1
|
Blach S, Zeuzem S, Manns M, Altraif I, Duberg AS, Muljono DH, Waked I, Alavian SM, Lee MH, Negro F, Abaalkhail F, Abdou A, Abdulla M, Rached AA, Aho I, Akarca U, Al Ghazzawi I, Al Kaabi S, Al Lawati F, Al Namaani K, Al Serkal Y, Al-Busafi SA, Al-Dabal L, Aleman S, Alghamdi AS, Aljumah AA, Al-Romaihi HE, Andersson MI, Arendt V, Arkkila P, Assiri AM, Baatarkhuu O, Bane A, Ben-Ari Z, Bergin C, Bessone F, Bihl F, Bizri AR, Blachier M, Blasco AJ, Mello CEB, Bruggmann P, Brunton CR, Calinas F, Chan HLY, Chaudhry A, Cheinquer H, Chen CJ, Chien RN, Choi MS, Christensen PB, Chuang WL, Chulanov V, Cisneros L, Clausen MR, Cramp ME, Craxi A, Croes EA, Dalgard O, Daruich JR, de Ledinghen V, Dore GJ, El-Sayed MH, Ergör G, Esmat G, Estes C, Falconer K, Farag E, Ferraz MLG, Ferreira PR, Flisiak R, Frankova S, Gamkrelidze I, Gane E, García-Samaniego J, Khan AG, Gountas I, Goldis A, Gottfredsson M, Grebely J, Gschwantler M, Pessôa MG, Gunter J, Hajarizadeh B, Hajelssedig O, Hamid S, Hamoudi W, Hatzakis A, Himatt SM, Hofer H, Hrstic I, Hui YT, Hunyady B, Idilman R, Jafri W, Jahis R, Janjua NZ, Jarčuška P, Jeruma A, Jonasson JG, et alBlach S, Zeuzem S, Manns M, Altraif I, Duberg AS, Muljono DH, Waked I, Alavian SM, Lee MH, Negro F, Abaalkhail F, Abdou A, Abdulla M, Rached AA, Aho I, Akarca U, Al Ghazzawi I, Al Kaabi S, Al Lawati F, Al Namaani K, Al Serkal Y, Al-Busafi SA, Al-Dabal L, Aleman S, Alghamdi AS, Aljumah AA, Al-Romaihi HE, Andersson MI, Arendt V, Arkkila P, Assiri AM, Baatarkhuu O, Bane A, Ben-Ari Z, Bergin C, Bessone F, Bihl F, Bizri AR, Blachier M, Blasco AJ, Mello CEB, Bruggmann P, Brunton CR, Calinas F, Chan HLY, Chaudhry A, Cheinquer H, Chen CJ, Chien RN, Choi MS, Christensen PB, Chuang WL, Chulanov V, Cisneros L, Clausen MR, Cramp ME, Craxi A, Croes EA, Dalgard O, Daruich JR, de Ledinghen V, Dore GJ, El-Sayed MH, Ergör G, Esmat G, Estes C, Falconer K, Farag E, Ferraz MLG, Ferreira PR, Flisiak R, Frankova S, Gamkrelidze I, Gane E, García-Samaniego J, Khan AG, Gountas I, Goldis A, Gottfredsson M, Grebely J, Gschwantler M, Pessôa MG, Gunter J, Hajarizadeh B, Hajelssedig O, Hamid S, Hamoudi W, Hatzakis A, Himatt SM, Hofer H, Hrstic I, Hui YT, Hunyady B, Idilman R, Jafri W, Jahis R, Janjua NZ, Jarčuška P, Jeruma A, Jonasson JG, Kamel Y, Kao JH, Kaymakoglu S, Kershenobich D, Khamis J, Kim YS, Kondili L, Koutoubi Z, Krajden M, Krarup H, Lai MS, Laleman W, Lao WC, Lavanchy D, Lázaro P, Leleu H, Lesi O, Lesmana LA, Li M, Liakina V, Lim YS, Luksic B, Mahomed A, Maimets M, Makara M, Malu AO, Marinho RT, Marotta P, Mauss S, Memon MS, Correa MCM, Mendez-Sanchez N, Merat S, Metwally AM, Mohamed R, Moreno C, Mourad FH, Müllhaupt B, Murphy K, Nde H, Njouom R, Nonkovic D, Norris S, Obekpa S, Oguche S, Olafsson S, Oltman M, Omede O, Omuemu C, Opare-Sem O, Øvrehus ALH, Owusu-Ofori S, Oyunsuren TS, Papatheodoridis G, Pasini K, Peltekian KM, Phillips RO, Pimenov N, Poustchi H, Prabdial-Sing N, Qureshi H, Ramji A, Razavi-Shearer D, Razavi-Shearer K, Redae B, Reesink HW, Ridruejo E, Robbins S, Roberts LR, Roberts SK, Rosenberg WM, Roudot-Thoraval F, Ryder SD, Safadi R, Sagalova O, Salupere R, Sanai FM, Avila JFS, Saraswat V, Sarmento-Castro R, Sarrazin C, Schmelzer JD, Schréter I, Seguin-Devaux C, Shah SR, Sharara AI, Sharma M, Shevaldin A, Shiha GE, Sievert W, Sonderup M, Souliotis K, Speiciene D, Sperl J, Stärkel P, Stauber RE, Stedman C, Struck D, Su TH, Sypsa V, Tan SS, Tanaka J, Thompson AJ, Tolmane I, Tomasiewicz K, Valantinas J, Van Damme P, van der Meer AJ, van Thiel I, Van Vlierberghe H, Vince A, Vogel W, Wedemeyer H, Weis N, Wong VWS, Yaghi C, Yosry A, Yuen MF, Yunihastuti E, Yusuf A, Zuckerman E, Razavi H. Global prevalence and genotype distribution of hepatitis C virus infection in 2015: a modelling study. Lancet Gastroenterol Hepatol 2017; 2:161-176. [PMID: 28404132 DOI: 10.1016/s2468-1253(16)30181-9] [Show More Authors] [Citation(s) in RCA: 1459] [Impact Index Per Article: 182.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/09/2016] [Accepted: 11/11/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND The 69th World Health Assembly approved the Global Health Sector Strategy to eliminate hepatitis C virus (HCV) infection by 2030, which can become a reality with the recent launch of direct acting antiviral therapies. Reliable disease burden estimates are required for national strategies. This analysis estimates the global prevalence of viraemic HCV at the end of 2015, an update of-and expansion on-the 2014 analysis, which reported 80 million (95% CI 64-103) viraemic infections in 2013. METHODS We developed country-level disease burden models following a systematic review of HCV prevalence (number of studies, n=6754) and genotype (n=11 342) studies published after 2013. A Delphi process was used to gain country expert consensus and validate inputs. Published estimates alone were used for countries where expert panel meetings could not be scheduled. Global prevalence was estimated using regional averages for countries without data. FINDINGS Models were built for 100 countries, 59 of which were approved by country experts, with the remaining 41 estimated using published data alone. The remaining countries had insufficient data to create a model. The global prevalence of viraemic HCV is estimated to be 1·0% (95% uncertainty interval 0·8-1·1) in 2015, corresponding to 71·1 million (62·5-79·4) viraemic infections. Genotypes 1 and 3 were the most common cause of infections (44% and 25%, respectively). INTERPRETATION The global estimate of viraemic infections is lower than previous estimates, largely due to more recent (lower) prevalence estimates in Africa. Additionally, increased mortality due to liver-related causes and an ageing population may have contributed to a reduction in infections. FUNDING John C Martin Foundation.
