PMC2074856 DOI: 10.1038/bjc.1996.587] [Citation(s) in RCA: 179] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The chemosensitising effects of poly(ethylene oxide)-poly(propylene oxide)-poly-(ethylene oxide) (PEO-PPO-PEO) block copolymers (Pluronic) in multidrug-resistant cancer cells has been described recently (Alakhov VY, Moskaleva EY, Batrakova EV, Kabanov AV 1996, Biocon. Chem., 7, 209). This paper presents initial studies on in vivo evaluation of Pluronic copolymers in the treatment of cancer. The anti-tumour activity of epirubicin (EPI) and doxorubicin (DOX), solubilised in micelles of Pluronic L61, P85 and F108, was investigated using murine leukaemia P388 and daunorubicin-sensitive Sp2/0 and -resistant Sp2/0(DNR) myeloma cells grown subcutaneously (s.c.). The study revealed that the lifespan of the animals and inhibition of tumour growth were considerably increased in mice treated with drug/copolymer compositions compared with animals treated with the free drugs. The anti-tumour activity of the drug/copolymer compositions depends on the concentration of the copolymer and its hydrophobicity, as determined by the ratio of the lengths of hydrophilic PEO and hydrophobic PPO segments. The data suggest that higher activity is associated with more hydrophobic copolymers. In particular, a significant increase in lifespan (T/C> 150%) and tumour growth inhibition (> 90%) was observed in animals with Sp2/0 tumours with EPI/P85 and DOX/L61 compositions. The effective doses of these compositions caused inhibition of Sp2/0 tumour growth and complete disappearance of tumour in 33-50% of animals. Future studies will focus on the evaluation of the activity of Pluronic-based compositions against human drug-resistant tumours.
Collapse
|
research-article |
29 |
179 |
18
|
Kabanov AV, Batrakova EV, Melik-Nubarov NS, Fedoseev NA, Dorodnich TY, Alakhov VY, Chekhonin VP, Nazarova IR, Kabanov VA. A new class of drug carriers: micelles of poly(oxyethylene)-poly(oxypropylene) block copolymers as microcontainers for drug targeting from blood in brain. J Control Release 1992. [DOI: 10.1016/0168-3659(92)90199-2] [Citation(s) in RCA: 164] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
|
33 |
164 |
19
|
Sahay G, Batrakova EV, Kabanov AV. Different internalization pathways of polymeric micelles and unimers and their effects on vesicular transport. Bioconjug Chem 2008; 19:2023-9. [PMID: 18729494 DOI: 10.1021/bc8002315] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Efficient entry of synthetic polymers inside cells is a central issue in polymeric drug delivery. Though polymers are widely believed to interact nonspecifically with plasma membrane, we present unexpected evidence that amphiphilic block copolymers, depending on their aggregation state, can distinguish between caveolae- and clathrin-mediated endocytosis. A block copolymer of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO), Pluronic P85 (P85), below critical micelle concentration (CMC) exists as single molecule coils (unimers) and above CMC forms 14.6 nm aggregated micelles with a hydrophobic PPO core and hydrophilic PEO shell. The internalization pathways of P85 in mammalian cells were elucidated using endocytosis inhibitors and colocalization with endocytosis markers (clathrin-specific antibodies and transferrin for clathrin and caveolin-1-specific antibodies and cholera toxin B for caveolae). Altogether, our results indicate that P85 unimers internalize through caveolae-mediated endocytosis, while P85 micelles internalize through clathrin-mediated endocytosis. Furthermore, at concentrations above 0.01% P85 inhibits caveolae-mediated endocytosis (cholera toxin B), while having little or no effect on the clathrin-mediated endocytosis (transferrin). Selective interaction of Pluronic with caveolae may explain its striking pharmacological activities including inhibition of drug efflux transport, activation of gene expression, and dose-dependent hyperlipidemia.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
154 |
20
|
Batrakova EV, Li S, Reynolds AD, Mosley RL, Bronich TK, Kabanov AV, Gendelman HE. A macrophage-nanozyme delivery system for Parkinson's disease. Bioconjug Chem 2007; 18:1498-506. [PMID: 17760417 PMCID: PMC2677172 DOI: 10.1021/bc700184b] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Selective delivery of antioxidants to the substantia nigra pars compacta (SNpc) during Parkinson's disease (PD) can potentially attenuate oxidative stress and as such increase survival of dopaminergic neurons. To this end, we developed a bone-marrow-derived macrophage (BMM) system to deliver catalase to PD-affected brain regions in an animal model of human disease. To preclude BMM-mediated enzyme degradation, catalase was packaged into a block ionomer complex with a cationic block copolymer, polyethyleneimine-poly(ethylene glycol) (PEI-PEG). The self-assembled catalase/PEI-PEG complexes, "nanozymes", were ca. 60 to 100 nm in size, stable in pH and ionic strength, and retained antioxidant activities. Cytotoxicity was negligible over a range of physiologic nanozyme concentrations. Nanozyme particles were rapidly, 40-60 min, taken up by BMM, retained catalytic activity, and released in active form for greater than 24 h. In contrast, "naked" catalase was rapidly degraded. The released enzyme decomposed microglial hydrogen peroxide following nitrated alpha-synuclein or tumor necrosis factor alpha activation. Following adoptive transfer of nanozyme-loaded BMM to 1-methyl 4-phenyl 1,2,3,6-tetrahydropyridine-intoxicated mice, ca. 0.6% of the injected dose were found in brain. We conclude that cell-mediated delivery of nanozymes can reduce oxidative stress in laboratory and animal models of PD.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
