1
|
Mortensen M, Soilleux EJ, Djordjevic G, Tripp R, Lutteropp M, Sadighi-Akha E, Stranks AJ, Glanville J, Knight S, W. Jacobsen SE, Kranc KR, Simon AK. The autophagy protein Atg7 is essential for hematopoietic stem cell maintenance. J Exp Med 2011; 208:455-67. [PMID: 21339326 PMCID: PMC3058574 DOI: 10.1084/jem.20101145] [Citation(s) in RCA: 491] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 01/25/2011] [Indexed: 01/14/2023] Open
Abstract
The role of autophagy, a lysosomal degradation pathway which prevents cellular damage, in the maintenance of adult mouse hematopoietic stem cells (HSCs) remains unknown. Although normal HSCs sustain life-long hematopoiesis, malignant transformation of HSCs leads to leukemia. Therefore, mechanisms protecting HSCs from cellular damage are essential to prevent hematopoietic malignancies. In this study, we crippled autophagy in HSCs by conditionally deleting the essential autophagy gene Atg7 in the hematopoietic system. This resulted in the loss of normal HSC functions, a severe myeloproliferation, and death of the mice within weeks. The hematopoietic stem and progenitor cell compartment displayed an accumulation of mitochondria and reactive oxygen species, as well as increased proliferation and DNA damage. HSCs within the Lin(-)Sca-1(+)c-Kit(+) (LSK) compartment were significantly reduced. Although the overall LSK compartment was expanded, Atg7-deficient LSK cells failed to reconstitute the hematopoietic system of lethally irradiated mice. Consistent with loss of HSC functions, the production of both lymphoid and myeloid progenitors was impaired in the absence of Atg7. Collectively, these data show that Atg7 is an essential regulator of adult HSC maintenance.
Collapse
|
research-article |
14 |
491 |
2
|
Bertram S, Heurich A, Lavender H, Gierer S, Danisch S, Perin P, Lucas JM, Nelson PS, Pöhlmann S, Soilleux EJ. Influenza and SARS-coronavirus activating proteases TMPRSS2 and HAT are expressed at multiple sites in human respiratory and gastrointestinal tracts. PLoS One 2012; 7:e35876. [PMID: 22558251 PMCID: PMC3340400 DOI: 10.1371/journal.pone.0035876] [Citation(s) in RCA: 339] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 03/23/2012] [Indexed: 11/30/2022] Open
Abstract
The type II transmembrane serine proteases TMPRSS2 and HAT activate influenza viruses and the SARS-coronavirus (TMPRSS2) in cell culture and may play an important role in viral spread and pathogenesis in the infected host. However, it is at present largely unclear to what extent these proteases are expressed in viral target cells in human tissues. Here, we show that both HAT and TMPRSS2 are coexpressed with 2,6-linked sialic acids, the major receptor determinant of human influenza viruses, throughout the human respiratory tract. Similarly, coexpression of ACE2, the SARS-coronavirus receptor, and TMPRSS2 was frequently found in the upper and lower aerodigestive tract, with the exception of the vocal folds, epiglottis and trachea. Finally, activation of influenza virus was conserved between human, avian and porcine TMPRSS2, suggesting that this protease might activate influenza virus in reservoir-, intermediate- and human hosts. In sum, our results show that TMPRSS2 and HAT are expressed by important influenza and SARS-coronavirus target cells and could thus support viral spread in the human host.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
339 |
3
|
Simmons G, Reeves JD, Grogan CC, Vandenberghe LH, Baribaud F, Whitbeck JC, Burke E, Buchmeier MJ, Soilleux EJ, Riley JL, Doms RW, Bates P, Pöhlmann S. DC-SIGN and DC-SIGNR bind ebola glycoproteins and enhance infection of macrophages and endothelial cells. Virology 2003; 305:115-23. [PMID: 12504546 DOI: 10.1006/viro.2002.1730] [Citation(s) in RCA: 296] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Ebola virus exhibits a broad cellular tropism in vitro. In humans and animal models, virus is found in most tissues and organs during the latter stages of infection. In contrast, a more restricted cell and tissue tropism is exhibited early in infection where macrophages, liver, lymph node, and spleen are major initial targets. This indicates that cellular factors other than the broadly expressed virus receptor(s) modulate Ebola virus tropism. Here we demonstrate that the C-type lectins DC-SIGN and DC-SIGNR avidly bind Ebola glycoproteins and greatly enhance transduction of primary cells by Ebola virus pseudotypes and infection by replication-competent Ebola virus. DC-SIGN and DC-SIGNR are expressed in several early targets for Ebola virus infection, including dendritic cells, alveolar macrophages, and sinusoidal endothelial cells in the liver and lymph node. While DC-SIGN and DC-SIGNR do not directly mediate Ebola virus entry, their pattern of expression in vivo and their ability to efficiently capture virus and to enhance infection indicate that these attachment factors can play an important role in Ebola transmission, tissue tropism, and pathogenesis.
Collapse
|
|
22 |
296 |
4
|
Pöhlmann S, Soilleux EJ, Baribaud F, Leslie GJ, Morris LS, Trowsdale J, Lee B, Coleman N, Doms RW. DC-SIGNR, a DC-SIGN homologue expressed in endothelial cells, binds to human and simian immunodeficiency viruses and activates infection in trans. Proc Natl Acad Sci U S A 2001; 98:2670-5. [PMID: 11226297 PMCID: PMC30196 DOI: 10.1073/pnas.051631398] [Citation(s) in RCA: 263] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2000] [Accepted: 12/29/2000] [Indexed: 12/16/2022] Open
Abstract
DC-SIGN, a C-type lectin expressed on the surface of dendritic cells (DCs), efficiently binds and transmits HIVs and simian immunodeficiency viruses to susceptible cells in trans. A DC-SIGN homologue, termed DC-SIGNR, has recently been described. Herein we show that DC-SIGNR, like DC-SIGN, can bind to multiple strains of HIV-1, HIV-2, and simian immunodeficiency virus and transmit these viruses to both T cell lines and human peripheral blood mononuclear cells. Binding of virus to DC-SIGNR was dependent on carbohydrate recognition. Immunostaining with a DC-SIGNR-specific antiserum showed that DC-SIGNR was expressed on sinusoidal endothelial cells in the liver and on endothelial cells in lymph node sinuses and placental villi. The presence of this efficient virus attachment factor on multiple endothelial cell types indicates that DC-SIGNR could play a role in the vertical transmission of primate lentiviruses, in the enabling of HIV to traverse the capillary endothelium in some organs, and in the presentation of virus to CD4-positive cells in multiple locations including lymph nodes.