Collapse
|
Review |
8 |
1459 |
2
|
Triggle CR, Bansal D, Ding H, Islam MM, Farag EABA, Hadi HA, Sultan AA. A Comprehensive Review of Viral Characteristics, Transmission, Pathophysiology, Immune Response, and Management of SARS-CoV-2 and COVID-19 as a Basis for Controlling the Pandemic. Front Immunol 2021; 12:631139. [PMID: 33717166 PMCID: PMC7952616 DOI: 10.3389/fimmu.2021.631139] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/26/2021] [Indexed: 12/15/2022] Open
Abstract
COVID-19 emerged from China in December 2019 and during 2020 spread to every continent including Antarctica. The coronavirus, SARS-CoV-2, has been identified as the causative pathogen, and its spread has stretched the capacities of healthcare systems and negatively affected the global economy. This review provides an update on the virus, including the genome, the risks associated with the emergence of variants, mode of transmission, immune response, COVID-19 in children and the elderly, and advances made to contain, prevent and manage the disease. Although our knowledge of the mechanics of virus transmission and the immune response has been substantially demystified, concerns over reinfection, susceptibility of the elderly and whether asymptomatic children promote transmission remain unanswered. There are also uncertainties about the pathophysiology of COVID-19 and why there are variations in clinical presentations and why some patients suffer from long lasting symptoms-"the long haulers." To date, there are no significantly effective curative drugs for COVID-19, especially after failure of hydroxychloroquine trials to produce positive results. The RNA polymerase inhibitor, remdesivir, facilitates recovery of severely infected cases but, unlike the anti-inflammatory drug, dexamethasone, does not reduce mortality. However, vaccine development witnessed substantial progress with several being approved in countries around the globe.
Collapse
|
Review |
4 |
98 |
3
|
Cata JP, Abdelmalak B, Farag E. Neurological biomarkers in the perioperative period. Br J Anaesth 2011; 107:844-58. [PMID: 22065690 DOI: 10.1093/bja/aer338] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The rapid detection and evaluation of patients presenting with perioperative neurological dysfunction is of great clinical relevance. Biomarkers have been defined as biological molecules that can be used as an indicator of new onset or progression of a biological process or effect of treatment. Biomarkers have become increasingly important in this setting to supplement other modalities of diagnosis such as EEG, sensory- or motor-evoked potential, transcranial Doppler, near-infrared spectroscopy, or imaging methods. A number of neuro-proteins have been identified and are currently under investigation for potential to provide insights into injury severity, outcome, and the ability to monitor cellular damage and molecular events that occur during neurological injury. S100B is a protein released by glial cells and is considered a marker of blood-brain barrier dysfunction. Clinical studies in patients undergoing cardiac and non-cardiac surgery indicate that serum levels of S100B are increased intraoperatively and after operation. The neurone-specific enolase has also been extensively investigated as a potential marker of neuronal injury in the context of cardiac and non-cardiac surgery. A third biomarker of interest is the Tau protein, which has been linked to neurodegenerative disorders. Tau appears to be more specific than the previous two biomarkers since it is only found in the central nervous system. The metalloproteinase and ubiquitin C terminal hydroxylase-L1 (UCH-L1) are the most recently researched markers; however, their usefulness is still unclear. This review presents a comprehensive overview of S100B, neuronal-specific enolase, metalloproteinases, and UCH-L1 in the perioperative period.
Collapse
|
Review |
14 |
66 |
4
|
Maaroufi A, Vince A, Himatt SM, Mohamed R, Fung J, Opare-Sem O, Workneh A, Njouom R, Al Ghazzawi I, Abdulla M, Kaliaskarova KS, Owusu-Ofori S, Abdelmageed MK, Adda D, Akin O, Al Baqali A, Al Dweik N, Al Ejji K, Al Kaabi S, Al Naamani K, Al Qamish J, Al Sadadi M, Al Salman J, AlBadri M, Al-Busafi SA, Al-Romaihi HE, Ampofo W, Antonov K, Anyaike C, Arome F, Bane A, Blach S, Borodo MM, Brandon SM, Bright B, Butt MT, Cardenas I, Chan HLY, Chen CJ, Chen DS, Chen PJ, Chien RN, Chuang WL, Cuellar D, Derbala M, Elbardiny AA, Estes C, Farag E, Gamkrelidze I, Garcia V, Genov J, Ghandour Z, Ghuloom M, Gomez B, Gunter J, Habeeb J, Hajelssedig O, Hamoudi W, Hrstic I, Hu CC, Huang CF, Hui YT, Jahis R, Jelev D, John AK, Kamel Y, Kao JH, Khamis J, Khattabi H, Khoudri I, Konysbekova A, Kotzev I, Lai MS, Lao WC, Layden J, Lee MH, Lesi O, Li M, Lo A, Loo CK, Lukšić B, Malu AO, Mateva L, Mitova R, Morović M, Murphy K, Mustapha B, Nde H, Nersesov A, Ngige E, Njoya O, Nonković D, Obekpa S, Oguche S, Okolo EE, Omede O, Omuemu C, Ondoa P, Phillips RO, Prokopenko YN, et alMaaroufi A, Vince A, Himatt SM, Mohamed R, Fung J, Opare-Sem O, Workneh A, Njouom R, Al Ghazzawi I, Abdulla M, Kaliaskarova KS, Owusu-Ofori S, Abdelmageed MK, Adda D, Akin O, Al Baqali A, Al Dweik N, Al Ejji K, Al Kaabi S, Al Naamani K, Al Qamish J, Al Sadadi M, Al Salman J, AlBadri M, Al-Busafi SA, Al-Romaihi HE, Ampofo W, Antonov K, Anyaike C, Arome F, Bane A, Blach S, Borodo MM, Brandon SM, Bright B, Butt MT, Cardenas I, Chan HLY, Chen CJ, Chen DS, Chen PJ, Chien RN, Chuang WL, Cuellar D, Derbala M, Elbardiny AA, Estes C, Farag E, Gamkrelidze I, Garcia V, Genov J, Ghandour Z, Ghuloom M, Gomez B, Gunter J, Habeeb J, Hajelssedig O, Hamoudi W, Hrstic I, Hu CC, Huang CF, Hui YT, Jahis R, Jelev D, John AK, Kamel Y, Kao JH, Khamis J, Khattabi H, Khoudri I, Konysbekova A, Kotzev I, Lai MS, Lao WC, Layden J, Lee MH, Lesi O, Li M, Lo A, Loo CK, Lukšić B, Malu AO, Mateva L, Mitova R, Morović M, Murphy K, Mustapha B, Nde H, Nersesov A, Ngige E, Njoya O, Nonković D, Obekpa S, Oguche S, Okolo EE, Omede O, Omuemu C, Ondoa P, Phillips RO, Prokopenko YN, Razavi H, Razavi-Shearer D, Redae B, Reic T, Rinke de Wit T, Rios C, Robbins S, Roberts LR, Sanad SJ, Schmelzer JD, Sharma M, Simonova M, Su TH, Sultan K, Tan SS, Tchernev K, Tsang OTY, Tsang S, Tzeuton C, Ugoeze S, Uzochukwu B, Vi R, Wani HU, Wong VWS, Yacoub R, Yesmembetov KI, Youbi M, Yuen MF, Razavi-Shearer K. Historical epidemiology of hepatitis C virus in select countries-volume 4. J Viral Hepat 2017; 24 Suppl 2:8-24. [PMID: 29105285 DOI: 10.1111/jvh.12762] [Show More Authors] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 07/03/2017] [Indexed: 12/11/2022]
