1
|
Lo Presti A, Zorzi F, Del Chierico F, Altomare A, Cocca S, Avola A, De Biasio F, Russo A, Cella E, Reddel S, Calabrese E, Biancone L, Monteleone G, Cicala M, Angeletti S, Ciccozzi M, Putignani L, Guarino MPL. Fecal and Mucosal Microbiota Profiling in Irritable Bowel Syndrome and Inflammatory Bowel Disease. Front Microbiol 2019; 10:1655. [PMID: 31379797 PMCID: PMC6650632 DOI: 10.3389/fmicb.2019.01655] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 07/04/2019] [Indexed: 12/12/2022] Open
Abstract
An imbalance in the bacterial species resulting in the loss of intestinal homeostasis has been described in inflammatory bowel diseases (IBD) and irritable bowel syndrome (IBS). In this prospective study, we investigated whether IBD and IBS patients exhibit specific changes in richness and distribution of fecal and mucosal-associated microbiota. Additionally, we assessed potential 16S rRNA gene amplicons biomarkers for IBD, IBS, and controls (CTRLs) by comparison of taxonomic composition. The relative abundance of bacteria, at phylum and genus/species levels, and the bacterial diversity were determined through 16S rRNA sequence-based fecal and mucosal microbiota analysis. Linear discriminant analysis effect size (LEfSe) was used for biomarker discovery associated to IBD and IBS as compared to CTRLs. In fecal and mucosal samples, the microbiota richness was characterized by a microbial diversity reduction, going from CTRLs to IBS to IBD. β-diversity analysis showed a clear separation between IBD and CTRLs and between IBD and IBS with no significant separation between IBS and CTRLs. β-diversity showed a clear separation between mucosa and stool samples in all the groups. In IBD, there was no difference between inflamed and not inflamed mucosa. Based upon the LEfSe data, the Anaerostipes and Ruminococcaceae were identified as the most differentially abundant bacterial taxa in CTRLs. Erysipelotrichi was identified as potential biomarker for IBS, while Gammaproteobacteria, Enterococcus, and Enterococcaceae for IBD. This study provides an overview of the alterations of microbiota and may aid in identifying potential 16S rRNA gene amplicons mucosal biomarkers for IBD and IBS.
Collapse
|
research-article |
6 |
127 |
2
|
Lednicky J, De Rochars VMB, Elbadry M, Loeb J, Telisma T, Chavannes S, Anilis G, Cella E, Ciccozzi M, Okech B, Salemi M, Morris JG. Mayaro Virus in Child with Acute Febrile Illness, Haiti, 2015. Emerg Infect Dis 2018; 22:2000-2002. [PMID: 27767924 PMCID: PMC5088037 DOI: 10.3201/eid2211.161015] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Mayaro virus has been associated with small outbreaks in northern South America. We isolated this virus from a child with acute febrile illness in rural Haiti, confirming its role as a cause of mosquitoborne illness in the Caribbean region. The clinical presentation can mimic that of chikungunya, dengue, and Zika virus infections.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
100 |
3
|
Lednicky J, Beau De Rochars VM, El Badry M, Loeb J, Telisma T, Chavannes S, Anilis G, Cella E, Ciccozzi M, Rashid M, Okech B, Salemi M, Morris JG. Zika Virus Outbreak in Haiti in 2014: Molecular and Clinical Data. PLoS Negl Trop Dis 2016; 10:e0004687. [PMID: 27111294 PMCID: PMC4844159 DOI: 10.1371/journal.pntd.0004687] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 04/13/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Zika virus (ZIKV), first isolated in Uganda in 1947, is currently spreading rapidly through South America and the Caribbean. In Brazil, infection has been linked with microcephaly and other serious complications, leading to declaration of a public health emergency of international concern; however, there currently are only limited data on the virus (and its possible sources and manifestations) in the Caribbean. METHODS From May, 2014-February, 2015, in conjunction with studies of chikungunya (CHIKV) and dengue (DENV) virus infections, blood samples were collected from children in the Gressier/Leogane region of Haiti who presented to a school clinic with undifferentiated febrile illness. Samples were initially screened by RT-PCR for CHIKV and DENV, with samples negative in these assays further screened by viral culture. FINDINGS Of 177 samples screened, three were positive for ZIKV, confirmed by viral sequencing; DENV-1 was also identified in culture from one of the three positive case patients. Patients were from two different schools and 3 different towns, with all three cases occurring within a single week, consistent with the occurrence of an outbreak in the region. Phylogenetic analysis of known full genome viral sequences demonstrated a close relationship with ZIKV from Brazil; additional analysis of the NS5 gene, for which more sequences are currently available, showed the Haitian strains clustering within a monophyletic clade distinct from Brazilian, Puerto Rican and Guatemalan sequences, with all part of a larger clade including isolates from Easter Island. Phylogeography also clarified that at least three major African sub-lineages exist, and confirmed that the South American epidemic is most likely to have originated from an initial ZIKV introduction from French Polynesia into Easter Island, and then to the remainder of the Americas. CONCLUSIONS ZIKV epidemics in South America, as well as in Africa, show complex dissemination patterns. The virus appears to have been circulating in Haiti prior to the first reported cases in Brazil. Factors contributing to transmission and the possible linkage of this early Haitian outbreak with microcephaly remain to be determined.
