1
|
Ghezzi A, Aceto M, Cassino C, Gabano E, Osella D. Uptake of antitumor platinum(II)-complexes by cancer cells, assayed by inductively coupled plasma mass spectrometry (ICP-MS). J Inorg Biochem 2004; 98:73-8. [PMID: 14659635 DOI: 10.1016/j.jinorgbio.2003.08.014] [Citation(s) in RCA: 196] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A systematic study on intracellular Pt uptake and Pt accumulation ratio in breast cancer MCF-7 cell line has been performed on a number of Pt(II)-complexes, namely cisplatin, carboplatin and oxaliplatin, clinically employed as antitumor drugs, trans- and cis-[Pt(Cl)2(pyridine)2] and cis-[Pt(Cl)2(pyridine)(5-SO3H-isoquinoline)] complexes, previously investigated also as potential telomerase inhibitors. In particular, long incubation times have been chosen in order to understand the fate of the complexes in the cells. For this purpose, sub-acute drug concentrations must be employed and, therefore, a very sensitive method of analysis like as inductively coupled plasma mass spectrometry (ICP-MS) superior to the widely employed atomic absorption spectroscopy (AAS) has been adopted. Any relationships among uptake/accumulation and several parameters such as drug structure, lipophilicity, drug concentration and incubation time have been sought and analyzed: the bulk of data point for a passive diffusion mechanism through the cell membrane.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
196 |
2
|
Gramatica P, Papa E, Luini M, Monti E, Gariboldi MB, Ravera M, Gabano E, Gaviglio L, Osella D. Antiproliferative Pt(IV) complexes: synthesis, biological activity, and quantitative structure-activity relationship modeling. J Biol Inorg Chem 2010; 15:1157-69. [PMID: 20526854 DOI: 10.1007/s00775-010-0676-4] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 05/21/2010] [Indexed: 01/13/2023]
Abstract
Several Pt(IV) complexes of the general formula [Pt(L)2(L')2(L'')2] [axial ligands L are Cl-, RCOO-, or OH-; equatorial ligands L' are two am(m)ine or one diamine; and equatorial ligands L'' are Cl- or glycolato] were rationally designed and synthesized in the attempt to develop a predictive quantitative structure-activity relationship (QSAR) model. Numerous theoretical molecular descriptors were used alongside physicochemical data (i.e., reduction peak potential, Ep, and partition coefficient, log Po/w) to obtain a validated QSAR between in vitro cytotoxicity (half maximal inhibitory concentrations, IC50, on A2780 ovarian and HCT116 colon carcinoma cell lines) and some features of Pt(IV) complexes. In the resulting best models, a lipophilic descriptor (log Po/w or the number of secondary sp3 carbon atoms) plus an electronic descriptor (Ep, the number of oxygen atoms, or the topological polar surface area expressed as the N,O polar contribution) is necessary for modeling, supporting the general finding that the biological behavior of Pt(IV) complexes can be rationalized on the basis of their cellular uptake, the Pt(IV)-->Pt(II) reduction, and the structure of the corresponding Pt(II) metabolites. Novel compounds were synthesized on the basis of their predicted cytotoxicity in the preliminary QSAR model, and were experimentally tested. A final QSAR model, based solely on theoretical molecular descriptors to ensure its general applicability, is proposed.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
113 |
3
|
Gabano E, Ravera M, Osella D. Pros and cons of bifunctional platinum(IV) antitumor prodrugs: two are (not always) better than one. Dalton Trans 2014; 43:9813-20. [PMID: 24874896 DOI: 10.1039/c4dt00911h] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This article evaluates the efficacy and applicability of bifunctional prodrugs consisting of a six-coordinate Pt(iv) octahedral core and one or more bioactive molecules. The platinum(iv) complexes release upon reduction the corresponding cytotoxic Pt(ii) agents and the bioactive molecules, able to inhibit some biochemical mechanisms of cancer growth and/or prevent the deactivation of the Pt(ii) metabolites.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
94 |
4
|
Platts JA, Oldfield SP, Reif MM, Palmucci A, Gabano E, Osella D. The RP-HPLC measurement and QSPR analysis of logP(o/w) values of several Pt(II) complexes. J Inorg Biochem 2006; 100:1199-207. [PMID: 16530269 DOI: 10.1016/j.jinorgbio.2006.01.035] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Revised: 01/23/2006] [Accepted: 01/27/2006] [Indexed: 11/19/2022]
Abstract