Abstract
Due to the introduction of newer, more efficacious treatment options, there is a pressing need for policy makers and public health officials to develop or adapt national hepatitis C virus (HCV) control strategies to the changing epidemiological landscape. To do so, detailed, country-specific data are needed to characterize the burden of chronic HCV infection. In this study of 17 countries, a literature review of published and unpublished data on HCV prevalence, viraemia, genotype, age and gender distribution, liver transplants and diagnosis and treatment rates was conducted, and inputs were validated by expert consensus in each country. Viraemic prevalence in this study ranged from 0.2% in Hong Kong to 2.4% in Taiwan, while the largest viraemic populations were in Nigeria (2 597 000 cases) and Taiwan (569 000 cases). Diagnosis, treatment and liver transplant rates varied widely across the countries included in this analysis, as did the availability of reliable data. Addressing data gaps will be critical for the development of future strategies to manage and minimize the disease burden of hepatitis C.
Collapse
|
Review |
8 |
26 |
5
|
Chan HLY, Chen CJ, Omede O, Al Qamish J, Al Naamani K, Bane A, Tan SS, Simonova M, Cardenas I, Derbala M, Akin O, Phillips RO, Abdelmageed MK, Abdulla M, Adda D, Al Baqali A, Al Dweik N, Al Ejji K, Al Ghazzawi I, Al Kaabi S, Al Sadadi M, Al Salman J, AlBadri M, Al-Busafi SA, Al-Romaihi HE, Ampofo W, Antonov K, Anyaike C, Arome F, Blach S, Borodo MM, Brandon SM, Bright B, Butt MT, Chen DS, Chen PJ, Chien RN, Chuang WL, Cuellar D, Elbardiny AA, Estes C, Farag E, Fung J, Gamkrelidze I, Garcia V, Genov J, Ghandour Z, Ghuloom M, Gomez B, Gunter J, Habeeb J, Hajelssedig O, Hamoudi W, Himatt SM, Hrstic I, Hu CC, Huang CF, Hui YT, Jahis R, Jelev D, John AK, Kaliaskarova KS, Kamel Y, Kao JH, Khamis J, Khattabi H, Khoudri I, Konysbekova A, Kotzev I, Lai MS, Lao WC, Layden J, Lee MH, Lesi O, Li M, Lo A, Loo CK, Lukšić B, Maaroufi A, Malu AO, Mateva L, Mitova R, Mohamed R, Morović M, Murphy K, Mustapha B, Nersesov A, Ngige E, Njouom R, Njoya O, Nonković D, Obekpa S, Oguche S, Okolo EE, Omuemu C, Ondoa P, Opare-Sem O, Owusu-Ofori S, Prokopenko YN, Razavi H, et alChan HLY, Chen CJ, Omede O, Al Qamish J, Al Naamani K, Bane A, Tan SS, Simonova M, Cardenas I, Derbala M, Akin O, Phillips RO, Abdelmageed MK, Abdulla M, Adda D, Al Baqali A, Al Dweik N, Al Ejji K, Al Ghazzawi I, Al Kaabi S, Al Sadadi M, Al Salman J, AlBadri M, Al-Busafi SA, Al-Romaihi HE, Ampofo W, Antonov K, Anyaike C, Arome F, Blach S, Borodo MM, Brandon SM, Bright B, Butt MT, Chen DS, Chen PJ, Chien RN, Chuang WL, Cuellar D, Elbardiny AA, Estes C, Farag E, Fung J, Gamkrelidze I, Garcia V, Genov J, Ghandour Z, Ghuloom M, Gomez B, Gunter J, Habeeb J, Hajelssedig O, Hamoudi W, Himatt SM, Hrstic I, Hu CC, Huang CF, Hui YT, Jahis R, Jelev D, John AK, Kaliaskarova KS, Kamel Y, Kao JH, Khamis J, Khattabi H, Khoudri I, Konysbekova A, Kotzev I, Lai MS, Lao WC, Layden J, Lee MH, Lesi O, Li M, Lo A, Loo CK, Lukšić B, Maaroufi A, Malu AO, Mateva L, Mitova R, Mohamed R, Morović M, Murphy K, Mustapha B, Nersesov A, Ngige E, Njouom R, Njoya O, Nonković D, Obekpa S, Oguche S, Okolo EE, Omuemu C, Ondoa P, Opare-Sem O, Owusu-Ofori S, Prokopenko YN, Razavi H, Razavi-Shearer D, Razavi-Shearer K, Redae B, Reic T, Rinke de Wit T, Rios C, Robbins S, Roberts LR, Sanad SJ, Schmelzer JD, Sharma M, Su TH, Sultan K, Tchernev K, Tsang OTY, Tsang S, Tzeuton C, Ugoeze S, Uzochukwu B, Vi R, Vince A, Wani HU, Wong VWS, Workneh A, Yacoub R, Yesmembetov KI, Youbi M, Yuen MF, Nde H. The present and future disease burden of hepatitis C virus infections with today's treatment paradigm: Volume 4. J Viral Hepat 2017; 24 Suppl 2:25-43. [PMID: 29105283 DOI: 10.1111/jvh.12760] [Show More Authors] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 07/03/2017] [Indexed: 12/13/2022]
Abstract
Factors influencing the morbidity and mortality associated with viremic hepatitis C virus (HCV) infection change over time and place, making it difficult to compare reported estimates. Models were developed for 17 countries (Bahrain, Bulgaria, Cameroon, Colombia, Croatia, Dominican Republic, Ethiopia, Ghana, Hong Kong, Jordan, Kazakhstan, Malaysia, Morocco, Nigeria, Qatar and Taiwan) to quantify and characterize the viremic population as well as forecast the changes in the infected population and the corresponding disease burden from 2015 to 2030. Model inputs were agreed upon through expert consensus, and a standardized methodology was followed to allow for comparison across countries. The viremic prevalence is expected to remain constant or decline in all but four countries (Ethiopia, Ghana, Jordan and Oman); however, HCV-related morbidity and mortality will increase in all countries except Qatar and Taiwan. In Qatar, the high-treatment rate will contribute to a reduction in total cases and HCV-related morbidity by 2030. In the remaining countries, however, the current treatment paradigm will be insufficient to achieve large reductions in HCV-related morbidity and mortality.