Collapse
|
research-article |
9 |
93 |
4
|
Lo Presti A, Lai A, Cella E, Zehender G, Ciccozzi M. Chikungunya virus, epidemiology, clinics and phylogenesis: A review. ASIAN PAC J TROP MED 2014; 7:925-32. [PMID: 25479619 DOI: 10.1016/s1995-7645(14)60164-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 07/15/2014] [Accepted: 10/15/2014] [Indexed: 11/28/2022] Open
Abstract
Chikungunya virus is a mosquito-transmitted alphavirus that causes chikungunya fever, a febrile illness associated with severe arthralgia and rash. Chikungunya virus is transmitted by culicine mosquitoes; Chikungunya virus replicates in the skin, disseminates to liver, muscle, joints, lymphoid tissue and brain, presumably through the blood. Phylogenetic studies showed that the Indian Ocean and the Indian subcontinent epidemics were caused by two different introductions of distinct strains of East/Central/South African genotype of CHIKV. The paraphyletic grouping of African CHIK viruses supports the historical evidence that the virus was introduced into Asia from Africa. Phylogenetic analysis divided Chikungunya virus isolates into three distinct genotypes based on geographical origins: the first, the West Africa genotype, consisted of isolates from Senegal and Nigeria; the second contained strains from East/Central/South African genotype, while the third contained solely Asian. The most recent common ancestor for the recent epidemic, which ravaged Indian Ocean islands and Indian subcontinent in 2004 - 2007, was found to date in 2002. Asian lineage dated about 1952 and exhibits similar spread patterns of the recent Indian Ocean outbreak lineage, with successive epidemics detected along an eastward path. Asian group splitted into two clades: an Indian lineage and a south east lineage. Outbreaks of Chikungunya virus fever in Asia have not been associated necessarily with outbreaks in Africa. Phylogenetic tools can reconstruct geographic spread of Chikungunya virus during the epidemics wave. The good management of patients with acute Chikungunya virus infection is essential for public health in susceptible areas with current Aedes spp activity.
Collapse
|
Journal Article |
11 |
66 |
5
|
Mavian C, Rife BD, Dollar JJ, Cella E, Ciccozzi M, Prosperi MCF, Lednicky J, Morris JG, Capua I, Salemi M. Emergence of recombinant Mayaro virus strains from the Amazon basin. Sci Rep 2017; 7:8718. [PMID: 28821712 PMCID: PMC5562835 DOI: 10.1038/s41598-017-07152-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 06/26/2017] [Indexed: 01/31/2023] Open
Abstract
Mayaro virus (MAYV), causative agent of Mayaro Fever, is an arbovirus transmitted by Haemagogus mosquitoes. Despite recent attention due to the identification of several cases in South and Central America and the Caribbean, limited information on MAYV evolution and epidemiology exists and represents a barrier to prevention of further spread. We present a thorough spatiotemporal evolutionary study of MAYV full-genome sequences collected over the last sixty years within South America and Haiti, revealing recent recombination events and adaptation to a broad host and vector range, including Aedes mosquito species. We employed a Bayesian phylogeography approach to characterize the emergence of recombinants in Brazil and Haiti and report evidence in favor of the putative role of human mobility in facilitating recombination among MAYV strains from geographically distinct regions. Spatiotemporal characteristics of recombination events and the emergence of this previously neglected virus in Haiti, a known hub for pathogen spread to the Americas, warrants close monitoring of MAYV infection in the immediate future.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
58 |
6
|
Cordiali-Fei P, Trento E, Giovanetti M, Lo Presti A, Latini A, Giuliani M, D'Agosto G, Bordignon V, Cella E, Farchi F, Ferraro C, Lesnoni La Parola I, Cota C, Sperduti I, Vento A, Cristaudo A, Ciccozzi M, Ensoli F. Analysis of the ORFK1 hypervariable regions reveal distinct HHV-8 clustering in Kaposi's sarcoma and non-Kaposi's cases. J Exp Clin Cancer Res 2015; 34:1. [PMID: 25592960 PMCID: PMC4311464 DOI: 10.1186/s13046-014-0119-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 12/29/2014] [Indexed: 11/23/2022] Open
Abstract
Background Classical Kaposi’s Sarcoma (cKS) is a rare vascular tumor, which develops in subjects infected with Human Herpesvirus-8 (HHV-8). Beside the host predisposing factors, viral genetic variants might possibly be related to disease development. The aim of this study was to identify HHV-8 variants in patients with cKS or in HHV-8 infected subjects either asymptomatic or with cKS-unrelated cutaneous lymphoproliferative disorders. Methods The VR1 and VR2 regions of the ORF K1 sequence were analyzed in samples (peripheral blood and/or lesional tissue) collected between 2000 and 2010 from 27 subjects with HHV-8 infection, established by the presence of anti-HHV-8 antibodies. On the basis of viral genotyping, a phylogenetic analysis and a time-scaled evaluation were performed. Results Two main clades of HHV-8, corresponding to A and C subtypes, were identified. Moreover, for each subtype, two main clusters were found distinctively associated to cKS or non-cKS subjects. Selective pressure analysis showed twelve sites of the K1 coding gene (VR1 and VR2 regions) under positive selective pressure and one site under negative pressure. Conclusion Thus, present data suggest that HHV-8 genetic variants may influence the susceptibility to cKS in individuals with HHV-8 infection.