The n-octanol/water partition coefficient, logP(o/w), for a set of 24 Pt(II)-complexes was estimated by means of reversed-phase high performance liquid chromatography (RP-HPLC) technique using a C18 (ODS, octadecyl silane) column as a stationary phase and water/methanol mixtures as mobile phases. Based on the known logP(o/w) of several Pt(II)-complexes, we set a method to correlate the partition coefficient of this kind of complexes with the corresponding retention parameters. The best result was obtained from extrapolation to 0% of the organic modifier (MeOH) of the aqueous eluant. A quantitative structure-property relationship (QSPR) was constructed using molecular descriptors derived from density functional theory (DFT) calculations, which was found to correlate and predict these values with good accuracy. The use of DFT calculations is required because group-additive methods fail due to lack of values for appropriate fragments for many Pt(II)-complexes.
Collapse
|
Validation Study |
19 |
79 |
5
|
Margiotta N, Marzano C, Gandin V, Osella D, Ravera M, Gabano E, Platts JA, Petruzzella E, Hoeschele JD, Natile G. Revisiting [PtCl₂(cis-1,4-DACH)]: an underestimated antitumor drug with potential application to the treatment of oxaliplatin-refractory colorectal cancer. J Med Chem 2012; 55:7182-92. [PMID: 22788918 DOI: 10.1021/jm3006838] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Although the encouraging antitumor activity of [PtCl(2)(cis-1,4-DACH)] (1; DACH = diaminocyclohexane) was shown in early studies almost 20 years ago, the compound has remained nearly neglected. In contrast, oxaliplatin, containing the isomeric 1(R),2(R)-DACH carrier ligand, enjoys worldwide clinic application as a most important therapeutic agent in the treatment of colorectal cancer. By extending the investigation to human chemotherapy-resistant cancer cells, we have demonstrated the real effectiveness of 1 in circumventing cisplatin and oxaliplatin resistance in LoVo colon cancer cells. The uptake of compound 1 by the latter cells was similar to that of sensitive LoVo cells. This is not the case for all other compounds considered in this investigation. Interaction with double-stranded DNA, investigated by a biosensor assay and by quantum mechanical/molecular mechanical geometry optimization of the 1,2-GG intrastrand cross-link, does not show significant differences between 1 and oxaliplatin. However, the DNA adducts of 1 are removed from repair systems with lower efficiency and are more effective in inhibiting DNA and RNA polymerase.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
63 |
6
|
Gabano E, Ravera M, Osella D. The drug targeting and delivery approach applied to pt-antitumour complexes. A coordination point of view. Curr Med Chem 2010; 16:4544-80. [PMID: 19903151 DOI: 10.2174/092986709789760661] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Accepted: 11/17/2009] [Indexed: 11/22/2022]
Abstract
Platinum-based anticancer chemotherapy is associated to severe side effects because of its poor specificity. In particular, the hydrolysis of Pt-based drugs generates cationic complexes with electrophylic properties able to target DNA. The effectiveness of this kind of chemotherapy relies solely on the proliferation index of tumour cells, which is higher than in healthy cells. In recent years, the "drug targeting and delivery" approach has been developed in an attempt to reduce chemotherapy-related systemic side effects by using vectors that selectively deliver the cytotoxic agent to tumour cells, thus sparing healthy cells. These vectors include bioactive substances, such as nutrients, that more readily enter metabolically active tumour cells, or hormones, folates and bile acids, that are selectively conveyed by receptors/transporters often over-expressed in cancer cells (active targeting). Alternatively, macromolecular vectors, exploiting the so-called EPR (enhanced permeability and retention) effect, can be used (passive targeting). The bioactive or macromolecular vector must contain a coordinating arm capable of binding the PtX(2)-unit, acting either as carrier or leaving group for the cytotoxic Pt-moiety. In both cases, the Pt-vector conjugate should be promptly cleaved to generate the active species. The release of platinum drugs from the pharmacophore is crucial for fine-tuning of the overall cytotoxic properties of the conjugates. The "drug targeting and delivery" method represents an exciting field of research for improving the therapeutic potential of the long established, very efficient, but intrinsically non-specific Pt-based drugs.