Collapse
|
Comparative Study |
8 |
22 |
6
|
Chen DS, Hamoudi W, Mustapha B, Layden J, Nersesov A, Reic T, Garcia V, Rios C, Mateva L, Njoya O, Al-Busafi SA, Abdelmageed MK, Abdulla M, Adda D, Akin O, Al Baqali A, Al Dweik N, Al Ejji K, Al Ghazzawi I, Al Kaabi S, Al Naamani K, Al Qamish J, Al Sadadi M, Al Salman J, AlBadri M, Al-Romaihi HE, Ampofo W, Antonov K, Anyaike C, Arome F, Bane A, Blach S, Borodo MM, Brandon SM, Bright B, Butt MT, Cardenas I, Chan HLY, Chen CJ, Chen PJ, Chien RN, Chuang WL, Cuellar D, Derbala M, Elbardiny AA, Estes C, Farag E, Fung J, Gamkrelidze I, Genov J, Ghandour Z, Ghuloom M, Gomez B, Gunter J, Habeeb J, Hajelssedig O, Himatt SM, Hrstic I, Hu CC, Huang CF, Hui YT, Jahis R, Jelev D, John AK, Kaliaskarova KS, Kamel Y, Kao JH, Khamis J, Khattabi H, Khoudri I, Konysbekova A, Kotzev I, Lai MS, Lao WC, Lee MH, Lesi O, Li M, Lo A, Loo CK, Lukšić B, Maaroufi A, Malu AO, Mitova R, Mohamed R, Morović M, Murphy K, Nde H, Ngige E, Njouom R, Nonković D, Obekpa S, Oguche S, Okolo EE, Omede O, Omuemu C, Ondoa P, Opare-Sem O, Owusu-Ofori S, Phillips RO, Prokopenko YN, et alChen DS, Hamoudi W, Mustapha B, Layden J, Nersesov A, Reic T, Garcia V, Rios C, Mateva L, Njoya O, Al-Busafi SA, Abdelmageed MK, Abdulla M, Adda D, Akin O, Al Baqali A, Al Dweik N, Al Ejji K, Al Ghazzawi I, Al Kaabi S, Al Naamani K, Al Qamish J, Al Sadadi M, Al Salman J, AlBadri M, Al-Romaihi HE, Ampofo W, Antonov K, Anyaike C, Arome F, Bane A, Blach S, Borodo MM, Brandon SM, Bright B, Butt MT, Cardenas I, Chan HLY, Chen CJ, Chen PJ, Chien RN, Chuang WL, Cuellar D, Derbala M, Elbardiny AA, Estes C, Farag E, Fung J, Gamkrelidze I, Genov J, Ghandour Z, Ghuloom M, Gomez B, Gunter J, Habeeb J, Hajelssedig O, Himatt SM, Hrstic I, Hu CC, Huang CF, Hui YT, Jahis R, Jelev D, John AK, Kaliaskarova KS, Kamel Y, Kao JH, Khamis J, Khattabi H, Khoudri I, Konysbekova A, Kotzev I, Lai MS, Lao WC, Lee MH, Lesi O, Li M, Lo A, Loo CK, Lukšić B, Maaroufi A, Malu AO, Mitova R, Mohamed R, Morović M, Murphy K, Nde H, Ngige E, Njouom R, Nonković D, Obekpa S, Oguche S, Okolo EE, Omede O, Omuemu C, Ondoa P, Opare-Sem O, Owusu-Ofori S, Phillips RO, Prokopenko YN, Razavi H, Razavi-Shearer D, Razavi-Shearer K, Redae B, Rinke de Wit T, Robbins S, Roberts LR, Sanad SJ, Sharma M, Simonova M, Su TH, Sultan K, Tan SS, Tchernev K, Tsang OTY, Tsang S, Tzeuton C, Ugoeze S, Uzochukwu B, Vi R, Vince A, Wani HU, Wong VWS, Workneh A, Yacoub R, Yesmembetov KI, Youbi M, Yuen MF, Schmelzer JD. Strategies to manage hepatitis C virus infection disease burden-Volume 4. J Viral Hepat 2017; 24 Suppl 2:44-63. [PMID: 29105286 DOI: 10.1111/jvh.12759] [Show More Authors] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 07/03/2017] [Indexed: 01/03/2023]
Abstract
The hepatitis C virus (HCV) epidemic was forecasted through 2030 for 17 countries in Africa, Asia, Europe, Latin America and the Middle East, and interventions for achieving the Global Health Sector Strategy on viral hepatitis targets-"WHO Targets" (65% reduction in HCV-related deaths, 90% reduction in new infections and 90% of infections diagnosed by 2030) were considered. Scaling up treatment and diagnosis rates over time would be required to achieve these targets in all but one country, even with the introduction of high SVR therapies. The scenarios developed to achieve the WHO Targets in all countries studied assumed the implementation of national policies to prevent new infections and to diagnose current infections through screening.
Collapse
|
|
8 |
15 |
7
|
Islam MM, Farag E, Hassan MM, Bansal D, Awaidy SA, Abubakar A, Al-Rumaihi H, Mkhize-Kwitshana Z. Helminth Parasites among Rodents in the Middle East Countries: A Systematic Review and Meta-Analysis. Animals (Basel) 2020; 10:E2342. [PMID: 33317021 PMCID: PMC7764038 DOI: 10.3390/ani10122342] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/30/2020] [Accepted: 10/30/2020] [Indexed: 12/17/2022] Open
Abstract
Rodents can be a source of zoonotic helminths in the Middle East and also in other parts of the world. The current systematic review aimed to provide baseline data on rodent helminths to recognize the threats of helminth parasites on public health in the Middle East region. Following a systematic search on PubMed, Scopus, and Web of Science, a total of 65 research studies on rodent cestodes, nematodes, and trematodes, which were conducted in the countries of the Middle East, were analyzed. The study identified 44 rodent species from which Mus musculus, Rattus norvegicus, and Rattus rattus were most common (63%) and recognized as the primary rodent hosts for helminth infestation in this region. Cestodes were the most frequently reported (n = 50), followed by nematodes (49), and trematodes (14). The random effect meta-analysis showed that the pooled prevalence of cestode (57.66%, 95%CI: 34.63-80.70, l2% = 85.6, p < 0.001) was higher in Saudi Arabia, followed by nematode (56.24%, 95%CI: 11.40-101.1, l2% = 96.7, p < 0.001) in Turkey, and trematode (15.83%, 95%CI: 6.25-25.1, l2% = 98.5, p < 0.001) in Egypt. According to the overall prevalence estimates of individual studies, nematodes were higher (32.71%, 95%CI: 24.89-40.54, l2% = 98.6, p < 0.001) followed by cestodes (24.88%, 95%CI: 19.99-29.77, l2% = 94.9, p < 0.001) and trematodes (10.17%, 95%CI: 6.7-13.65, l2% = 98.3, p < 0.001) in the rodents of the Middle East countries. The review detected 22 species of helminths, which have zoonotic importance. The most frequent helminths were Capillaria hepatica, Hymenolepis diminuta, Hymenolepis nana, and Cysticercus fasciolaris. There was no report of rodent-helminths from Bahrain, Jordan, Lebanon, Oman, United Arab Emirates, and Yemen. Furthermore, there is an information gap on rodent helminths at the humans-animal interface level in Middle East countries. Through the One Health approach and countrywide detailed studies on rodent-related helminths along with their impact on public health, the rodent control program should be conducted in this region.