Collapse
|
Journal Article |
10 |
46 |
7
|
Moreno A, Lelli D, de Sabato L, Zaccaria G, Boni A, Sozzi E, Prosperi A, Lavazza A, Cella E, Castrucci MR, Ciccozzi M, Vaccari G. Detection and full genome characterization of two beta CoV viruses related to Middle East respiratory syndrome from bats in Italy. Virol J 2017; 14:239. [PMID: 29258555 PMCID: PMC5735805 DOI: 10.1186/s12985-017-0907-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/06/2017] [Indexed: 01/15/2023] Open
Abstract
Background Middle East respiratory syndrome coronavirus (MERS-CoV), which belongs to beta group of coronavirus, can infect multiple host species and causes severe diseases in humans. Multiple surveillance and phylogenetic studies suggest a bat origin. In this study, we describe the detection and full genome characterization of two CoVs closely related to MERS-CoV from two Italian bats, Pipistrellus kuhlii and Hypsugo savii. Methods Pool of viscera were tested by a pan-coronavirus RT-PCR. Virus isolation was attempted by inoculation in different cell lines. Full genome sequencing was performed using the Ion Torrent platform and phylogenetic trees were performed using IQtree software. Similarity plots of CoV clade c genomes were generated by using SSE v1.2. The three dimensional macromolecular structure (3DMMS) of the receptor binding domain (RBD) in the S protein was predicted by sequence-homology method using the protein data bank (PDB). Results Both samples resulted positive to the pan-coronavirus RT-PCR (IT-batCoVs) and their genome organization showed identical pattern of MERS CoV. Phylogenetic analysis showed a monophyletic group placed in the Beta2c clade formed by MERS-CoV sequences originating from humans and camels and bat-related sequences from Africa, Italy and China. The comparison of the secondary and 3DMMS of the RBD of IT-batCoVs with MERS, HKU4 and HKU5 bat sequences showed two aa deletions located in a region corresponding to the external subdomain of MERS-RBD in IT-batCoV and HKU5 RBDs. Conclusions This study reported two beta CoVs closely related to MERS that were obtained from two bats belonging to two commonly recorded species in Italy (P. kuhlii and H. savii). The analysis of the RBD showed similar structure in IT-batCoVs and HKU5 respect to HKU4 sequences. Since the RBD domain of HKU4 but not HKU5 can bind to the human DPP4 receptor for MERS-CoV, it is possible to suggest also for IT-batCoVs the absence of DPP4-binding potential. More surveillance studies are needed to better investigate the potential intermediate hosts that may play a role in the interspecies transmission of known and currently unknown coronaviruses with particular attention to the S protein and the receptor specificity and binding affinity.
Collapse
|
Journal Article |
8 |
45 |
8
|
Ciccozzi M, Peletto S, Cella E, Giovanetti M, Lai A, Gabanelli E, Acutis PL, Modesto P, Rezza G, Platonov AE, Lo Presti A, Zehender G. Epidemiological history and phylogeography of West Nile virus lineage 2. INFECTION GENETICS AND EVOLUTION 2013; 17:46-50. [DOI: 10.1016/j.meegid.2013.03.034] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 03/14/2013] [Accepted: 03/20/2013] [Indexed: 10/27/2022]
|
|
12 |
41 |
9
|
Landi G, Cella E, Boccardi E, Musicco M. Lacunar versus non-lacunar infarcts: pathogenetic and prognostic differences. J Neurol Neurosurg Psychiatry 1992; 55:441-5. [PMID: 1619408 PMCID: PMC1014897 DOI: 10.1136/jnnp.55.6.441] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
To characterise the pathogenetic and prognostic features of lacunar infarcts, 88 patients with these infarcts were compared with 103 patients with non-lacunar infarcts. Potential cardioembolic sources were significantly more frequent among patients with non-lacunar infarcts (p = 0.0025). Although the prevalence of hypertension was higher among lacunar infarcts, this difference was not statistically significant. However, the distribution of hypertensive patients in the two groups of lacunar and non-lacunar infarcts was influenced by the presence or absence of cardioembolic sources: hypertension was significantly associated with the presence of cardioembolic sources among non-lacunar infarcts, whereas among lacunar infarcts it was significantly more frequent in patients without a cardioembolic source. This indicates that cardioembolism may exert a confounding effect by suppressing the relation between hypertension and lacunar infarcts. In a mean follow up period of 28.1 months, lacunar infarcts had a significantly lower incidence of stroke recurrence and of myocardial infarction (age-adjusted survival analysis: p = 0.0008); mortality from all causes was also lower in patients with lacunar infarct (age-adjusted survival analysis: 0.04 less than p less than 0.05). In a multivariate regression analysis, stroke subtype was an independent predictor of new major vascular events. These findings support the lacunar hypothesis and should be considered in the planning of epidemiological and therapeutic studies in patients with cerebral infarction.