Collapse
|
research-article |
24 |
263 |
5
|
Chaipan C, Soilleux EJ, Simpson P, Hofmann H, Gramberg T, Marzi A, Geier M, Stewart EA, Eisemann J, Steinkasserer A, Suzuki-Inoue K, Fuller GL, Pearce AC, Watson SP, Hoxie JA, Baribaud F, Pöhlmann S. DC-SIGN and CLEC-2 mediate human immunodeficiency virus type 1 capture by platelets. J Virol 2006; 80:8951-60. [PMID: 16940507 PMCID: PMC1563896 DOI: 10.1128/jvi.00136-06] [Citation(s) in RCA: 207] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Platelets can engulf human immunodeficiency virus type 1 (HIV-1), and a significant amount of HIV-1 in the blood of infected individuals is associated with these cells. However, it is unclear how platelets capture HIV-1 and whether platelet-associated virus remains infectious. DC-SIGN and other lectins contribute to capture of HIV-1 by dendritic cells (DCs) and facilitate HIV-1 spread in DC/T-cell cocultures. Here, we show that platelets express both the C-type lectin-like receptor 2 (CLEC-2) and low levels of DC-SIGN. CLEC-2 bound to HIV-1, irrespective of the presence of the viral envelope protein, and facilitated HIV-1 capture by platelets. However, a substantial fraction of the HIV-1 binding activity of platelets was dependent on DC-SIGN. A combination of DC-SIGN and CLEC-2 inhibitors strongly reduced HIV-1 association with platelets, indicating that these lectins are required for efficient HIV-1 binding to platelets. Captured HIV-1 was maintained in an infectious state over several days, suggesting that HIV-1 can escape degradation by platelets and might use these cells to promote its spread. Our results identify CLEC-2 as a novel HIV-1 attachment factor and provide evidence that platelets capture and transfer infectious HIV-1 via DC-SIGN and CLEC-2, thereby possibly facilitating HIV-1 dissemination in infected patients.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
207 |
6
|
Soilleux EJ, Barten R, Trowsdale J. DC-SIGN; a related gene, DC-SIGNR; and CD23 form a cluster on 19p13. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:2937-42. [PMID: 10975799 DOI: 10.4049/jimmunol.165.6.2937] [Citation(s) in RCA: 205] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
DC-SIGN is a C-type lectin, expressed on a dendritic cell subset. It is able to bind ICAM3 and HIV gp120 in a calcium-dependent manner. Here we report the genomic organization of DC-SIGN and map it to chromosome 19p13 adjacent to the C-type lectin CD23 (FcepsilonRII). We also report a novel, closely linked gene, DC-SIGNR, which shows 73% identity to DC-SIGN at the nucleic acid level and a similar genomic organization. Proteins encoded by both genes have tracts of repeats of 23 aa, predicted to form a coiled coil neck region. They also possess motifs that are known to bind mannose in a calcium-dependent fashion. We show concomitant expression of the two genes in endometrium, placenta, and stimulated KG1 cells (phenotypically similar to monocyte-derived dendritic cells). The existence of a DC-SIGN-related gene calls for reinterpretation of the HIV data to consider possible DC-SIGN/DC-SIGNR hetero-oligomerization.
Collapse
MESH Headings
- Amino Acid Sequence
- Cell Adhesion Molecules
- Cell Line
- Chromosome Mapping
- Chromosomes, Human, Pair 19/immunology
- Cloning, Molecular
- DNA, Complementary/chemistry
- DNA, Complementary/isolation & purification
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Exons
- Gene Expression/immunology
- Genetic Linkage
- Humans
- Introns
- Lectins/biosynthesis
- Lectins/chemistry
- Lectins/genetics
- Lectins, C-Type
- Molecular Sequence Data
- Multigene Family/immunology
- Organ Specificity/genetics
- Organ Specificity/immunology
- Receptors, Cell Surface/biosynthesis
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/genetics
- Receptors, IgE/genetics
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
|
|
25 |
205 |
7
|
Lee B, Leslie G, Soilleux E, O'Doherty U, Baik S, Levroney E, Flummerfelt K, Swiggard W, Coleman N, Malim M, Doms RW. cis Expression of DC-SIGN allows for more efficient entry of human and simian immunodeficiency viruses via CD4 and a coreceptor. J Virol 2001; 75:12028-38. [PMID: 11711593 PMCID: PMC116098 DOI: 10.1128/jvi.75.24.12028-12038.2001] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2001] [Accepted: 09/18/2001] [Indexed: 11/20/2022] Open
Abstract
DC-SIGN is a C-type lectin expressed on dendritic cells and restricted macrophage populations in vivo that binds gp120 and acts in trans to enable efficient infection of T cells by human immunodeficiency virus type 1 (HIV-1). We report here that DC-SIGN, when expressed in cis with CD4 and coreceptors, allowed more efficient infection by both HIV and simian immunodeficiency virus (SIV) strains, although the extent varied from 2- to 40-fold, depending on the virus strain. Expression of DC-SIGN on target cells did not alleviate the requirement for CD4 or coreceptor for viral entry. Stable expression of DC-SIGN on multiple lymphoid lines enabled more efficient entry and replication of R5X4 and X4 viruses. Thus, 10- and 100-fold less 89.6 (R5/X4) and NL4-3 (X4), respectively, were required to achieve productive replication in DC-SIGN-transduced Jurkat cells when compared to the parental cell line. In addition, DC-SIGN expression on T-cell lines that express very low levels of CCR5 enabled entry and replication of R5 viruses in a CCR5-dependent manner, a property not exhibited by the parental cell lines. Therefore, DC-SIGN expression can boost virus infection in cis and can expand viral tropism without affecting coreceptor preference. In addition, coexpression of DC-SIGN enabled some viruses to use alternate coreceptors like STRL33 to infect cells, whereas in its absence, infection was not observed. Immunohistochemical and confocal microscopy data indicated that DC-SIGN was coexpressed and colocalized with CD4 and CCR5 on alveolar macrophages, underscoring the physiological significance of these cis enhancement effects.