18 |
143 |
21
|
Batrakova EV, Li S, Miller DW, Kabanov AV. Pluronic P85 increases permeability of a broad spectrum of drugs in polarized BBMEC and Caco-2 cell monolayers. Pharm Res 1999; 16:1366-72. [PMID: 10496651 DOI: 10.1023/a:1018990706838] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE Previous studies demonstrated that inhibition of P glycoprotein (P-gp) by Pluronic P85 (P85) block copolymer increases apical (AP) to basolateral (BL) transport of rhodamine 123 (R123) in the polarized monolayers of bovine brain microvessel endothelial cells (BBMEC) and Caco-2 cells. The present work examines the effects of P85 on the transport of fluorescein (Flu), doxorubicin (Dox), etoposide (Et), taxol (Tax), 3'-azido-3'-deoxythymidine (AZT), valproic acid (VPA) and loperamide (Lo) using BBMEC and Caco-2 monolayers as in vitro models of the blood brain barrier and intestinal epithelium respectively. METHODS Drug permeability studies were performed on the confluent BBMEC and Caco-2 cell monolayers mounted in Side-Bi-Side diffusion cells. RESULTS Exposure of the cells to P85 significantly enhanced AP to BL permeability coefficients of Flu, Tax, Dox and AZT in both cell models. Further, P85 enhanced AP to BL transport of Et, VPA and Lo in Caco-2 monolayers. No changes in the permeability coefficients of the paracellular marker mannitol were observed in the presence of the copolymer. CONCLUSIONS P85 increases AP to BL permeability in BBMEC and Caco-2 monolayers with respect to a broad panel of structurally diverse compounds, that were previously shown to be affected by P-gp and/ or multidrug resistance associated protein (MRP) efflux systems. Broad specificity of the block copolymer effects with respect to drugs and efflux systems appears to be a valuable property in view of developing pharmaceutical formulations to increase drug accumulation in selected organs and overcome both acquired and intrinsic drug resistance that limits the effectiveness of many chemotherapeutic agents.
Collapse
|
|
26 |
142 |
22
|
Vinogradov SV, Zeman AD, Batrakova EV, Kabanov AV. Polyplex Nanogel formulations for drug delivery of cytotoxic nucleoside analogs. J Control Release 2005; 107:143-57. [PMID: 16039001 PMCID: PMC1357595 DOI: 10.1016/j.jconrel.2005.06.002] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Revised: 06/06/2005] [Accepted: 06/08/2005] [Indexed: 11/30/2022]
Abstract
Hydrophilic nanosized particles consisting of the cross-linked cationic polymer network (Nanogels) are suggested as a drug delivery system for nucleoside analog 5'-triphosphates, an active form of cytotoxic anticancer drugs. Preparation, properties, and cellular effects of several polyplex Nanogel formulations with the 5'-triphosphate of cytotoxic 5-fluoroadenine arabinoside (fludarabine) (FATP) were examined and discussed here. The polyplexes have formed spontaneously by mixing solutions of FATP and Nanogels because of ionic interactions between protonated polyethylenimine (PEI) chains in Nanogel network with polyphosphate groups of the drug. Subsequent compaction of the flexible Nanogel network has resulted in an encapsulation of the FATP/PEI complex in a dense core surrounded by hydrophilic poly(ethylene glycol) (PEG) envelope. This structure has provided a sustained release of the drug, as well as an efficient protection of FATP against enzymatic degradation. The drug loading could reach up to 33% by weight of the drug-Nanogel formulation. In vitro 35% of loaded drug has released from Nanogel formulations during the first 24 h, and a slower additional release was observed during the next 2 days. Nanogels have protected 90% of the encapsulated FATP from enzymatic dephosphorylation during the first 60 min of incubation in vitro. The drug-Nanogel formulation compared to the drug has demonstrated a significantly enhanced cytotoxicity in cultured cancer cells. Cancer cell-targeting molecules, such as folate, could be easily attached to Nanogels and this modification has resulted in a strong 10-fold increase of the carrier's internalization in human breast carcinoma MCF-7 cells. Moreover, transcellular transport of the folate-Nanogel polyplexes was found to be 4 times more effective compared to the drug alone using Caco-2 cell monolayers as an in vitro intestinal model. The data demonstrate that this carrier-based approach to delivery of cytotoxic drugs may enhance tumor specificity and significantly reduce side effects related to systemic toxicity usually observed during cancer chemotherapy.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
140 |