Collapse
|
Comparative Study |
33 |
40 |
10
|
Cesareo R, Palermo A, Benvenuto D, Cella E, Pasqualini V, Bernardi S, Stacul F, Angeletti S, Mauri G, Ciccozzi M, Trimboli P. Efficacy of radiofrequency ablation in autonomous functioning thyroid nodules. A systematic review and meta-analysis. Rev Endocr Metab Disord 2019; 20:37-44. [PMID: 30887407 DOI: 10.1007/s11154-019-09487-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Whether thermal ablation is effective to treat toxic thyroid nodules (TTN) is still unknown. Aim of this review was to achieve more robust evidence on the efficacy of radiofrequency ablation (RFA) in treating TTN in terms of TSH normalization, thyroid scintiscan, and volume reduction rate (VRR). A comprehensive literature search of PubMed/Medline and Scopus was performed in November 2018 to retrieve published studies. Original papers reporting TTN treated by RFA and later followed-up were eligible. Excluded were: articles not within this field, articles with unclear data, overlapping series, case/series reports. Discordances were solved in a final collegial meeting. Information was collected concerning population features, treatment procedure, follow-up, cases with TSH normalization, cases with scintiscan normalization, VRR of nodules. Pooled prevalence of patients with TSH or scintiscan normalization, and pooled VRR over time were calculated. For statistical analysis, the random-effects model was used. Eight articles published between 2008 and 2018 were included. The overall number of AFTN treated by RFA was 205. Five studies used a single session of treatment. The time of follow-up ranged from six to 24 months. The pooled rate of patients with TSH normalization was 57%. The pooled rate of patients with scintigraphically proven optimal response was 60%. The pooled VRR at 1 year was 79%. Baseline nodules volume was associated with the rate of TSH normalization. In conclusion, a moderate efficacy of RFA in treating TTN was found, and this can represent a solid starting point in this field.
Collapse
|
Meta-Analysis |
6 |
36 |
11
|
Iovine NM, Lednicky J, Cherabuddi K, Crooke H, White SK, Loeb JC, Cella E, Ciccozzi M, Salemi M, Morris JG. Coinfection With Zika and Dengue-2 Viruses in a Traveler Returning From Haiti, 2016: Clinical Presentation and Genetic Analysis. Clin Infect Dis 2016; 64:72-75. [PMID: 27694479 DOI: 10.1093/cid/ciw667] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 09/20/2016] [Indexed: 11/13/2022] Open
Abstract
Zika virus and dengue virus serotype 2 were isolated from a patient with travel to Haiti who developed fever, rash, arthralgias, and conjunctivitis. The infecting Zika virus was related to Venezuelan and Brazilian strains but evolved along a lineage originating from strains isolated in 2014 in the same region of Haiti.
Collapse
|
Journal Article |
9 |
35 |
12
|
Lo Presti A, Cella E, Giovanetti M, Lai A, Angeletti S, Zehender G, Ciccozzi M. Origin and evolution of Nipah virus. J Med Virol 2015; 88:380-8. [PMID: 26252523 DOI: 10.1002/jmv.24345] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2015] [Indexed: 01/22/2023]
Abstract
Nipah virus, member of the Paramyxoviridae family, is classified as a Biosafety Level-4 agent and category C priority pathogen. Nipah virus disease is endemic in south Asia and outbreaks have been reported in Malaysia, Singapore, India, and Bangladesh. Bats of the genus Pteropus appear to be the natural reservoir of this virus. The aim of this study was to investigate the genetic diversity of Nipah virus, to estimate the date of origin and the spread of the infection. The mean value of Nipah virus N gene evolutionary rate, was 6.5 × 10(-4) substitution/site/year (95% HPD: 2.3 × 10(-4)-1.18 × 10(-3)). The time-scaled phylogenetic analysis showed that the root of the tree originated in 1947 (95% HPD: 1888-1988) as the virus entered in south eastern Asiatic regions. The segregation of sequences in two main clades (I and II) indicating that Nipah virus had two different introductions: one in 1995 (95% HPD: 1985-2002) which correspond to clade I, and the other in 1985 (95% HPD: 1971-1996) which correspond to clade II. The phylogeographic reconstruction indicated that the epidemic followed two different routes spreading to the other locations. The trade of infected pigs may have played a role in the spread of the virus. Bats of the Pteropus genus, that are able to travel to long distances, may have contributed to the spread of the infection. Negatively selected sites, statistically supported, could reflect the stability of the viral N protein.
Collapse
|
Journal Article |
10 |
35 |
13
|
Cella E, Benedetti F, Fabris S, Borsetti A, Pezzuto A, Ciotti M, Pascarella S, Ceccarelli G, Zella D, Ciccozzi M, Giovanetti M. SARS-CoV-2 Lineages and Sub-Lineages Circulating Worldwide: A Dynamic Overview. Chemotherapy 2021; 66:3-7. [PMID: 33735881 PMCID: PMC8089399 DOI: 10.1159/000515340] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/28/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) originated in Wuhan, China, in early December 2019 has rapidly widespread worldwide, becoming one of the major global public health issues of the last centuries. Key Messages: Over the course of the pandemic, due to the advanced whole-genome sequencing technologies, an unprecedented amount of genomes have been generated, providing invaluable insights into the ongoing evolution and epidemiology of the virus during the pandemic. Therefore, this large amount of data played an important role in the SARS-CoV-2 mitigation and control strategies. Key Messages: The active monitoring and characterization of the SARS-CoV-2 lineages circulating worldwide is useful for a more specific diagnosis, better care, and timely treatment. In this review, a concise characterization of all the lineages and sub-lineages circulating and co-circulating across the world has been presented in order to determine the magnitude of the SARS-CoV-2 threat and to better understand the virus genetic diversity and its dispersion dynamics.