Collapse
|
research-article |
24 |
147 |
8
|
Lim PJ, Duarte TL, Arezes J, Garcia-Santos D, Hamdi A, Pasricha SR, Armitage AE, Mehta H, Wideman S, Santos AG, Santos-Gonçalves A, Morovat A, Hughes JR, Soilleux E, Wang CY, Bayer AL, Klenerman P, Willberg CB, Hartley RC, Murphy MP, Babitt JL, Ponka P, Porto G, Drakesmith H. Nrf2 controls iron homeostasis in haemochromatosis and thalassaemia via Bmp6 and hepcidin. Nat Metab 2019; 1:519-531. [PMID: 31276102 PMCID: PMC6609153 DOI: 10.1038/s42255-019-0063-6] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Iron is critical for life but toxic in excess because of iron-catalysed formation of pro-oxidants that cause tissue damage in a range of disorders. The Nrf2 transcription factor orchestrates cell-intrinsic protective antioxidant responses, and the peptide hormone hepcidin maintains systemic iron homeostasis, but is pathophysiologically decreased in haemochromatosis and beta-thalassaemia. Here, we show that Nrf2 is activated by iron-induced, mitochondria-derived pro-oxidants and drives Bmp6 expression in liver sinusoid endothelial cells, which in turn increases hepcidin synthesis by neighbouring hepatocytes. In Nrf2 knockout mice, the Bmp6-hepcidin response to oral and parenteral iron is impaired and iron accumulation and hepatic damage are increased. Pharmacological activation of Nrf2 stimulates the Bmp6-hepcidin axis, improving iron homeostasis in haemochromatosis and counteracting the inhibition of Bmp6 by erythroferrone in beta-thalassaemia. We propose that Nrf2 links cellular sensing of excess toxic iron to control of systemic iron homeostasis and antioxidant responses, and may be a therapeutic target for iron-associated disorders.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
106 |
9
|
Soilleux EJ, Morris LS, Lee B, Pöhlmann S, Trowsdale J, Doms RW, Coleman N. Placental expression of DC-SIGN may mediate intrauterine vertical transmission of HIV. J Pathol 2001; 195:586-92. [PMID: 11745695 DOI: 10.1002/path.1026] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Mechanisms of transplacental transmission of human immunodeficiency virus (HIV) are poorly understood. DC-SIGN is a C-type lectin able to bind HIV gp120 with high affinity, mediating HIV adsorption to the surface of dendritic cells for up to several days. Via this mechanism, DC-SIGN significantly enhances the infection of CD4(+) co-receptor (CCR5 or CXCR4)(+) T lymphocytes in trans. In this study, DC-SIGN-specific serum was developed to investigate the cell type responsible for the high level of DC-SIGN RNA expression previously observed in the placenta. DC-SIGN expression was shown on CD68(+) HLA-II(+) CD14(low) S100(+/-) CD83(-) CD86(-) cmrf-44(-) villous cells consistent with Hofbauer cells and also on CD68(+) HLA-II(+) CD14(high) S100(-) CD83(-) CD86(-) cmrf-44(-) decidual macrophages. The DC-SIGN(+) Hofbauer cells co-express CD4 and the chemokine receptors, CCR5 and CXCR4, observations which may account for the ability of these cells to become infected with HIV. These fetal DC-SIGN(+) cells are separated by only a layer of trophoblast from both DC-SIGN(+) maternal cells and maternal blood, potential sources of HIV in infected mothers. Previous studies have suggested that this trophoblast layer is frequently breached during pregnancy. It is therefore proposed that DC-SIGN may facilitate the transplacental transmission of HIV.
Collapse
|
|
24 |
105 |
10
|
Jubb AM, Soilleux EJ, Turley H, Steers G, Parker A, Low I, Blades J, Li JL, Allen P, Leek R, Noguera-Troise I, Gatter KC, Thurston G, Harris AL. Expression of vascular notch ligand delta-like 4 and inflammatory markers in breast cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:2019-28. [PMID: 20167860 DOI: 10.2353/ajpath.2010.090908] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Delta-like ligand 4 (Dll4) is a Notch ligand that is predominantly expressed in the endothelium. Evidence from xenografts suggests that inhibiting Dll4 may overcome resistance to antivascular endothelial growth factor therapy. The aims of this study were to characterize the expression of Dll4 in breast cancer and assess whether it is associated with inflammatory markers and prognosis. We examined 296 breast adenocarcinomas and 38 ductal carcinoma in situ tissues that were represented in tissue microarrays. Additional whole sections representing 10 breast adenocarcinomas, 10 normal breast tissues, and 16 angiosarcomas were included. Immunohistochemistry was then performed by using validated antibodies against Dll4, CD68, CD14, Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin (DC-SIGN), CD123, neutrophil elastase, CD31, and carbonic anhydrase 9. Dll4 was selectively expressed by intratumoral endothelial cells in 73% to 100% of breast adenocarcinomas, 18% of in situ ductal carcinomas, and all lactating breast cases, but not normal nonlactating breast. High intensity of endothelial Dll4 expression was a statistically significant adverse prognostic factor in univariate (P = 0.002 and P = 0.01) and multivariate analyses (P = 0.03 and P = 0.04) of overall survival and relapse-free survival, respectively. Among the inflammatory markers, only CD68 and DC-SIGN were significant prognostic factors in univariate (but not multivariate) analyses of overall survival (P = 0.01 and 0.002, respectively). In summary, Dll4 was expressed by endothelium associated with breast cancer cells. In these retrospective subset analyses, endothelial Dll4 expression was a statistically significant multivariate prognostic factor.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
103 |
11
|