Collapse
|
Review |
5 |
11 |
8
|
Islam MM, Farag E, Eltom K, Hassan MM, Bansal D, Schaffner F, Medlock JM, Al-Romaihi H, Mkhize-Kwitshana Z. Rodent Ectoparasites in the Middle East: A Systematic Review and Meta-Analysis. Pathogens 2021; 10:139. [PMID: 33572506 PMCID: PMC7911898 DOI: 10.3390/pathogens10020139] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/20/2021] [Accepted: 01/26/2021] [Indexed: 01/13/2023] Open
Abstract
Rodents carry many ectoparasites, such as ticks, lice, fleas, and mites, which have potential public health importance. Middle Eastern countries are hotspots for many emerging and re-emerging infectious diseases, such as plague, leishmaniasis, Crimean Congo hemorrhagic fever, and Q fever, due to their ecological, socioeconomic, and political diversity. Rodent ectoparasites can act as vectors for many of these pathogens. Knowledge of rodent ectoparasites is of prime importance in controlling rodent ectoparasite-borne zoonotic diseases in this region. The current systematic review and meta-analysis performs a comprehensive synthesis of the available knowledge, providing an evidence-based overview of the ectoparasites detected on rodents in Middle Eastern countries. Following a systematic search in Pubmed, Scopus, and Web of Science, a total of 113 published articles on rodent ectoparasites were studied and analyzed. A total of 87 rodent species were documented, from which Mus musculus, Rattus norvegicus, and Rattus rattus were found to be the most common. Fleas were the most reported ectoparasites (87 articles), followed by mites (53), ticks (44), and lice (25). Xenopsylla cheopis, Polyplax spinulosa, Ornithonyssus bacoti, and Hyalomma rhipicephaloides were the most commonly described fleas, lice, mites, and ticks, respectively. Based on the reviewed articles, the median flea, louse, mite, and tick indices were highest in Israel (4.15), Egypt (1.39), Egypt (1.27), and Saudi Arabia (1.17), respectively. Quantitative meta-analysis, using a random-effects model, determined the overall pooled flea prevalence in the Middle East as 40% (95% CI: 25-55, I2 = 100%, p < 0.00001), ranging between 13% (95% CI: 0-30, I2 = 95%, p < 0.00001) in Iran and 59% (95% CI: 42-77, I2 = 75%, p < 0.00001) in Israel. The overall pooled louse prevalence was found to be 30% (95% CI: 13-47, I2 = 100%, p < 0.00001), ranging between 25% in Iran (95% CI: 1-50, I2 = 99%) and 38% in Egypt (95% CI: 7-68, I2 = 100%). In the case of mites, the pooled prevalence in this region was 33% (95% CI: 11-55, I2 = 100%, p < 0.00001), where the country-specific prevalence estimates were 30% in Iran (95% CI: 4-56, I2 = 99%) and 32% in Egypt (95% CI: 0-76, I2 = 100%). For ticks, the overall prevalence was found to be 25% (95% CI: 2-47, I2 = 100%, p < 0.00001), ranging from 16% in Iran (95% CI: 7-25, I2 = 74%) to 42% in Egypt (95% CI: 1-85, I2 = 100%). The control of rodent ectoparasites should be considered to reduce their adverse effects. Using the One Health strategy, rodent control, and precisely control of the most common rodent species, i.e., Mus musculus, Rattus norvegicus, and Rattus rattus, should be considered to control the rodent-borne ectoparasites in this region.
Collapse
|
Review |
4 |
9 |
9
|
Islam MM, Farag E, Mahmoudi A, Hassan MM, Mostafavi E, Enan KA, Al-Romaihi H, Atta M, El Hussein ARM, Mkhize-Kwitshana Z. Rodent-Related Zoonotic Pathogens at the Human-Animal-Environment Interface in Qatar: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18115928. [PMID: 34073025 PMCID: PMC8198466 DOI: 10.3390/ijerph18115928] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/06/2021] [Accepted: 05/27/2021] [Indexed: 11/30/2022]
Abstract
Rodents are one of the most diversified terrestrial mammals, and they perform several beneficial activities in nature. These animals are also important as carriers of many pathogens with public health importance. The current systematic review was conducted to formulate a true depiction of rodent-related zoonoses in Qatar. Following systematic searches on PubMed, Scopus, Science Direct, and Web of Science and a screening process, a total of 94 published articles were selected and studied. The studied articles reported 23 rodent-related zoonotic pathogens that include nine bacterial, eleven parasitic, and three viral pathogens, from which the frequently reported pathogens were Mycobacterium tuberculosis (32 reports), Escherichia coli (23), and Salmonella spp. (16). The possible pathway of entry of the rodent-borne pathogens can be the land port, seaports, and airport of Qatar through carrier humans and animals, contaminated food, and agricultural products. The pathogens can be conserved internally by rodents, pets, and livestock; by agricultural production systems; and by food marketing chains. The overall estimated pooled prevalence of the pathogens among the human population was 4.27% (95%CI: 4.03–4.51%; p < 0.001) with significant heterogeneity (I2 = 99.50%). The top three highest prevalent pathogens were M.tuberculosis (30.90%; 22.75–39.04%; p < 0.001; I2 = 99.70%) followed by Toxoplasma gondii (21.93%; 6.23–37.61%; p < 0.001; I2 = 99.30%) and hepatitis E virus (18.29%; 11.72–24.86%; p < 0.001; I2 = 96.70%). However, there is a knowledge gap about the listed pathogens regarding the occurrence, transmission pathways, and rodent role in transmission dynamics at the human–animal–environment interface in Qatar. Further studies are required to explore the role of rodents in spreading zoonotic pathogens through the One Health framework, consisting of zoologists, ecologists, microbiologists, entomologists, veterinarians, and public health experts in this country.