Collapse
|
Review |
4 |
32 |
14
|
Lo Presti A, Cella E, Angeletti S, Ciccozzi M. Molecular epidemiology, evolution and phylogeny of Chikungunya virus: An updating review. INFECTION GENETICS AND EVOLUTION 2016; 41:270-278. [PMID: 27085290 DOI: 10.1016/j.meegid.2016.04.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 04/06/2016] [Accepted: 04/07/2016] [Indexed: 01/08/2023]
Abstract
Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus belonging to the Togaviridae family, causing a febrile illness associated with severe arthralgia and rash. In this review, we summarized a series of articles published from 2013 to 2016 concerning CHIKV epidemiology, phylogeny, vaccine and therapies, to give an update of our most recent article written in 2014 (Lo Presti et al.,2014). CHIKV infection was first reported in 1952 from Makonde plateaus and since this time caused many outbreaks worldwide, involving the Indian Ocean region, African countries, American continent and Italy. CHIKV infection is still underestimated and it is normally associated with clinical symptoms overlapping with dengue virus, recurring epidemics and mutations within the viral genome. These characteristics promote the geographical spread and the inability to control vector-mediated transmission of the virus. For these reasons, the majority of studies were aimed to describe outbreaks and to enhance knowledge on CHIKV biology, pathogenesis, infection treatment, and prevention. In this review, 16 studies on CHIKV phylogenetic and phylodinamics were considered, during the years 2013-2016. Phylogenetic and phylodinamic analysis are useful tools to investigate how the genealogy of a pathogen population is influenced by pathogen's demographic history, host immunological milieu and environmental/ecological factors. Phylogenetic tools were revealed important to reconstruct the geographic spread of CHIKV during the epidemics wave and to have information on the circulating strains of the virus, that are important for the prediction and control of the epidemics, as well as for vaccines and antiviral drugs development. In conclusion, this updating review can give a critical appraisal of the epidemiology, therapeutic and phylogenesis of CHIKV, reinforcing the need to monitor the geographic spread of virus and vectors.
Collapse
|
Review |
9 |
31 |
15
|
Lo Presti A, Ciccozzi M, Cella E, Lai A, Simonetti FR, Galli M, Zehender G, Rezza G. Origin, evolution, and phylogeography of recent epidemic CHIKV strains. INFECTION GENETICS AND EVOLUTION 2012; 12:392-8. [PMID: 22244786 DOI: 10.1016/j.meegid.2011.12.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2011] [Revised: 12/23/2011] [Accepted: 12/24/2011] [Indexed: 11/28/2022]
Abstract
Chikungunya virus (CHIKV) is an arthropod-borne virus of the Alphavirus genus, which is transmitted to humans by Aedes spp. mosquitoes and was firstly identified in Tanzania in the mid 1950s. In this article, the findings of a phylogenetic and phylogeographic analysis of the recent CHIKV pandemic are reported. We estimated time of origin of the ancestral virus, time and place of occurrence of A226V mutation, and the flow of viral strains from an area to the other. The Bayesian phylogenetic and phylogeographic analysis was performed on the whole dataset, which consisted of 195 E1 (envelope 1) CHIKV sequences, and on a subset (D2), including 146 of the 195 previous sequences. Using the relaxed clock model, we estimated a CHIKV E1 mean evolutionary rate (in the whole dataset) of 1.4 × 10(-3)substitution/site/year (95% highest posterior density interval HPD 6.4 × 10(-4)-2.5 × 10(-3)), and of 2.2 × 10(-3) (95% HPD 9.6 × 10(-4)-3.8 × 10(-3)) in the D2 subset, including only the strains involved in the recent Indian Ocean epidemic. The phylogeographical analysis suggested an African origin of CHIKV with a tMRCA of 146 years corresponding to 1863 (95% HPD 1741-1941). Moreover D2 subset most probably originated in Kenya, with a tMRCA corresponding to the year 2002 (95% HPD 2000-2004), then spread following two distinct routes: one throughout the Indian Ocean (Reunion, Comoros) and the other moving from India then scattered in the South East Asia and reached Italy. In conclusion, we reconstructed the geographic spread of CHIKV during the last epidemic wave, which showed an eastward path from Africa to Indian Ocean island to India, and from there to other South East Asian countries. Whether A226V variants followed the same migration path remains undefined, since local independent mutations, followed by fixation due to selective advantage conferred by better adaptation to local vectors of infection, cannot be excluded.
Collapse
|
Journal Article |
13 |
30 |
16
|
De Luca A, Di Giambenedetto S, Lo Presti A, Sierra S, Prosperi M, Cella E, Giovanetti M, Torti C, Caudai C, Vicenti I, Saladini F, Almi P, Grima P, Blanc P, Fabbiani M, Rossetti B, Gagliardini R, Kaiser R, Ciccozzi M, Zazzi M. Two Distinct Hepatitis C Virus Genotype 1a Clades Have Different Geographical Distribution and Association With Natural Resistance to NS3 Protease Inhibitors. Open Forum Infect Dis 2015; 2:ofv043. [PMID: 26213689 PMCID: PMC4511743 DOI: 10.1093/ofid/ofv043] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 03/26/2015] [Indexed: 12/18/2022] Open
Abstract
Background. Hepatitis C virus (HCV) genotype 1 is the most prevalent worldwide. Subtype 1a, compared with 1b, shows lower response rates and higher propensity to select for drug resistance to NS3 and selected NS5A and nonnucleoside NS5B inhibitors. Two distinct clades of subtype 1a have been described. Methods. Using Bayesian methodology, we performed a time-scaled phylogeny reconstruction of clade separation and characterized the geographic distribution, phylodynamics, and association with natural resistance variants of NS3 sequences from 362 patients carrying subtype 1a HCV. Results. All sequences segregated in 2 clearly distinct clades. Clade I showed an earlier origin from the common ancestor compared with clade II. Clade I virus was more prevalent in non-European countries, represented mostly by United States, compared with European (75.7% vs 49.3%; P < .001). The prevalence of the natural NS3 variant Q80K, associated with resistance to the macrocyclic protease inhibitor simeprevir, was detected in 51.6% of clade I and 0% of clade II (P < .001); clade I showed a lower genetic barrier for Q80K, whereas no sign of selective pressure at any protease inhibitor resistance-associated codon was detected. Conclusions. Hepatitis C virus subtype 1a clades have a clearly different distribution in Europe and the United States, and the natural resistance mutation Q80K is exclusively associated with clade I.