Frison N, Taylor ME, Soilleux E, Bousser MT, Mayer R, Monsigny M, Drickamer K, Roche AC. Oligolysine-based oligosaccharide clusters: selective recognition and endocytosis by the mannose receptor and dendritic cell-specific intercellular adhesion molecule 3 (ICAM-3)-grabbing nonintegrin. J Biol Chem 2003; 278:23922-9. [PMID: 12695508 DOI: 10.1074/jbc.m302483200] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dendritic cells are potent antigen-presenting cells that express several membrane lectins, including the mannose receptor and DC-SIGN (dendritic cell-specific ICAM-3-grabbing nonintegrin). To identify highly specific ligands for these dendritic cell receptors, oligosaccharides were converted into glycosynthons (Os1) and were used to prepare oligolysine-based glycoclusters, Os-[Lys(Os)]n-Ala-Cys-NH2. Clusters containing two to six dimannosides as well as clusters containing four or five pentasaccharides (Lewisa or Lewisx) or hexasaccharides (Lewisb) were synthesized. The thiol group of the appended cysteine residue allows easy tagging by a fluorescent probe or convenient substitution with an antigen. Surface plasmon resonance was used to determine the affinity of the different glycoclusters for purified mannose receptor and DC-SIGN, whereas flow cytometry and confocal microscopy analysis allowed assessment of cell uptake of fluoresceinyl-labeled glycoclusters. Dimannoside clusters are recognized by the mannose receptor with an affinity constant close to 106 liter.mol-1 but have a very low affinity for DC-SIGN (less than 104 liter x mol-1). Conversely, Lewis clusters have a higher affinity toward DC-SIGN than toward the mannose receptor. Dimannoside clusters are efficiently taken up by human dendritic cells as well as by rat fibroblasts expressing the mannose receptor but not by HeLa cells or rat fibroblasts expressing DC-SIGN; DC-SIGN-expressing cells take up Lewis clusters. The results suggest that ligands containing dimannoside clusters can be used specifically to target the mannose receptor, whereas ligands containing Lewis clusters will be targeted to DC-SIGN.
Collapse
|
|
22 |
99 |
12
|
Gurney KB, Elliott J, Nassanian H, Song C, Soilleux E, McGowan I, Anton PA, Lee B. Binding and transfer of human immunodeficiency virus by DC-SIGN+ cells in human rectal mucosa. J Virol 2005; 79:5762-73. [PMID: 15827191 PMCID: PMC1082722 DOI: 10.1128/jvi.79.9.5762-5773.2005] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The role of DC-SIGN on human rectal mucosal dendritic cells is unknown. Using highly purified human rectal mucosal DC-SIGN+ cells and an ultrasensitive real-time reverse transcription-PCR assay to quantify virus binding, we found that HLA-DR+/DC-SIGN+ cells can bind and transfer more virus than the HLA-DR+/DC-SIGN- cells. Greater than 90% of the virus bound to total mucosal mononuclear cells (MMCs) was accounted for by the DC-SIGN+ cells, which comprise only 1 to 5% of total MMCs. Significantly, anti-DC-SIGN antibodies blocked 90% of the virus binding when more-physiologic amounts of virus inoculum were used. DC-SIGN expression in the rectal mucosa was significantly correlated with the interleukin-10 (IL-10)/IL-12 ratio (r = 0.58, P < 0.002; n = 26) among human immunodeficiency virus (HIV)-positive patients. Ex vivo and in vitro data implicate the role of IL-10 in upregulating DC-SIGN expression and downregulating expression of the costimulatory molecules CD80/CD86. Dendritic cells derived from monocytes (MDDCs) in the presence of IL-10 render the MDDCs less responsive to maturation stimuli, such as lipopolysaccharide and tumor necrosis factor alpha, and migration to the CCR7 ligand macrophage inflammatory protein 3beta. Thus, an increased IL-10 environment could render DC-SIGN(+) cells less immunostimulatory and migratory, thereby dampening an effective immune response. DC-SIGN and the IL-10/IL-12 axis may play significant roles in the mucosal transmission and pathogenesis of HIV type 1.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
90 |
13
|
FitzPatrick MEB, Provine NM, Garner LC, Powell K, Amini A, Irwin SL, Ferry H, Ambrose T, Friend P, Vrakas G, Reddy S, Soilleux E, Klenerman P, Allan PJ. Human intestinal tissue-resident memory T cells comprise transcriptionally and functionally distinct subsets. Cell Rep 2021; 34:108661. [PMID: 33472060 PMCID: PMC7816164 DOI: 10.1016/j.celrep.2020.108661] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 10/14/2020] [Accepted: 12/22/2020] [Indexed: 01/07/2023] Open
Abstract
Tissue-resident memory T (TRM) cells provide key adaptive immune responses in infection, cancer, and autoimmunity. However, transcriptional heterogeneity of human intestinal TRM cells remains undefined. Here, we investigate transcriptional and functional heterogeneity of human TRM cells through study of donor-derived TRM cells from intestinal transplant recipients. Single-cell transcriptional profiling identifies two transcriptional states of CD8+ TRM cells, delineated by ITGAE and ITGB2 expression. We define a transcriptional signature discriminating these populations, including differential expression of cytotoxicity- and residency-associated genes. Flow cytometry of recipient-derived cells infiltrating the graft, and lymphocytes from healthy gut, confirm these CD8+ TRM phenotypes. CD8+ CD69+CD103+ TRM cells produce interleukin-2 (IL-2) and demonstrate greater polyfunctional cytokine production, whereas β2-integrin+CD69+CD103− TRM cells have higher granzyme expression. Analysis of intestinal CD4+ T cells identifies several parallels, including a β2-integrin+ population. Together, these results describe the transcriptional, phenotypic, and functional heterogeneity of human intestinal CD4+ and CD8+ TRM cells.