23
|
Brynskikh AM, Zhao Y, Mosley RL, Li S, Boska MD, Klyachko NL, Kabanov AV, Gendelman HE, Batrakova EV. Macrophage delivery of therapeutic nanozymes in a murine model of Parkinson's disease. Nanomedicine (Lond) 2010; 5:379-96. [PMID: 20394532 DOI: 10.2217/nnm.10.7] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Parkinson's disease is a common progressive neurodegenerative disorder associated with profound nigrostriatal degeneration. Regrettably, no therapies are currently available that can attenuate disease progression. To this end, we developed a cell-based nanoformulation delivery system using the antioxidant enzyme catalase to attenuate neuroinflammatory processes linked to neuronal death. METHODS Nanoformulated catalase was obtained by coupling catalase to a synthetic polyelectrolyte of opposite charge, leading to the formation of a polyion complex micelle. The nanozyme was loaded into bone marrow macrophages and its transport to the substantia nigra pars compacta was evaluated in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-intoxicated mice. RESULTS Therapeutic efficacy of bone marrow macrophages loaded with nanozyme was confirmed by twofold reductions in microgliosis as measured by CD11b expression. A twofold increase in tyrosine hydroxylase-expressing dopaminergic neurons was detected in nanozyme-treated compared with untreated MPTP-intoxicated mice. Neuronal survival was confirmed by magnetic resonance spectroscopic imaging. Bone marrow macrophage-loaded catalase showed sustained release of the enzyme in plasma. CONCLUSION These data support the importance of macrophage-based nanozyme carriage for Parkinson's disease therapies.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
133 |
24
|
Miller DW, Batrakova EV, Waltner TO, Kabanov AV. Interactions of pluronic block copolymers with brain microvessel endothelial cells: evidence of two potential pathways for drug absorption. Bioconjug Chem 1997; 8:649-57. [PMID: 9327127 DOI: 10.1021/bc970118d] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Pluronic block copolymers have been previously reported to increase the delivery of agents to the brain [Kabanov et al. (1992) J. Controlled Release 22, 141-158]. In the present study, primary cultured bovine brain microvessel endothelial cells (BBMEC) were used as an in vitro model of the blood-brain barrier to examine the membrane interactions of Pluronic P85 (P85) and potential mechanisms for drug absorption. At concentrations below the critical micelle concentration (cmc), P85 enhanced the accumulation of the fluorescent probe rhodamine 123 (R123) in BBMEC through inhibition of P-glycoprotein (P-gp)-mediated drug efflux. The effects of P85 on the cellular accumulation of R123 were also observed in KBv cells (P-gp positive) but not in human umbilical vein endothelial cells (P-gp negative). In contrast to the effects with P85 below the cmc, the enhanced absorption of R123 observed with Pluronic micelles was transient and not dependent on P-gp. A transient increase in R123 accumulation was observed in both P-gp positive cells (brain microvessel endothelial cells and KBv) and P-gp negative cells (human umbilical vein endothelial cells). Therefore, it appears that P85 affects the absorption of drugs in brain microvessel endothelial cells through (1) inhibition of the P-gp-mediated drug efflux at low concentrations of the copolymer and (2) increased vesicular transport at higher concentrations of the copolymer. Furthermore, both interactions of P85 with the brain endothelial cells appear to be energy-dependent as demonstrated by the inhibitory effects of the metabolic inhibitor 2-deoxyglucose.
Collapse
|
|
28 |
126 |
25
|
Batrakova EV, Han HY, Miller DW, Kabanov AV. Effects of pluronic block copolymers on drug absorption in Caco-2 cell monolayers. Pharm Res 1998; 15:850-5. [PMID: 9647349 DOI: 10.1023/a:1011964213024] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE The present work characterizes the effects of Pluronic copolymers on the transport of a P-gp-dependent probe, rhodamine 123 (R123) in Caco-2 cell monolayers. METHODS The accumulation and efflux studies were performed on the confluent Caco-2 monolayers using fluorescent probes with and without Pluronic copolymers. RESULTS At concentrations below the critical micelle concentration single chains ("unimers") of Pluronic P85 enhanced the accumulation and inhibited the efflux of R123 in Caco-2 monolayers. The transport of the P-gp-independent probe, rhodamine 110 was not altered under these conditions. In contrast the micelles increased R123 accumulation to a much lower extent when compared to the unimers and enhanced R123 efflux in Caco-2 monolayers. CONCLUSIONS Pluronic P85 unimers increase accumulation of a P-gp-dependent drug in Caco-2 monolayers through inhibition of the P-gp efflux system. The mechanism of the micelle effect is not known, however, it is very similar to the micelle effects in BBMEC. This has been previously shown to involve vesicular transport of the micelle-incorporated drug. The study suggests that Pluronic copolymers can be useful in increasing oral absorption of select drugs.
Collapse
|
|
27 |
125 |