Collapse
|
Journal Article |
15 |
61 |
7
|
Ravera M, Gabano E, Pelosi G, Fregonese F, Tinello S, Osella D. A new entry to asymmetric platinum(IV) complexes via oxidative chlorination. Inorg Chem 2014; 53:9326-35. [PMID: 25121398 DOI: 10.1021/ic501446b] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pt(IV) complexes are usually prepared by oxidation of the corresponding Pt(II) counterparts, typically using hydrogen peroxide or chlorine. A different way to synthesize asymmetrical Pt(IV) compounds is the oxidative chlorination of Pt(II) counterparts with N-chlorosuccinimide. The reaction between cisplatin cis-[PtCl2(NH3)2], carboplatin, cis-[PtCl2(dach)] and cis-[Pt(cbdc)(dach)] (cbdc = cyclobutane-1,1'-dicarboxylato; dach = cyclohexane-1R,2R-diamine) with N-chlorosuccinimide in ethane-1,2-diol was optimized to produce the asymmetric Pt(IV) octahedral complexes [PtA2Cl(glyc)X2] (A2 = 2 NH3 or dach; glyc = 2-hydroxyethanolato; X2 = 2 Cl or cbdc) in high yield and purity. The X-ray crystal structure of the [Pt(cbdc)Cl(dach)(glyc)] complex is also reported. Moreover, the oxidation method proved to be versatile enough to produce other mixed Pt(IV) derivatives varying the reaction medium. The two trichlorido complexes easily undergo a pH-dependent hydrolysis reaction, whereas the dicarboxylato compounds are stable enough to allow further coupling reactions for drug targeting and delivery via the glyc reactive pendant. Therefore, the coupling reaction between the [Pt(cbdc)Cl(dach)(glyc)] and a model carboxylic acid, a model amine, and selectively protected amino acids is reported.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
61 |
8
|
Monti E, Gariboldi M, Maiocchi A, Marengo E, Cassino C, Gabano E, Osella D. Cytotoxicity of cis-Platinum(II) Conjugate Models. The Effect of Chelating Arms and Leaving Groups on Cytotoxicity: A Quantitative Structure−Activity Relationship Approach. J Med Chem 2005; 48:857-66. [PMID: 15689170 DOI: 10.1021/jm049508t] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Thirteen newly synthesized or resynthesized diamine-platinum(II) complexes were characterized, and their cytotoxic activities (IC50) were tested on parental and resistant ovarian cancer cell lines. They represent models of conjugates between biologically active vectors and cytotoxic Pt(II) moieties within the "drug targeting and delivery strategy". Three drugs, routinely employed in the clinical treatment of cancer, namely, cisplatin, carboplatin, and oxaliplatin, were also included in the study as controls. The quantitative structure-activity relationship approach provides simple regression models able to predict log(1/IC50) of diamine-platinum(II) complexes on both parental and resistant ovarian cancer cell lines. The 16 complexes were characterized using 197 molecular descriptors, after which the best regression models relating a subset of these descriptors to the log(1/IC50) in the two cancer cell lines were calculated. Models with four variables proved to be endowed with very good predictive ability Q2(LMO-50%) > or = 85.6%, making it possible to discard 50% of the molecules from the test set following for cross-validation procedure. A four-variable regression model also proved effective in predicting the resistance index RI, Q2(LMO-50%) = 84.4%.