Collapse
|
research-article |
10 |
28 |
17
|
Ceccarelli G, Vita S, Riva E, Cella E, Lopalco M, Antonelli F, De Cesaris M, Fogolari M, Dicuonzo G, Ciccozzi M, Angeletti S. Susceptibility to measles in migrant population: implication for policy makers. J Travel Med 2018; 25:4711101. [PMID: 29232456 DOI: 10.1093/jtm/tax080] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 11/13/2017] [Indexed: 12/26/2022]
Abstract
BACKGROUND Despite a large measles outbreak is taking place in WHO European region, currently no data are available on measles immunization coverage in the asylum seeker and migrants hosted in this area. METHODS Two hundred and fifty-six migrants upon their arrival in Italy on March, April and May 2016 were screened for measles virus IgG antibodies by chemiluminescence immunoassay (Liaison XL analyzer, Diasorin, Italy). The virus susceptibility in this cohort, the differences between the official country reported and the observed measles immunization coverage and the impact of current measles outbreak on the asylum seekers hosted in the largest Asylum Seeker centres of Italy, were evaluated. RESULTS The prevalence of subjects with positive result for measles IgG antibodies ranged between 79.9% and 100%. In Senegal, Mali, Nigeria, Pakistan and Bangladesh, the measles IgG seroprevalence observed was greater than the vaccinal coverage reported by WHO after I dose of vaccine. Based on data regarding the II dose coverage, the ASs population presented a seroprevalence greater to that expected. CONCLUSION On the basis of the results obtained, extraordinary screening and vaccination campaigns in the migrant population, especially in the course of large outbreaks, could represent a resource to reach an adequate measles immunization coverage and to control this infectious disease.
Collapse
|
|
7 |
26 |
18
|
Ciccozzi M, Equestre M, Costantino A, Marascio N, Quirino A, Lo Presti A, Cella E, Bruni R, Liberto MC, Focà A, Pisani G, Zehender G, Ciccaglione AR. Hepatitis C virus genotype 4d in Southern Italy: reconstruction of its origin and spread by a phylodynamic analysis. J Med Virol 2013; 84:1613-9. [PMID: 22930510 DOI: 10.1002/jmv.23384] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Hepatitis C Virus (HCV) genotype 4 predominates in Middle East and Central Africa countries. Recently, it has become also prevalent in Southern European countries where it is thought to have been introduced through immigration and the movement of intravenous drug users. In Italy, the prevalence of genotype 4 is particularly high (4.5%) in Southern regions, such as Calabria, and reaches values of 8.4% in specific areas where there appears to be endemic circulation of this genotype. In the present study, the phylogeny of HCV subtype 4d isolated from 19 Italian patients in Calabria was investigated by analysing a fragment of the NS5B viral genomic region. A Bayesian coalescent-based framework was used to estimate origin and spread of the HCV 4d in this area. The mean evolutionary rate HCV 4d NS5B sequences was estimated using a dataset of sequences sampled at known times and a relaxed clock constant model that best fitted the data. By using a Bayesian coalescent method, the Italian 4d isolates collected in Calabria were found to share a common ancestor with reference 4d isolates whose origin was traced back to 1940s. The genotype 4d epidemic in Southern Italy was maintained in a steady non-expanding phase until the late 1970s after that it grew exponentially up to 1990s probably sustained by the vast increase of unsafe blood transfusions and the spread of illicit intravenous drug users.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
26 |
19
|
Callegaro A, Svicher V, Alteri C, Lo Presti A, Valenti D, Goglio A, Salemi M, Cella E, Perno CF, Ciccozzi M, Maggiolo F. Epidemiological network analysis in HIV-1 B infected patients diagnosed in Italy between 2000 and 2008. INFECTION GENETICS AND EVOLUTION 2011; 11:624-32. [PMID: 21292031 DOI: 10.1016/j.meegid.2011.01.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 01/23/2011] [Indexed: 10/18/2022]
Abstract
This study, through a phylogenetic analysis, is aimed to identify potential epidemiological networks and sequence interrelationships between acute/early and chronic infections in both drug-naïve and drug-experienced individuals within a local, well-defined setting and to investigate the population dynamics of transmitted resistance and the potential contribution of untreated patients to the spread of antiretroviral resistance. A total of 884 HIV-1 B subtype pol gene sequences from 306 drug-naïve (40 recently and 266 chronically infected) and 578 drug-treated HIV-1 infected patients were collected through routine drug-resistance testing between 2000 and 2008 in a single center (Division of Infectious Disease, Bergamo, Northern Italy). Bayesian phylogenetic tree was reconstructed and transmission clusters were recognized using a