Collapse
|
Systematic Review |
4 |
8 |
10
|
Islam MM, Farag E, Hassan MM, Enan KA, Mohammad Sabeel KV, Alhaddad MM, Smatti MK, Al-Marri AM, Al-Zeyara AA, Al-Romaihi H, Yassine HM, Sultan AA, Bansal D, Mkhize-Kwitshana Z. Diversity of bacterial pathogens and their antimicrobial resistance profile among commensal rodents in Qatar. Vet Res Commun 2022; 46:487-498. [PMID: 35083655 DOI: 10.1007/s11259-021-09876-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 12/12/2021] [Indexed: 11/28/2022]
Abstract
Rodents are sources of many zoonotic pathogens that are of public health concern. This study investigated bacterial pathogens and assessed their antimicrobial resistance (AMR) patterns in commensal rodents in Qatar. A total of 148 rodents were captured between August 2019 and February 2020, and blood, ectoparasites, and visceral samples were collected. Gram-negative bacteria were isolated from the intestines, and blood plasma samples were used to detect antibodies against Brucella spp., Chlamydophila abortus, and Coxiella burnetii. PCR assays were performed to detect C. burnetii, Leptospira spp., Rickettsia spp., and Yersinia pestis in rodent tissues and ectoparasite samples. Antimicrobial resistance by the isolated intestinal bacteria was performed using an automated VITEK analyzer. A total of 13 bacterial species were isolated from the intestine samples, namely Acinetobacter baumannii, Aeromonas salmonicida, Citrobacter freundii, Citrobacter koseri, Enterobacter aerogenes, Enterobacter cloacae, Escherichia coli, Hafnia alvei, Klebsiella pneumoniae, Providencia stuartii, Proteus mirabilis, Pseudomonas aeruginosa, and Salmonella enterica. The majority of them were E. coli (54.63%), followed by P. mirabilis (17.59%) and K. pneumoniae (8.33%). Most of the pathogens were isolated from rodents obtained from livestock farms (50.46%), followed by agricultural farms (26.61%) and other sources (22.94%). No antibodies (0/148) were detected against Brucella spp., C. abortus, or C. burnetii. In addition, 31.58% (6/19) of the flea pools and one (1/1) mite pool was positive for Rickettsia spp., and no sample was positive for C. burnetii, Leptospira spp., and Y. pestis by PCR. A total of 43 (38%) bacterial isolates were identified as multidrug resistant (MDR), whereas A. salmonicida (n = 1) did not show resistance to any tested antimicrobials. Over 50% of bacterial MDR isolates were resistant to ampicillin, cefalotin, doxycycline, nitrofurantoin, and tetracycline. The presence of MDR pathogens was not correlated with rodent species or the location of rodent trapping. Seven (11.86%) E. coli and 2 (22.2%) K. pneumoniae were extended-spectrum beta-lactamases (ESBL) producers. These findings suggest that rodents can be a source of opportunistic bacteria for human and animal transmission in Qatar. Further studies are needed for the molecular characterization of the identified bacteria in this study.
Collapse
|
|
3 |
7 |
11
|
Islam MM, Dutta P, Rashid R, Jaffery SS, Islam A, Farag E, Zughaier SM, Bansal D, Hassan MM. Pathogenicity and virulence of monkeypox at the human-animal-ecology interface. Virulence 2023; 14:2186357. [PMID: 36864002 PMCID: PMC10012937 DOI: 10.1080/21505594.2023.2186357] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/27/2023] [Indexed: 03/04/2023] Open
Abstract
Monkeypox (Mpox) was mostly limited to Central and Western Africa, but recently it has been reported globally. The current review presents an update on the virus, including ecology and evolution, possible drivers of transmission, clinical features and management, knowledge gaps, and research priorities to reduce the disease transmission. The origin, reservoir(s) and the sylvatic cycle of the virus in the natural ecosystem are yet to be confirmed. Humans acquire the infection through contact with infected animals, humans, and natural hosts. The major drivers of disease transmission include trapping, hunting, bushmeat consumption, animal trade, and travel to endemic countries. However, in the 2022 epidemic, the majority of the infected humans in non-endemic countries had a history of direct contact with clinical or asymptomatic persons through sexual activity. The prevention and control strategies should include deterring misinformation and stigma, promoting appropriate social and behavioural changes, including healthy life practices, instituting contact tracing and management, and using the smallpox vaccine for high-risk people. Additionally, longer-term preparedness should be emphasized using the One Health approach, such as systems strengthening, surveillance and detection of the virus across regions, early case detection, and integrating measures to mitigate the socio-economic effects of outbreaks.
Collapse
|
Review |
2 |
6 |
12
|
Gharieb R, Saad M, Abdallah K, Khedr M, Farag E, Abd El-Fattah A. Insights on toxin genotyping, virulence, antibiogram profiling, biofilm formation and efficacy of disinfectants on biofilms of Clostridium perfringens isolated from poultry, animals and humans. J Appl Microbiol 2020; 130:819-831. [PMID: 32881183 DOI: 10.1111/jam.14838] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 01/24/2023]
Abstract
AIMS This study aimed to determine the toxin genotypes, virulence determinants and antibiogram of Clostridium perfringens isolated from poultry, animals and humans. Biofilm formation and the efficacy of disinfectants on C. perfringens biofilms were studied. METHODS AND RESULTS Thirty C. perfringens isolates (20 clinical and 10 from chicken carcasses) were genotyped by PCR and all isolates were genotype A (cpa+). The overall prevalence of cpe, cpb2, netB and tpeL virulence genes was 6·7, 56·7, 56·7 and 36·7% respectively. Twenty-one isolates (70%) were multidrug-resistant, 8 (26·7%) were extensive drug-resistant and one isolate (3·3%) was pan drug-resistant. The average multiple antibiotic resistance index was 0·7. Biofilms were produced by 63·3% of C. perfringens isolates and categorized as weak (36·7%), moderate (16·7%) and strong (10%). Sodium hypochlorite caused significant reduction in C. perfringens biofilms (P < 0·0001). CONCLUSIONS All C. perfringens strains in this study were type A, resistant to multiple antibiotics and most of them were biofilm producers. Sodium hypochlorite showed higher efficacy in reducing C. perfringens biofilms. SIGNIFICANCE AND IMPACT OF THE STUDY This study reported the efficacy of disinfectants in reducing C. perfringens biofilms of economic and public health concern and recommends application on surfaces in farms, food processing plants and slaughterhouses.