Human intestinal transplants were used to identify bona fide TRM cells Single-cell RNA sequencing identifies two distinct CD8+ TRM subsets CD103+CD69+ and CD103−CD69+ TRM cell subsets show distinct localization and function β2-integrin is highly expressed on CD103− TRM cells
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
78 |
14
|
Cassidy LD, Young ARJ, Young CNJ, Soilleux EJ, Fielder E, Weigand BM, Lagnado A, Brais R, Ktistakis NT, Wiggins KA, Pyrillou K, Clarke MCH, Jurk D, Passos JF, Narita M. Temporal inhibition of autophagy reveals segmental reversal of ageing with increased cancer risk. Nat Commun 2020; 11:307. [PMID: 31949142 PMCID: PMC6965206 DOI: 10.1038/s41467-019-14187-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 12/19/2019] [Indexed: 12/15/2022] Open
Abstract
Autophagy is an important cellular degradation pathway with a central role in metabolism as well as basic quality control, two processes inextricably linked to ageing. A decrease in autophagy is associated with increasing age, yet it is unknown if this is causal in the ageing process, and whether autophagy restoration can counteract these ageing effects. Here we demonstrate that systemic autophagy inhibition induces the premature acquisition of age-associated phenotypes and pathologies in mammals. Remarkably, autophagy restoration provides a near complete recovery of morbidity and a significant extension of lifespan; however, at the molecular level this rescue appears incomplete. Importantly autophagy-restored mice still succumb earlier due to an increase in spontaneous tumour formation. Thus, our data suggest that chronic autophagy inhibition confers an irreversible increase in cancer risk and uncovers a biphasic role of autophagy in cancer development being both tumour suppressive and oncogenic, sequentially.
Collapse
|
research-article |
5 |
71 |
15
|
Soilleux EJ, Turley H, Tian YM, Pugh CW, Gatter KC, Harris AL. Use of novel monoclonal antibodies to determine the expression and distribution of the hypoxia regulatory factors PHD-1, PHD-2, PHD-3 and FIH in normal and neoplastic human tissues. Histopathology 2005; 47:602-10. [PMID: 16324198 DOI: 10.1111/j.1365-2559.2005.02280.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS The cellular response to hypoxia includes the hypoxia inducible factor (HIF)-induced transcription of genes involved in diverse processes such as glycolysis, angiogenesis and the growth of experimental tumours. Regulation of the level of hypoxia inducible factors 1alpha and 2alpha (HIF-1alpha and HIF-2alpha) is a primary determinant of HIF activity. Recent biochemical and candidate gene approach studies have led to the discovery of three HIF-regulatory prolyl hydroxylases, PHD-1, -2 and -3 and an asparaginyl hydroxylase, also known as FIH (factor inhibiting HIF). In this study, we raised and characterized monoclonal antibodies against PHD-1, PHD-2, PHD-3 and FIH. METHODS AND RESULTS Immunohistochemistry of normal tissues with these monoclonal antibodies demonstrated a wide distribution in epithelial cells, stromal cells and leucocytes, with cytoplasmic staining predominating over nuclear staining. A preliminary study of tumours showed variable staining in tumour, stromal and inflammatory cells. While all tumour types showed some positive staining with each antibody, the overall pattern suggested a slight decrease in the amount of staining seen with PHD-1, -2 and -3 and an increase in FIH staining in neoplasia compared with corresponding normal tissues. CONCLUSIONS These monoclonal antibodies will allow further larger scale studies to determine the significance of PHD and FIH expression in neoplasia.
Collapse
|
|
20 |
71 |
16
|
Gramberg T, Soilleux E, Fisch T, Lalor PF, Hofmann H, Wheeldon S, Cotterill A, Wegele A, Winkler T, Adams DH, Pöhlmann S. Interactions of LSECtin and DC-SIGN/DC-SIGNR with viral ligands: Differential pH dependence, internalization and virion binding. Virology 2008; 373:189-201. [PMID: 18083206 PMCID: PMC7103327 DOI: 10.1016/j.virol.2007.11.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Revised: 10/15/2007] [Accepted: 11/02/2007] [Indexed: 01/20/2023]
Abstract
The calcium-dependent lectins DC-SIGN and DC-SIGNR (collectively termed DC-SIGN/R) bind to high-mannose carbohydrates on a variety of viruses. In contrast, the related lectin LSECtin does not recognize mannose-rich glycans and interacts with a more restricted spectrum of viruses. Here, we analyzed whether these lectins differ in their mode of ligand engagement. LSECtin and DC-SIGNR, which we found to be co-expressed by liver, lymph node and bone marrow sinusoidal endothelial cells, bound to soluble Ebola virus glycoprotein (EBOV-GP) with comparable affinities. Similarly, LSECtin, DC-SIGN and the Langerhans cell-specific lectin Langerin readily bound to soluble human immunodeficiency virus type-1 (HIV-1) GP. However, only DC-SIGN captured HIV-1 particles, indicating that binding to soluble GP is not necessarily predictive of binding to virion-associated GP. Capture of EBOV-GP by LSECtin triggered ligand internalization, suggesting that LSECtin like DC-SIGN might function as an antigen uptake receptor. However, the intracellular fate of lectin-ligand complexes might differ. Thus, exposure to low-pH medium, which mimics the acidic luminal environment in endosomes/lysosomes, released ligand bound to DC-SIGN/R but had no effect on LSECtin interactions with ligand. Our results reveal important differences between pathogen capture by DC-SIGN/R and LSECtin and hint towards different biological functions of these lectins.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
59 |
17
|
Ilyas R, Wallis R, Soilleux EJ, Townsend P, Zehnder D, Tan BK, Sim RB, Lehnert H, Randeva HS, Mitchell DA. High glucose disrupts oligosaccharide recognition function via competitive inhibition: a potential mechanism for immune dysregulation in diabetes mellitus. Immunobiology 2011; 216:126-31. [PMID: 20674073 PMCID: PMC3088832 DOI: 10.1016/j.imbio.2010.06.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 06/08/2010] [Accepted: 06/08/2010] [Indexed: 12/11/2022]
Abstract
Diabetic complications include infection and cardiovascular disease. Within the immune system, host-pathogen and regulatory host-host interactions operate through binding of oligosaccharides by C-type lectin. A number of C-type lectins recognise oligosaccharides rich in mannose and fucose - sugars with similar structures to glucose. This raises the possibility that high glucose conditions in diabetes affect protein-oligosaccharide interactions via competitive inhibition. Mannose-binding lectin, soluble DC-SIGN and DC-SIGNR, and surfactant protein D, were tested for carbohydrate binding in the presence of glucose concentrations typical of diabetes, via surface plasmon resonance and affinity chromatography. Complement activation assays were performed in high glucose. DC-SIGN and DC-SIGNR expression in adipose tissues was examined via immunohistochemistry. High glucose inhibited C-type lectin binding to high-mannose glycoprotein and binding of DC-SIGN to fucosylated ligand (blood group B) was abrogated in high glucose. Complement activation via the lectin pathway was inhibited in high glucose and also in high trehalose - a nonreducing sugar with glucoside stereochemistry. DC-SIGN staining was seen on cells with DC morphology within omental and subcutaneous adipose tissues. We conclude that high glucose disrupts C-type lectin function, potentially illuminating new perspectives on susceptibility to infectious and inflammatory disease in diabetes. Mechanisms involve competitive inhibition of carbohydrate binding within sets of defined proteins, in contrast to broadly indiscriminate, irreversible glycation of proteins.