Collapse
|
|
20 |
58 |
9
|
Alessio M, Zanellato I, Bonarrigo I, Gabano E, Ravera M, Osella D. Antiproliferative activity of Pt(IV)-bis(carboxylato) conjugates on malignant pleural mesothelioma cells. J Inorg Biochem 2013; 129:52-7. [DOI: 10.1016/j.jinorgbio.2013.09.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/25/2013] [Accepted: 09/03/2013] [Indexed: 10/26/2022]
|
|
12 |
54 |
10
|
Sabbatini M, Zanellato I, Ravera M, Gabano E, Perin E, Rangone B, Osella D. Pt(IV) Bifunctional Prodrug Containing 2-(2-Propynyl)octanoato Axial Ligand: Induction of Immunogenic Cell Death on Colon Cancer. J Med Chem 2019; 62:3395-3406. [PMID: 30879295 DOI: 10.1021/acs.jmedchem.8b01860] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The synthesis, characterization, and in vitro activity of a cyclohexane-1 R,2 R-diamine-based Pt(IV) derivative containing the histone deacetylase inhibitor rac-2-(2-propynyl)octanoato, namely, ( OC-6-44)-acetatodichlorido(cyclohexane-1 R,2 R-diamine)( rac-2-(2-propynyl)octanoato)platinum(IV), are reported together with those of its isomers containing enantiomerically enriched axial ligands. These Pt(IV) complexes showed comparable activity, of 2 orders of magnitude higher than reference drug oxaliplatin on three human (HCT 116, SW480, and HT-29) and one mouse (CT26) colon cancer cell lines. In vivo experiments were carried out on immunocompetent BALB/c mice bearing the same syngeneic tumor. The complex ( OC-6-44)-acetatodichlorido(cyclohexane-1 R,2 R-diamine)( rac-2-(2-propynyl)octanoato)platinum(IV) showed higher tumor mass Pt accumulation than oxaliplatin, due to its higher lipophilicity, with negligible nephro- and hepatotoxicities when administered intravenously. A remarkable tumor mass invasion by cytotoxic CD8+ T lymphocytes, following the Pt(IV) treatment, indicated a strong induction of immunogenic cell death.
Collapse
|
Retracted Publication |
6 |
52 |
11
|
Ravera M, Gabano E, McGlinchey MJ, Osella D. A view on multi-action Pt(IV) antitumor prodrugs. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.04.025] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
|
6 |
47 |
12
|
Ravera M, Gabano E, Zanellato I, Bonarrigo I, Alessio M, Arnesano F, Galliani A, Natile G, Osella D. Cellular trafficking, accumulation and DNA platination of a series of cisplatin-based dicarboxylato Pt(IV) prodrugs. J Inorg Biochem 2015; 150:1-8. [PMID: 26042542 DOI: 10.1016/j.jinorgbio.2015.05.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 05/19/2015] [Accepted: 05/21/2015] [Indexed: 01/25/2023]
Abstract
A series of Pt(IV) anticancer prodrug candidates, having the equatorial arrangement of cisplatin and bearing two aliphatic carboxylato axial ligands, has been investigated to prove the relationship between lipophilicity, cellular accumulation, DNA platination and antiproliferative activity on the cisplatin-sensitive A2780 ovarian cancer cell line. Unlike cisplatin, no facilitated influx/efflux mechanism appears to operate in the case of the Pt(IV) complexes under investigation, thus indicating that they enter by passive diffusion. While Pt(IV) complexes having lipophilicity comparable to that of cisplatin (negative values of log Po/w) exhibit a cellular accumulation similar to that of cisplatin, the most lipophilic complexes of the series show much higher cellular accumulation (stemming from enhanced passive diffusion), accompanied by greater DNA platination and cell growth inhibition. Even if the Pt(IV) complexes are removed from the culture medium in the recovery process, the level of DNA platination remains very high and persistent in time, indicating efficient storing of the complexes and poor detoxification efficiency.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