posterior probability as statistical support of each cluster. Differences among clustered and non-clustered drug-resistance mutations were assessed by Fisher's exact test. In our cohort we identified five clusters including ≥6 sequences with the root posterior probability of 100%. Dated phylogenies reconstructed through Bayesian Markov chain Monte Carlo model was possible for only two main clade (≥10 sequences) originated between 1990 and 2002. Among the 306 drug-naïve individuals, 12% carried a viral strain with at least 1 major mutation associated with transmitted drug resistance and 36% of these strains were involved in significant clusters. We report for the first time that many (34%) of HIV-1 subtype B transmission clusters identified in Italy were only composed by drug-naïve individuals and that the 14% of transmitted drug resistance was linked to transmission clusters composed only of newly diagnosed individuals. The phylogenetic analysis was performed on a large cohort of drug-naïve recently/chronically infected individuals where drug-experienced patients represent almost all infected individuals in a restricted geographical area. Our findings highlight the role of newly diagnosed individuals, not yet exposed to antiretroviral drugs, in the transmission of drug-resistant HIV-1 strains, providing new insights for the planning and management of treatment programs in developing countries.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
26 |
20
|
Azarian T, Lo Presti A, Giovanetti M, Cella E, Rife B, Lai A, Zehender G, Ciccozzi M, Salemi M. Impact of spatial dispersion, evolution, and selection on Ebola Zaire Virus epidemic waves. Sci Rep 2015; 5:10170. [PMID: 25973685 PMCID: PMC4431419 DOI: 10.1038/srep10170] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 04/01/2015] [Indexed: 01/22/2023] Open
Abstract
Ebola virus Zaire (EBOV) has reemerged in Africa, emphasizing the global importance of this pathogen. Amidst the response to the current epidemic, several gaps in our knowledge of EBOV evolution are evident. Specifically, uncertainty has been raised regarding the potential emergence of more virulent viral variants through amino acid substitutions. Glycoprotein (GP), an essential component of the EBOV genome, is highly variable and a potential site for the occurrence of advantageous mutations. For this study, we reconstructed the evolutionary history of EBOV by analyzing 65 GP sequences from humans and great apes over diverse locations across epidemic waves between 1976 and 2014. We show that, although patterns of spatial dispersion throughout Africa varied, the evolution of the virus has largely been characterized by neutral genetic drift. Therefore, the radical emergence of more transmissible variants is unlikely, a positive finding, which is increasingly important on the verge of vaccine deployment.
Collapse
|
research-article |
10 |
25 |
21
|
Alcantara LCJ, Nogueira E, Shuab G, Tosta S, Fristch H, Pimentel V, Souza-Neto JA, Coutinho LL, Fukumasu H, Sampaio SC, Elias MC, Kashima S, Slavov SN, Ciccozzi M, Cella E, Lourenco J, Fonseca V, Giovanetti M. SARS-CoV-2 epidemic in Brazil: how the displacement of variants has driven distinct epidemic waves. Virus Res 2022; 315:198785. [PMID: 35461905 PMCID: PMC9022374 DOI: 10.1016/j.virusres.2022.198785] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 02/01/2023]
Abstract
Brazil ranks as third in terms of total number of reported SARS-CoV-2 cases globally. The COVID-19 epidemic in Brazil was characterised by the co-circulation of multiple variants as a consequence of multiple independent introduction events occurring through time. Here, we describe the SARS-CoV-2 variants that are currently circulating and co-circulating in the country, with the aim to highlight which variants have driven the different epidemic waves. For this purpose, we retrieved metadata information of Coronavirus sequences collected in Brazil and available at the GISAID database. SARS-CoV-2 lineages have been identified along with eleven variants, labelled as VOCs (Alpha, Gamma, Beta, Delta and Omicron) VOIs (Lambda and Mu) VUMs (B.1.1.318) and FMVs (Zeta, Eta and B.1.1.519). Here we show that, in the Brazilian context, after 24 months of sustained transmission and evolution of SARS-CoV-2, local variants (among them the B.1.1.28 and B.1.1.33) were displaced by recently introduced VOCs firstly with the Gamma, followed by Delta and more recently Omicron. The rapid spread of some of those VOCs (such as Gamma and Omicron) was also mirror by a large increase in the number of cases and deaths in the country. This in turn reinforces that, due to the emergence of variants that appear to induce a substantial evasion against neutralizing antibody response, it is important to strengthen genomic effort within the country and how vaccination still remains a critical process to protect the vulnerable population, still at risk of infection and death.