Collapse
MESH Headings
- Adipose Tissue/pathology
- Bacterial Infections
- Binding, Competitive/immunology
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/metabolism
- Complement Pathway, Mannose-Binding Lectin
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Dendritic Cells/pathology
- Diabetes Complications
- Glucose/chemistry
- Glucose/metabolism
- Host-Pathogen Interactions
- Humans
- Immunity, Innate
- Immunohistochemistry
- Immunomodulation
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Mannose-Binding Lectin/genetics
- Mannose-Binding Lectin/immunology
- Mannose-Binding Lectin/metabolism
- Oligosaccharides, Branched-Chain/chemistry
- Oligosaccharides, Branched-Chain/immunology
- Oligosaccharides, Branched-Chain/metabolism
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Stereoisomerism
- Surface Plasmon Resonance
Collapse
|
research-article |
14 |
55 |
18
|
Eyre TA, Clifford R, Bloor A, Boyle L, Roberts C, Cabes M, Collins GP, Devereux S, Follows G, Fox CP, Gribben J, Hillmen P, Hatton CS, Littlewood TJ, McCarthy H, Murray J, Pettitt AR, Soilleux E, Stamatopoulos B, Love SB, Wotherspoon A, Schuh A. NCRI phase II study of CHOP in combination with ofatumumab in induction and maintenance in newly diagnosed Richter syndrome. Br J Haematol 2016; 175:43-54. [PMID: 27378086 DOI: 10.1111/bjh.14177] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 04/15/2016] [Indexed: 01/21/2023]
Abstract
Richter syndrome (RS) is associated with chemotherapy resistance and a poor historical median overall survival (OS) of 8-10 months. We conducted a phase II trial of standard CHOP-21 (cyclophosphamide, doxorubicin, vincristine, prednisolone every 21 d) with ofatumumab induction (Cycle 1: 300 mg day 1, 1000 mg day 8, 1000 mg day 15; Cycles 2-6: 1000 mg day 1) (CHOP-O) followed by 12 months ofatumumab maintenance (1000 mg given 8-weekly for up to six cycles). Forty-three patients were recruited of whom 37 were evaluable. Seventy-three per cent were aged >60 years. Over half of the patients received a fludarabine and cyclophosphamide-based regimen as prior CLL treatment. The overall response rate was 46% (complete response 27%, partial response 19%) at six cycles. The median progression-free survival was 6·2 months (95% confidence interval [CI] 4·9-14·0 months) and median OS was 11·4 months (95% CI 6·4-25·6 months). Treatment-naïve and TP53-intact patients had improved outcomes. Fifteen episodes of neutropenic fever and 46 non-neutropenic infections were observed. There were no treatment-related deaths. Seven patients received platinum-containing salvage at progression, with only one patient obtaining an adequate response to proceed to allogeneic transplantation. CHOP-O with ofatumumab maintenance provides minimal benefit beyond CHOP plus rutuximab. Standard immunochemotherapy for RS remains wholly inadequate for unselected RS. Multinational trials incorporating novel agents are urgently needed.
Collapse
|
Clinical Trial, Phase II |
9 |
54 |
19
|
Reschen ME, Gaulton KJ, Lin D, Soilleux EJ, Morris AJ, Smyth SS, O'Callaghan CA. Lipid-induced epigenomic changes in human macrophages identify a coronary artery disease-associated variant that regulates PPAP2B Expression through Altered C/EBP-beta binding. PLoS Genet 2015; 11:e1005061. [PMID: 25835000 PMCID: PMC4383549 DOI: 10.1371/journal.pgen.1005061] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 02/09/2015] [Indexed: 01/17/2023] Open
Abstract
Genome-wide association studies (GWAS) have identified over 40 loci that affect risk of coronary artery disease (CAD) and the causal mechanisms at the majority of loci are unknown. Recent studies have suggested that many causal GWAS variants influence disease through altered transcriptional regulation in disease-relevant cell types. We explored changes in transcriptional regulation during a key pathophysiological event in CAD, the environmental lipid-induced transformation of macrophages to lipid-laden foam cells. We used a combination of open chromatin mapping with formaldehyde-assisted isolation of regulatory elements (FAIRE-seq) and enhancer and transcription factor mapping using chromatin immuno-precipitation (ChIP-seq) in primary human macrophages before and after exposure to atherogenic oxidized low-density lipoprotein (oxLDL), with resultant foam cell formation. OxLDL-induced foam cell formation was associated with changes in a subset of open chromatin and active enhancer sites that strongly correlated with expression changes of nearby genes. OxLDL-regulated enhancers were enriched for several transcription factors including C/EBP-beta, which has no previously documented role in foam cell formation. OxLDL exposure up-regulated C/EBP-beta expression and increased genomic binding events, most prominently around genes involved in inflammatory response pathways. Variants at CAD-associated loci were significantly and specifically enriched in the subset of chromatin sites altered by oxLDL exposure, including rs72664324 in an oxLDL-induced enhancer at the PPAP2B locus. OxLDL increased C/EBP beta binding to this site and C/EBP beta binding and enhancer activity were stronger with the protective A allele of rs72664324. In addition, expression of the PPAP2B protein product LPP3 was present in foam cells in human atherosclerotic plaques and oxLDL exposure up-regulated LPP3 in macrophages resulting in increased degradation of pro-inflammatory mediators. Our results demonstrate a genetic mechanism contributing to CAD risk at the PPAP2B locus and highlight the value of studying epigenetic changes in disease processes involving pathogenic environmental stimuli.