43 |
13
|
Tetko IV, Varbanov HP, Galanski MS, Talmaciu M, Platts JA, Ravera M, Gabano E. Prediction of logP for Pt(II) and Pt(IV) complexes: Comparison of statistical and quantum-chemistry based approaches. J Inorg Biochem 2016; 156:1-13. [PMID: 26717258 DOI: 10.1016/j.jinorgbio.2015.12.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/19/2015] [Accepted: 12/09/2015] [Indexed: 01/31/2023]
Abstract
The octanol/water partition coefficient, logP, is one of the most important physico-chemical parameters for the development of new metal-based anticancer drugs with improved pharmacokinetic properties. This study addresses an issue with the absence of publicly available models to predict logP of Pt(IV) complexes. Following data collection and subsequent development of models based on 187 complexes from literature, we validate new and previously published models on a new set of 11 Pt(II) and 35 Pt(IV) complexes, which were kept blind during the model development step. The error of the consensus model, 0.65 for Pt(IV) and 0.37 for Pt(II) complexes, indicates its good accuracy of predictions. The lower accuracy for Pt(IV) complexes was attributed to experimental difficulties with logP measurements for some poorly-soluble compounds. This model was developed using general-purpose descriptors such as extended functional groups, molecular fragments and E-state indices. Surprisingly, models based on quantum-chemistry calculations provided lower prediction accuracy. We also found that all the developed models strongly overestimate logP values for the three complexes measured in the presence of DMSO. Considering that DMSO is frequently used as a solvent to store chemicals, its effect should not be overlooked when logP measurements by means of the shake flask method are performed. The final models are freely available at http://ochem.eu/article/76903.
Collapse
|
Comparative Study |
9 |
39 |
14
|
Gabano E, Cassino C, Bonetti S, Prandi C, Colangelo D, Ghiglia A, Osella D. Synthesis and characterisation of estrogenic carriers for cytotoxic Pt(ii) fragments: biological activity of the resulting complexes. Org Biomol Chem 2005; 3:3531-9. [PMID: 16172691 DOI: 10.1039/b507716h] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper describes the synthesis and the spectroscopic characterisation of cis-dichloro[N-(4-(17alpha-ethynylestradiolyl)-benzyl)-ethylenediamine]platinum(II) and cis-diamino[2-(4-(17alpha-ethynylestradiolyl)-benzoylamino)-malonato]platinum(II). These complexes were synthesised in good yield according to multi-step procedures based on the classical and non-classical Sonogashira coupling reaction, respectively. These compounds retain an acceptable degree of relative binding affinity (RBA) for the alpha form of estrogen receptor. Combined treatment of breast cancer cell lines, namely hormone-sensitive MCF-7 and hormone-insensitive MDA-MB-231 cell lines, indicates that these compounds maintain agonistic activity so that the potential advantage in vehiculation of the cytotoxic moiety by means of the receptor system is counteracted by the proliferative effect of the estrogenic component of the entire molecule, especially at low concentrations.