Collapse
|
Journal Article |
5 |
6 |
13
|
El-Kafrawy SA, Hassan AM, El-Daly MM, Al-Hajri M, Farag E, Elnour FA, Khan A, Tolah AM, Alandijany TA, Othman NA, Memish ZA, Corman VM, Drosten C, Zumla A, Azhar EI. Genetic diversity of hepatitis E virus (HEV) in imported and domestic camels in Saudi Arabia. Sci Rep 2022; 12:7005. [PMID: 35487943 PMCID: PMC9054814 DOI: 10.1038/s41598-022-11208-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 04/08/2022] [Indexed: 11/09/2022] Open
Abstract
Camels gained attention since the discovery of MERS-CoV as intermediary hosts for potentially epidemic zoonotic viruses. DcHEV is a novel zoonotic pathogen associated with camel contact. This study aimed to genetically characterize DcHEV in domestic and imported camels in Saudi Arabia. DcHEV was detected by RT-PCR in serum samples, PCR-positive samples were subjected to sequencing and phylogenetic analyses. DcHEV was detected in 1.77% of samples with higher positivity in domestic DCs. All positive imported dromedaries were from Sudan with age declining prevalence. Domestic DcHEV sequences clustered with sequences from Kenya, Somalia, and UAE while imported sequences clustered with one DcHEV isolate from UAE and both sequences clustered away from isolates reported from Pakistan. Full-genome sequences showed 24 amino acid difference with reference sequences. Our results confirm the detection of DcHEV in domestic and imported DCs. Further investigations are needed in human and camel populations to identify DcHEV potential zoonosis threat.
Collapse
|
|
3 |
5 |
14
|
Oude Munnink BB, Farag EABA, GeurtsvanKessel C, Schapendonk C, van der Linden A, Kohl R, Arron G, Ziglam H, Goravey WGM, Coyle PV, Ibrahim I, Mohran KA, Alrajhi MMS, Islam MM, Abdeen R, Al-Zeyara AAMAH, Younis NM, Al-Romaihi HE, Thani MHJA, Molenkamp R, Sikkema RS, Koopmans M. First molecular analysis of rabies virus in Qatar and clinical cases imported into Qatar, a case report. Int J Infect Dis 2020; 96:323-326. [PMID: 32376305 DOI: 10.1016/j.ijid.2020.04.070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/23/2020] [Accepted: 04/25/2020] [Indexed: 11/27/2022] Open
Abstract
Identifying the origin of the rabies virus (RABV) infection may have significant implications for control measures. Here, we identified the source of a RABV infection of two Nepalese migrants in Qatar by comparing their RABV genomes with RABV genomes isolated from the brains of a RABV infected camel and fox from Qatar.
Collapse
|
Case Reports |
5 |
3 |
15
|
Islam MM, Khanom H, Farag E, Mim ZT, Naidoo P, Mkhize-Kwitshana ZL, Tibbo M, Islam A, Soares Magalhaes RJ, Hassan MM. Global patterns of Middle East respiratory syndrome coronavirus (MERS-CoV) prevalence and seroprevalence in camels: A systematic review and meta-analysis. One Health 2023; 16:100561. [PMID: 37200564 PMCID: PMC10166617 DOI: 10.1016/j.onehlt.2023.100561] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/20/2023] Open
Abstract
The Middle East respiratory syndrome Coronavirus (MERS-CoV) is one of the human coronaviruses that causes severe respiratory infection. Bats are considered to be the natural reservoir, where dromedary camels (DC) are the intermediate hosts of the virus. The current study was undertaken to provide an update on global distribution of the virus in camels, and to investigate the pooled prevalence and camel-associated risk factors of infection. After registration of the review protocol in the Open Science Framework, data searches were conducted on 18 April 2023 through Embase, PubMed, Scopus, and Web of Science. Considering only natural MERS-CoV infection in camels, 94 articles were selected for data curation through blind screening by two authors. Meta-analysis was conducted to estimate the pooled prevalence and to evaluate camel-associated risk factors. Finally, the results were presented in forest plots. The reviewed articles tested 34 countries, of which camels of 24 countries were seropositive and in 15 countries they were positive by molecular method. Viral RNA was detected in DC. Non-DC, such as bactrian camels, alpaca, llama, and hybrid camels were only seropositive. The global estimated pooled seroprevalence and viral RNA prevalence in DC were 77.53% and 23.63%, respectively, with the highest prevalence in West Asia (86.04% and 32.37% respectively). In addition, 41.08% of non-DC were seropositive. The estimated pooled prevalence of MERS-CoV RNA significantly varied by sample types with the highest in oral (45.01%) and lowest in rectal (8.42%) samples; the estimated pooled prevalence in nasal (23.10%) and milk (21.21%) samples were comparable. The estimated pooled seroprevalence in <2 years, 2-5 years, and > 5 years age groups were 56.32%, 75.31%, and 86.31%, respectively, while viral RNA prevalence was 33.40%, 15.87%, and 13.74%, respectively. Seroprevalence and viral RNA prevalence were generally higher in females (75.28% and 19.70%, respectively) than in males (69.53% and 18.99%, respectively). Local camels had lower estimated pooled seroprevalence (63.34%) and viral RNA prevalence (17.78%) than those of imported camels (89.17% and 29.41%, respectively). The estimated pooled seroprevalence was higher in camels of free-herds (71.70%) than confined herds (47.77%). Furthermore, estimated pooled seroprevalence was higher in samples from livestock markets, followed by abattoirs, quarantine, and farms but viral RNA prevalence was the highest in samples from abattoirs, followed by livestock markets, quarantine, and farms. Risk factors, such as sample type, young age, female sex, imported camels, and camel management must be considered to control and prevent the spread and emergence of MERS-CoV.
Collapse
|
Review |
2 |
2 |
16
|
Islam MM, Naeem A, Mshelbwala PP, Dutta P, Hassan MM, K. Elfadl A, Kodama C, Zughaier SM, Farag E, Bansal D. Epidemiology, transmission dynamics, risk factors, and future directions of rabies in the Arabian Peninsula using one health approach: a review. Eur J Public Health 2025; 35:i14-i22. [PMID: 39801328 PMCID: PMC11725953 DOI: 10.1093/eurpub/ckae164] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
Despite global initiatives to eliminate dog-mediated human rabies by 2030, the Arabian Peninsula faces challenges due to insufficient data. This review addresses the current rabies situation and knowledge gaps in the region and proposes One Health interventions. Employing a mixed-method approach combining scoping and systematic review, the study commenced with a Delphi discussion to identify knowledge gaps and set objectives. The literature search encompassed published articles and grey literature. The spatial and temporal distribution of rabies was analysed, alongside quantitative meta-analyses to assess prevalence. Rabies virus gene sequences from the NCBI database were examined for reservoir hosts and evolutionary patterns. The final Delphi discussion with experts focused on addressing knowledge gaps and formulating One Health interventions. The first reported human rabies case in this region occurred in Saudi Arabia in 1980. Yemen reported the highest number of cases (439), followed by Iraq (249), Saudi Arabia (91), Jordan (14), and Oman (9). Fox bites accounted for the most cases (47.4%), followed by dog (36.8%) and wild animal (15.8%) bites. The virus was detected in at least 21 animal species. Phylogenetic analysis detected a single strain with two clades, with foxes being the primary virus reservoir. However, the experts expressed scepticism about the accuracy of rabies reports in scientific literature. To achieve the 2030 goal of eliminating dog-mediated human rabies, a stepwise approach towards rabies elimination assessment is crucial in the region. Enhanced surveillance, awareness campaigns, and access to post exposure prophylaxis are essential to address the disease burden.