Collapse
|
research-article |
10 |
53 |
20
|
Brown PJ, Wong KK, Felce SL, Lyne L, Spearman H, Soilleux EJ, Pedersen LM, Møller MB, Green TM, Gascoyne DM, Banham AH. FOXP1 suppresses immune response signatures and MHC class II expression in activated B-cell-like diffuse large B-cell lymphomas. Leukemia 2015; 30:605-16. [PMID: 26500140 PMCID: PMC4777777 DOI: 10.1038/leu.2015.299] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/07/2015] [Accepted: 10/13/2015] [Indexed: 12/25/2022]
Abstract
The FOXP1 (forkhead box P1) transcription factor is a marker of poor prognosis in diffuse large B-cell lymphoma (DLBCL). Here microarray analysis of FOXP1-silenced DLBCL cell lines identified differential regulation of immune response signatures and major histocompatibility complex class II (MHC II) genes as some of the most significant differences between germinal center B-cell (GCB)-like DLBCL with full-length FOXP1 protein expression versus activated B-cell (ABC)-like DLBCL expressing predominantly short FOXP1 isoforms. In an independent primary DLBCL microarray data set, multiple MHC II genes, including human leukocyte antigen DR alpha chain (HLA-DRA), were inversely correlated with FOXP1 transcript expression (P<0.05). FOXP1 knockdown in ABC-DLBCL cells led to increased cell-surface expression of HLA-DRA and CD74. In R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone)-treated DLBCL patients (n=150), reduced HLA-DRA (<90% frequency) expression correlated with inferior overall survival (P=0.0003) and progression-free survival (P=0.0012) and with non-GCB subtype stratified by the Hans, Choi or Visco-Young algorithms (all P<0.01). In non-GCB DLBCL cases with <90% HLA-DRA, there was an inverse correlation with the frequency (P=0.0456) and intensity (P=0.0349) of FOXP1 expression. We propose that FOXP1 represents a novel regulator of genes targeted by the class II MHC transactivator CIITA (MHC II and CD74) and therapeutically targeting the FOXP1 pathway may improve antigen presentation and immune surveillance in high-risk DLBCL patients.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
52 |
21
|
Lin D, Lavender H, Soilleux EJ, O'Callaghan CA. NF-κB regulates MICA gene transcription in endothelial cell through a genetically inhibitable control site. J Biol Chem 2011; 287:4299-310. [PMID: 22170063 DOI: 10.1074/jbc.m111.282152] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Endothelial cells form a barrier between blood and the underlying vessel wall, which characteristically demonstrates inflammatory damage in atherosclerotic disease. MICA is a highly polymorphic ligand for the activating immune receptor NKG2D and can be expressed on endothelial cells. We hypothesized that damaged vessel walls, such as those involved in atherosclerosis, might express MICA, which could contribute to the vascular immunopathology. Immune activation resulting from MICA expression could play a significant role in the development of vascular damage. We have demonstrated that TNFα up-regulates MICA on human endothelial cells. The up-regulation is mediated by NF-κB, and we have defined the regulatory control site responsible for this at -130 bp upstream of the MICA transcription start site. This site overlaps with a heat shock response element and integrates input from the two pathways. We have shown that in atherosclerotic lesions there is expression of MICA on endothelial cells. Using lentivirus-mediated gene delivery in primary human endothelial cells, we were able to inhibit the MICA response to TNFα with a truncated HSF1 that lacked a transactivation domain. This highlights the potential for transcription-based therapeutic approaches in atherosclerotic vascular disease to reduce immune-mediated endothelial and vessel wall damage.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
50 |
22
|
Booth CAG, Barkas N, Neo WH, Boukarabila H, Soilleux EJ, Giotopoulos G, Farnoud N, Giustacchini A, Ashley N, Carrelha J, Jamieson L, Atkinson D, Bouriez-Jones T, Prinjha RK, Milne TA, Teachey DT, Papaemmanuil E, Huntly BJP, Jacobsen SEW, Mead AJ. Ezh2 and Runx1 Mutations Collaborate to Initiate Lympho-Myeloid Leukemia in Early Thymic Progenitors. Cancer Cell 2018; 33:274-291.e8. [PMID: 29438697 DOI: 10.1016/j.ccell.2018.01.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/13/2017] [Accepted: 01/08/2018] [Indexed: 02/08/2023]
Abstract
Lympho-myeloid restricted early thymic progenitors (ETPs) are postulated to be the cell of origin for ETP leukemias, a therapy-resistant leukemia associated with frequent co-occurrence of EZH2 and RUNX1 inactivating mutations, and constitutively activating signaling pathway mutations. In a mouse model, we demonstrate that Ezh2 and Runx1 inactivation targeted to early lymphoid progenitors causes a marked expansion of pre-leukemic ETPs, showing transcriptional signatures characteristic of ETP leukemia. Addition of a RAS-signaling pathway mutation (Flt3-ITD) results in an aggressive leukemia co-expressing myeloid and lymphoid genes, which can be established and propagated in vivo by the expanded ETPs. Both mouse and human ETP leukemias show sensitivity to BET inhibition in vitro and in vivo, which reverses aberrant gene expression induced by Ezh2 inactivation.