Collapse
|
|
20 |
38 |
15
|
Ravera M, Gabano E, Zanellato I, Bonarrigo I, Escribano E, Moreno V, Font-Bardia M, Calvet T, Osella D. Synthesis, characterization and antiproliferative activity on mesothelioma cell lines of bis(carboxylato)platinum(IV) complexes based on picoplatin. Dalton Trans 2012; 41:3313-20. [PMID: 22286213 DOI: 10.1039/c2dt11874b] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis and characterization of a series of picoplatin-based (picoplatin = [PtCl(2)(mpy)(NH(3))], mpy = 2-methylpyridine), Pt(iv) complexes with axial carboxylato ligands of increasing length are reported. The synthesis is based on the oxidation with hydrogen peroxide of picoplatin to give the cis,cis,trans-[PtCl(2)(mpy)(NH(3))(OH)(2)] intermediate and then its transformation into the dicarboxylato complexes cis,cis,trans-[PtCl(2)(mpy)(NH(3))(RCOO)(2)] (R = CH(3)(CH(2))(n), n = 0-4) with the corresponding anhydride. Pt(iv) complexes with n = 0-2 were selected to be tested on four malignant pleural mesothelioma (MPM) cell lines, on human mesothelial cells (HMC), and on the cisplatin-sensitive ovarian A2780 cell line along with cisplatin as a metallo-drug reference. In general, the longer the axial chain, the more cytotoxic and selective the Pt(IV) complex is. Pt(IV) analogs show good activity on the MPM cell lines, approaching or in some case bypassing that of cisplatin and represent quite promising drug candidates for the treatment of tumors whose chemoresistance is mainly based on glutathione overexpression, such as MPM.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
36 |
16
|
Ravera M, Gabano E, Zanellato I, Fregonese F, Pelosi G, Platts JA, Osella D. Antiproliferative activity of a series of cisplatin-based Pt(IV)-acetylamido/carboxylato prodrugs. Dalton Trans 2016; 45:5300-9. [PMID: 26903367 DOI: 10.1039/c5dt04905a] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report studies of a novel series of Pt(IV) complexes exhibiting an asymmetric combination of acetylamido and carboxylato ligands in the axial positions. We demonstrate efficient synthesis of a series of analogues, differing in the alkyl chain length and hence lipophilicity, from a stable acetylamido/hydroxido complex formed by reaction of cisplatin with peroxyacetimidic acid (PAIA). NMR spectroscopy and X-ray crystallography confirm the identity of the resulting complexes, and highlight subtle differences in the structure and stability of acetylamido complexes compared to the equivalent acetato complexes. Reduction of acetylamido complexes, whether achieved chemically or electro-chemically, is significantly more difficult than that of acetate complexes, resulting in lower antiproliferative activity for shorter-chain complexes. For those with longer chains and hence greater cell uptake, this difference is negated and acetylamido complexes are as active as acetato analogues, both exhibiting antiproliferative potency (1/IC50) against A2780 ovarian cancer cells similar to that of cisplatin.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
36 |
17
|
Gama S, Rodrigues I, Mendes F, Santos IC, Gabano E, Klejevskaja B, Gonzalez-Garcia J, Ravera M, Vilar R, Paulo A. Anthracene-terpyridine metal complexes as new G-quadruplex DNA binders. J Inorg Biochem 2016; 160:275-86. [PMID: 27267415 DOI: 10.1016/j.jinorgbio.2016.04.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 03/15/2016] [Accepted: 04/03/2016] [Indexed: 12/21/2022]
Abstract
The formation of quadruple-stranded DNA induced by planar metal complexes has particular interest in the development of novel anticancer drugs. This is especially relevant for the inhibition of telomerase, which plays an essential role in cancer cell immortalization and is overexpressed in ca. 85-90% of cancer cells. Moreover, G-quadruplexes also exist in other locations in the human genome, namely oncogene promoter regions, and it has been hypothesized that they play a regulatory role in gene transcription. Herein we report a series of new anthracene-containing terpyridine ligands and the corresponding Cu(II) and Pt(II) complexes, with different linkers between the anthracenyl moiety