Collapse
|
brief-report |
3 |
23 |
22
|
Spoto S, Valeriani E, Caputo D, Cella E, Fogolari M, Pesce E, Mulè MT, Cartillone M, Costantino S, Dicuonzo G, Coppola R, Ciccozzi M, Angeletti S. The role of procalcitonin in the diagnosis of bacterial infection after major abdominal surgery: Advantage from daily measurement. Medicine (Baltimore) 2018; 97:e9496. [PMID: 29504973 PMCID: PMC5779742 DOI: 10.1097/md.0000000000009496] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Postsurgical infections represent an important cause of morbidity after abdominal surgery. The microbiological diagnosis is not achieved in at least 30% of culture with consequent worsening of patient outcome. In this study, procalcitonin measurement, during the first 3 days after abdominal surgery, has been evaluated for the early diagnosis of postsurgical infection.Ninety consecutive patients subjected to major abdominal surgery at the University Campus Bio-Medico of Rome, have been included. PCT concentrations were measured by time-resolved amplified cryptate emission (TRACE) assay at admission and at the first, second, and third day after surgery. PCT levels were compared using the Mann-Whitney test and by ANOVA test for variance analysis. Receiver operating characteristic (ROC) analysis was performed to define the diagnostic ability of PCT in case of postsurgical infections.PCT values resulted significantly different between patients developing or not developing postsurgical infections. PCT >1.0 ng/mL at first or second day after surgery and >0.5 ng/mL at third day resulted diagnostic for infectious complication, whereas a value <0.5 ng/mL at the fifth day after surgery was useful for early and safety discharge of patients.In conclusion, PCT daily measurement could represent a useful diagnostic tool improving health care in the postsurgical period following major abdominal surgery and should be recommended.
Collapse
|
|
7 |
21 |
23
|
De Florio L, Riva E, Giona A, Dedej E, Fogolari M, Cella E, Spoto S, Lai A, Zehender G, Ciccozzi M, Angeletti S. MALDI-TOF MS Identification and Clustering Applied to Enterobacter Species in Nosocomial Setting. Front Microbiol 2018; 9:1885. [PMID: 30154783 PMCID: PMC6102349 DOI: 10.3389/fmicb.2018.01885] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 07/26/2018] [Indexed: 12/22/2022] Open
Abstract
Enterobacter microorganisms cause important bacterial infections in humans. Recently, carbapenem resistant isolates carrying the blaKPC gene were described and their clonal transmission in different nosocomial outbreaks reported. In this study, the relative numbers of Enterobacter species, their antimicrobial susceptibility along 3 years of observation and the identification ability of the two most common MALDI-TOF platforms were evaluated. A clustering analysis was performed to identify changes in the microbial population within the nosocomial environment. Enterobacter were identified using two platforms (MALDI-TOF Biotyper and VITEK MS). Antimicrobial susceptibility was tested by Vitek2 Compact and MIC50 and MIC90 was evaluated using GraphPad software. Clustering analysis was performed by MALDI-TOF and a dendrogram was built with both platforms and compared. The most frequent species isolated were Enterobacter cloacae and Enterobacter aerogenes with a gradual increase of Enterobacter asburiae in 2017. MALDI-TOF platforms showed a very good sensitivity and specificity except for E. asburiae identification that was reliable only by MALDI-TOF MS Biotyper. An increase of resistance for Enterobacter, confirmed by the isolation of extended spectrum beta-lactamase (ESBL) strains and the emergence of E. cloacae multidrug-resistant (MDR) and carbapenem resistant strains, was observed. A clonal route of transmission involving general surgery and geriatric wards was evidenced as previously described for Klebsiella pneumoniae MDR strains in the same nosocomial setting. These data represent an important source of information about the spreading of Enterobacter in the nosocomial environment.
Collapse
|
Journal Article |
7 |
20 |
24
|
Tosta S, Moreno K, Schuab G, Fonseca V, Segovia FMC, Kashima S, Elias MC, Sampaio SC, Ciccozzi M, Alcantara LCJ, Slavov SN, Lourenço J, Cella E, Giovanetti M. Global SARS-CoV-2 genomic surveillance: What we have learned (so far). INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 108:105405. [PMID: 36681102 PMCID: PMC9847326 DOI: 10.1016/j.meegid.2023.105405] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023]
Abstract
The COVID-19 pandemic has brought significant challenges for genomic surveillance strategies in public health systems worldwide. During the past thirty-four months, many countries faced several epidemic waves of SARS-CoV-2 infections, driven mainly by the emergence and spread of novel variants. In that line, genomic surveillance has been a crucial toolkit to study the real-time SARS-CoV-2 evolution, for the assessment and optimization of novel diagnostic assays, and to improve the efficacy of existing vaccines. During the pandemic, the identification of emerging lineages carrying lineage-specific mutations (particularly those in the Receptor Binding domain) showed how these mutations might significantly impact viral transmissibility, protection from reinfection and vaccination. So far, an unprecedented number of SARS-CoV-2 viral genomes has been released in public databases (i.e., GISAID, and NCBI), achieving 14 million genome sequences available as of early-November 2022. In the present review, we summarise the global landscape of SARS-CoV-2 during the first thirty-four months of viral circulation and evolution. It demonstrates the urgency and importance of sustained investment in genomic surveillance strategies to timely identify the emergence of any potential viral pathogen or associated variants, which in turn is key to epidemic and pandemic preparedness.
Collapse
|
Review |
2 |
20 |
25
|
Zehender G, Svicher V, Gabanelli E, Ebranati E, Veo C, Lo Presti A, Cella E, Giovanetti M, Bussini L, Salpini R, Alteri C, Lai A, Tanzi E, Perno CF, Galli M, Ciccozzi M. Reliable timescale inference of HBV genotype A origin and phylodynamics. INFECTION GENETICS AND EVOLUTION 2015; 32:361-9. [DOI: 10.1016/j.meegid.2015.03.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 03/02/2015] [Accepted: 03/09/2015] [Indexed: 12/21/2022]
|
|
10 |
20 |