Collapse
|
|
7 |
48 |
23
|
Pasricha SR, Lim PJ, Duarte TL, Casu C, Oosterhuis D, Mleczko-Sanecka K, Suciu M, Da Silva AR, Al-Hourani K, Arezes J, McHugh K, Gooding S, Frost JN, Wray K, Santos A, Porto G, Repapi E, Gray N, Draper SJ, Ashley N, Soilleux E, Olinga P, Muckenthaler MU, Hughes JR, Rivella S, Milne TA, Armitage AE, Drakesmith H. Hepcidin is regulated by promoter-associated histone acetylation and HDAC3. Nat Commun 2017; 8:403. [PMID: 28864822 PMCID: PMC5581335 DOI: 10.1038/s41467-017-00500-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 07/04/2017] [Indexed: 12/21/2022] Open
Abstract
Hepcidin regulates systemic iron homeostasis. Suppression of hepcidin expression occurs physiologically in iron deficiency and increased erythropoiesis but is pathologic in thalassemia and hemochromatosis. Here we show that epigenetic events govern hepcidin expression. Erythropoiesis and iron deficiency suppress hepcidin via erythroferrone-dependent and -independent mechanisms, respectively, in vivo, but both involve reversible loss of H3K9ac and H3K4me3 at the hepcidin locus. In vitro, pan-histone deacetylase inhibition elevates hepcidin expression, and in vivo maintains H3K9ac at hepcidin-associated chromatin and abrogates hepcidin suppression by erythropoietin, iron deficiency, thalassemia, and hemochromatosis. Histone deacetylase 3 and its cofactor NCOR1 regulate hepcidin; histone deacetylase 3 binds chromatin at the hepcidin locus, and histone deacetylase 3 knockdown counteracts hepcidin suppression induced either by erythroferrone or by inhibiting bone morphogenetic protein signaling. In iron deficient mice, the histone deacetylase 3 inhibitor RGFP966 increases hepcidin, and RNA sequencing confirms hepcidin is one of the genes most differentially regulated by this drug in vivo. We conclude that suppression of hepcidin expression involves epigenetic regulation by histone deacetylase 3.Hepcidin controls systemic iron levels by inhibiting intestinal iron absorption and iron recycling. Here, Pasricha et al. demonstrate that the hepcidin-chromatin locus displays HDAC3-mediated reversible epigenetic modifications during both erythropoiesis and iron deficiency.
Collapse
|
Research Support, N.I.H., Extramural |
8 |
47 |
24
|
Inagaki Y, Hookway E, Williams KA, Hassan AB, Oppermann U, Tanaka Y, Soilleux E, Athanasou NA. Dendritic and mast cell involvement in the inflammatory response to primary malignant bone tumours. Clin Sarcoma Res 2016; 6:13. [PMID: 27482375 PMCID: PMC4968446 DOI: 10.1186/s13569-016-0053-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 07/13/2016] [Indexed: 12/11/2022] Open
Abstract
Background A chronic inflammatory cell infiltrate is commonly seen in response to primary malignant tumours of bone. This is known to contain tumour-associated macrophages (TAMs) and lymphocytes; dendritic cells (DCs) and mast cells (MCs) have also been identified but whether these and other inflammatory cells are seen commonly in specific types of bone sarcoma is uncertain. Methods In this study we determined the nature of the inflammatory cell infiltrate in 56 primary bone sarcomas. Immunohistochemistry using monoclonal antibodies was employed to assess semiquantitatively CD45+ leukocyte infiltration and the extent of the DC, MC, TAM and T and B lymphocyte infiltrate. Results The extent of the inflammatory infiltrate in individual sarcomas was very variable. A moderate or heavy leukocyte infiltrate was more commonly seen in conventional high-grade osteosarcoma, undifferentiated pleomorphic sarcoma and giant cell tumour of bone (GCTB) than in Ewing sarcoma, chordoma and chondrosarcoma. CD14+/CD68+ TAMs and CD3+ T lymphocytes were the major components of the inflammatory cell response but (DC-SIGN/CD11c+) DCs were also commonly noted when there was a significant TAM and T lymphocyte infiltrate. MCs were identified mainly at the periphery of sarcomas, including the osteolytic tumour-bone interface. Discussion Our findings indicate that, although variable, some malignant bone tumours (e.g. osteosarcoma, GCTB) are more commonly associated with a pronounced inflammatory cell infiltrate than others (e.g. chondrosarcoma. Ewing sarcoma); the infiltrate is composed mainly of TAMs but includes a significant DC, T lymphocyte and MC infiltrate. Conclusion Tumours that contain a heavy inflammatory cell response, which includes DCs, TAMs and T lymphocytes, may be more amenable to immunomodulatory therapy. MCs are present mainly at the tumour edge and are likely to contribute to osteolysis and tumour invasion.
Collapse
|
Journal Article |
9 |
46 |
25
|
White GE, Cotterill A, Addley MR, Soilleux EJ, Greaves DR. Suppressor of cytokine signalling protein SOCS3 expression is increased at sites of acute and chronic inflammation. J Mol Histol 2011; 42:137-51. [PMID: 21360047 PMCID: PMC3070874 DOI: 10.1007/s10735-011-9317-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2010] [Accepted: 01/26/2011] [Indexed: 12/14/2022]
Abstract
Treatment of cells with cytokines and growth factors leads to the synthesis of Suppressor of Cytokine Signalling (SOCS) proteins that act as potent negative regulators of signalling via the Jak/STAT pathway. We used immunohistochemistry to identify cells and pathologies where SOCS3 expression might influence acute and chronic inflammatory responses in human tissues. Epitope and GFP tagged SOCS3 fusion proteins were localised predominantly in the nucleus of transfected cells and a validated anti SOCS3 antiserum revealed the expression of SOCS3 in the nucleus and cytoplasm of macrophages, endothelial and epithelial cells in a wide range of normal tissues in tissue microarrays (n = 31 different tissues). Nuclear SOCS3 was only seen in cells expressing a high level of the protein. Comparative immunostaining of acute, chronically and granulomatously inflamed human tissues revealed higher levels of nuclear and cytoplasmic SOCS3 expression in inflamed than in corresponding normal tissues, particularly in recruited leukocyte populations, but also in epithelia. The staining appeared more intense, suggesting higher expression levels, in areas where inflammation was more acute, consistent with the time course of SOCS3 induction described in vitro. Expression of SOCS3 protein by leucocytes and other cell types in tissue sections could be a useful marker of cells undergoing acute or chronic stimulation by cytokines in vivo.
Collapse
|
research-article |
14 |
46 |