and the terpyridine chelating unit. The interaction of these ligands and metal complexes with different topologies of DNA was studied by several biophysical techniques. The Pt(II) and Cu(II) complexes tested showed affinity for quadruplex-forming sequences with a good selectivity over duplex DNA. Importantly, the free ligands do not have significant affinity for any of the DNA sequences used, which shows that the presence of the metal is essential for high affinity (and selectivity). This effect is more evident in the case of the Pt(II) complexes. Moreover, the presence of a longer linker between the chelating terpyridine unit and the anthracene moiety enhances the interaction with G-quadruplex-forming sequences. We further evaluated the ability of the Cu(II) complexes to interact with, and stabilize G-quadruplex containing regions in oncogene promoters via a polymerase stop assay. These studies indicated that the metal complexes are able to induce G-quadruplex formation and stop polymerase activity.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
35 |
18
|
Ermondi G, Caron G, Ravera M, Gabano E, Bianco S, Platts JA, Osella D. Molecular interaction fields vs. quantum-mechanical-based descriptors in the modelling of lipophilicity of platinum(iv) complexes. Dalton Trans 2013; 42:3482-9. [DOI: 10.1039/c2dt32360e] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
|
12 |
35 |
19
|
Gabano E, Marengo E, Bobba M, Robotti E, Cassino C, Botta M, Osella D. 195Pt NMR spectroscopy: A chemometric approach. Coord Chem Rev 2006. [DOI: 10.1016/j.ccr.2006.02.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
|
19 |
33 |
20
|
Zanellato I, Bonarrigo I, Sardi M, Alessio M, Gabano E, Ravera M, Osella D. Evaluation of platinum-ethacrynic acid conjugates in the treatment of mesothelioma. ChemMedChem 2011; 6:2287-93. [PMID: 22025407 DOI: 10.1002/cmdc.201100426] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 10/11/2011] [Indexed: 01/03/2023]
Abstract
Malignant pleural mesothelioma (MPM) cells are characterized by chemoresistance associated with glutathione (GSH) metabolism. Ethacrynic acid (EA) is able to inhibit the detoxifying enzyme glutathione-S-transferase (GST), which catalyzes the conjugation between GSH and Pt-based drugs. With the aim of obtaining active bifunctional drugs, a Pt(II) complex containing two EA moieties as leaving groups, namely cis-diamminobis(ethacrynato)platinum(II), was synthesized, characterized, and tested on four MPM cell lines. The resulting antiproliferative activity was compared with that elicited by the analogue Pt(IV) complex, cis,cis,trans-diamminodichloridobis(ethacrynato)platinum(IV) (ethacraplatin) and by the co-administration of free EA and cisplatin. The Pt(II) and Pt(IV) bifunctional complexes showed poorer performance than the reference drug cisplatin alone or in combination with EA. After treatment, cellular GST activity remained consistently unchanged, while the GSH level increased.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
32 |
21
|
Ravera M, Gabano E, McGlinchey MJ, Osella D. Pt(IV) antitumor prodrugs: dogmas, paradigms, and realities. Dalton Trans 2022; 51:2121-2134. [PMID: 35015025 DOI: 10.1039/d1dt03886a] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Platinum(II)-based drugs are widely used for the treatment of solid tumors, especially in combination protocols. Severe side effects and occurrence of resistance are the major limitations to their clinical use. To overcome these drawbacks, a plethora of Pt(IV) derivatives, acting as anticancer prodrugs, have been designed, synthesized and preclinically (often only in vitro) tested. Here, we summarize the recent progress in the development and understanding of the chemical properties and biochemical features of these Pt(IV) prodrugs, especially those containing bioactive molecules as axial ligands, acting as multi-functional agents. Even though no such prodrugs have been yet approved for clinical use, many show encouraging pharmacological profiles. Thus, a better understanding of their features is a promising approach towards improving the available Pt-based anticancer agents.
Collapse
|
Review |
3 |
31 |
22
|
Zanellato I, Bonarrigo I, Colangelo D, Gabano E, Ravera M, Alessio M, Osella D. Biological activity of a series of cisplatin-based aliphatic bis(carboxylato) Pt(IV) prodrugs: how long the organic chain should be? J Inorg Biochem 2014; 140:219-27. [PMID: 25171667 DOI: 10.1016/j.jinorgbio.2014.07.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/29/2014] [Accepted: 07/29/2014] [Indexed: 01/20/2023]
Abstract
The biological properties of a series of cisplatin-based Pt(IV) prodrug candidates, namely trans,cis,cis-[Pt(carboxylato)2Cl2(NH3)2], where carboxylato=CH3(CH2)nCOO(-) [(1), n=0; (2), n=2; (3), n=4; (4), n=6] having a large interval of lipophilicity are discussed. The stability of the complexes was tested in different pH conditions (i.e. from 1.0 to 9.0) to simulate the hypothetical conditions for an oral route of administration, showing a high stability (>90%). The transformation into their active Pt(II) metabolites was demonstrated in the presence of ascorbic acid, with a pseudo-first order kinetics, the half-time of which smoothly decreases as the chain length of carboxylic acid increases. Their antiproliferative activity has been evaluated in vitro on a large panel of human cancer cell lines. As expected, the potency increases with the chain length: 3 and 4 resulted by far more active than cisplatin on all cell lines of about one or two orders of magnitude, respectively. Both complexes retained their activity also on cisplatin-resistant cell line, and exhibited a progressive increase of the selectivity compared with non-tumor cells. These results were confirmed with more prolonged treatment (up to 14days) studied on multicellular tumor spheroids (MCTSs). In this case the Pt(IV) complexes exert a protracted antiproliferative action, even if the drug is removed from the culture medium. Finally, in a time-course experiment of the total platinum evaluation in mice blood (after a single oral administration of the title complexes), 2 gave the best results, representing a good compromise between lipophilicity and water solubility, that increase and decrease respectively on passing from 1 to 4.
Collapse
|
Journal Article |
11 |
30 |
23
|
Gabano E, Ravera M, Zanellato I, Tinello S, Gallina A, Rangone B, Gandin V, Marzano C, Bottone MG, Osella D. An unsymmetric cisplatin-based Pt(iv) derivative containing 2-(2-propynyl)octanoate: a very efficient multi-action antitumor prodrug candidate. Dalton Trans 2018; 46:14174-14185. [PMID: 28984330 DOI: 10.1039/c7dt02928d] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The design, synthesis, characterization and biological properties of a Pt(iv) complex containing the very active inhibitor of histone deacetylase (2-propynyl)octanoic acid, POA, as an axial ligand are reported here. The title complex, namely (OC-6-44)-acetatodiamminedichlorido(2-(2-propynyl)octanoato)platinum(iv), 1, containing POA in racemic or in enantiomeric forms, was one/two orders of magnitude more active than cisplatin, depending on the chemo-sensitivity of the cancer cell lines. Moreover, 1 exhibited similar or even better antiproliferative activity than (OC-6-33)-diamminedichloridobis(2-propylpentanoato)platinum(iv), 2, containing two molecules of the well-known histone deacetylase inhibitor 2-propylpentanoic (valproic) acid. The high potency of 1 is likely due to its high cellular accumulation and to the synergism between the DNA-damaging cisplatin and the histone deacetylase inhibitor POA, both released upon the intracellular reduction of 1. Prodrug 1, after oral administration, caused an impressive reduction of the tumor mass (94%) in a model of solid tumor (murine Lewis lung carcinoma), compared to that of the control, whereas (intraperitoneal) cisplatin induced a tumor regression of 75% only. A good accumulation of 1 was observed in the tumor mass. The time course of the body weight attested that cisplatin induced elevated anorexia, whereas treatment with 1 did not induce significant body weight loss throughout the therapeutic experiment.
Collapse
|
Journal Article |
7 |
30 |
24
|
Cassino C, Gabano E, Ravera M, Cravotto G, Palmisano G, Vessières A, Jaouen G, Mundwiler S, Alberto R, Osella D. Platinum(II) and technetium(I) complexes anchored to ethynylestradiol: a way to drug targeting and delivery. Inorganica Chim Acta 2004. [DOI: 10.1016/j.ica.2003.12.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
|
21 |
27 |
25
|
Gabano E, Ravera M, Trivero F, Tinello S, Gallina A, Zanellato I, Gariboldi MB, Monti E, Osella D. The cisplatin-based Pt(iv)-diclorofibrato multi-action anticancer prodrug exhibits excellent performances also under hypoxic conditions. Dalton Trans 2018; 47:8268-8282. [DOI: 10.1039/c7dt04614f] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The cisplatin/clofibrato combos are multi-action Pt(iv) complexes active on a panel of human tumor cell lines, also under hypoxic conditions.
Collapse
|
|
7 |
24 |