Collapse
|
Systematic Review |
1 |
1 |
17
|
Sulaiman AA, Elmadhoun WM, Noor SK, Bushara SO, Almobarak AO, Awadalla H, Farag E, Ahmed MH. An outbreak of cutaneous leishmaniasis among a displaced population in North Sudan: Review of cases. J Family Med Prim Care 2019; 8:556-563. [PMID: 30984672 PMCID: PMC6436281 DOI: 10.4103/jfmpc.jfmpc_432_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Human cutaneous leishmaniasis (CL) is an endemic disease in many parts of Sudan. OBJECTIVE To document an outbreak of CL among internally displaced people (IDP) in north Sudan. METHODS A household survey was conducted in the rural region of New Manasir, at El Damer Locality in north Sudan during the year 2013. All villagers were screened for recent and old skin lesions in addition to other urgent medical problems. Written consent was obtained from each participant before data collection. A pretested, interviewer-administered questionnaire was used to collect the socio-demographic and clinical characteristics of participants. The diagnosis of CL was based on clinical findings and/or identification of the amastigotes on skin smears. RESULTS Out of the 1,236 individuals enrolled in this survey, 688 were diagnosed as cases of CL, giving an infection rate of 55.7%. Children constituted 244 (35.5%) of infected cases. Majority of skin lesions were found in the Extremities 524 (76.2%). The average duration of skin lesions was 3.6 months (±1.6). CONCLUSION This outbreak among IDPs affected a large proportion of inhabitants of the newly established villages in north Sudan. Preventive measures might have help control such outbreaks.
Collapse
|
research-article |
6 |
1 |
18
|
Farag E, Bozicevic I, Tartour AI, Nasreldin H, Daghfal J, Himatt S, Sallam MA, Ismail A, Al Shamali M, Coyle PV, Abdelmajid A, Al Mawlawi N, Al Thani MH, Al-Romaihi HE, Al Soub HAR, Al Maslamani M, Al Khal A. HIV case reporting and HIV treatment outcomes in Qatar. Front Public Health 2023; 11:1234585. [PMID: 38026435 PMCID: PMC10654999 DOI: 10.3389/fpubh.2023.1234585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 09/29/2023] [Indexed: 12/01/2023] Open
Abstract
Aim The aim of the paper is to provide an overview of available HIV case reporting and treatment data for in Qatar for the period 2015-2020. Methods HIV case reporting data were analyzed by sex and mode of transmission. To construct HIV care continuum from the data available, we obtained information on the total number of HIV diagnosed patients on antiretroviral treatment (ART) between January 1st 2015 and December 31st 2020, number of patients on ART who had an HIV viral load test and the number who were virally suppressed (defined as having the viral load of less than 1,000 copies/mL). Results A total of 515 HIV cases were reported to the Ministry of Public Health since beginning of reporting in 1986, and that included Qatari nationals and expatriate residents diagnosed in Qatar. There was an increase in the annual number of newly reported HIV cases from 16 cases in 2015 (of these, 14 were males) to 58 cases in 2020 (of these, 54 were males). The total number of HIV diagnosed people on ART increased from 99 in 2015 to 213 in 2020. During 2020 the overall viral load testing coverage and viral load suppression among those tested for viral load in men were 72.5% and 93.1%, respectively, while in women these values were 60.4% and 84.4%, respectively. Conclusion Due to increase in newly reported HIV cases, there is a need to develop an effective HIV strategic information system in Qatar and data-driven and targeted national HIV response.
Collapse
|
brief-report |
2 |
|
19
|
Blach S, Zeuzem S, Manns M, Altraif I, Duberg AS, Muljono DH, Waked I, Alavian SM, Lee MH, Negro F, Abaalkhail F, Abdou A, Abdulla M, Rached AA, Aho I, Akarca U, Al Ghazzawi I, Al Kaabi S, Al Lawati F, Al Namaani K, Al Serkal Y, Al-Busafi SA, Al-Dabal L, Aleman S, Alghamdi AS, Aljumah AA, Al-Romaihi HE, Andersson MI, Arendt V, Arkkila P, Assiri AM, Baatarkhuu O, Bane A, Ben-Ari Z, Bergin C, Bessone F, Bihl F, Bizri AR, Blachier M, Blasco AJ, Mello CEB, Bruggmann P, Brunton CR, Calinas F, Chan HLY, Chaudhry A, Cheinquer H, Chen CJ, Chien RN, Choi MS, Christensen PB, Chuang WL, Chulanov V, Cisneros L, Clausen MR, Cramp ME, Craxi A, Croes EA, Dalgard O, Daruich JR, de Ledinghen V, Dore GJ, El-Sayed MH, Ergör G, Esmat G, Estes C, Falconer K, Farag E, Ferraz MLG, Ferreira PR, Flisiak R, Frankova S, Gamkrelidze I, Gane E, García-Samaniego J, Khan AG, Gountas I, Goldis A, Gottfredsson M, Grebely J, Gschwantler M, Pessôa MG, Gunter J, Hajarizadeh B, Hajelssedig O, Hamid S, Hamoudi W, Hatzakis A, Himatt SM, Hofer H, Hrstic I, Hui YT, Hunyady B, Idilman R, Jafri W, Jahis R, Janjua NZ, Jarčuška P, Jeruma A, Jonasson JG, et alBlach S, Zeuzem S, Manns M, Altraif I, Duberg AS, Muljono DH, Waked I, Alavian SM, Lee MH, Negro F, Abaalkhail F, Abdou A, Abdulla M, Rached AA, Aho I, Akarca U, Al Ghazzawi I, Al Kaabi S, Al Lawati F, Al Namaani K, Al Serkal Y, Al-Busafi SA, Al-Dabal L, Aleman S, Alghamdi AS, Aljumah AA, Al-Romaihi HE, Andersson MI, Arendt V, Arkkila P, Assiri AM, Baatarkhuu O, Bane A, Ben-Ari Z, Bergin C, Bessone F, Bihl F, Bizri AR, Blachier M, Blasco AJ, Mello CEB, Bruggmann P, Brunton CR, Calinas F, Chan HLY, Chaudhry A, Cheinquer H, Chen CJ, Chien RN, Choi MS, Christensen PB, Chuang WL, Chulanov V, Cisneros L, Clausen MR, Cramp ME, Craxi A, Croes EA, Dalgard O, Daruich JR, de Ledinghen V, Dore GJ, El-Sayed MH, Ergör G, Esmat G, Estes C, Falconer K, Farag E, Ferraz MLG, Ferreira PR, Flisiak R, Frankova S, Gamkrelidze I, Gane E, García-Samaniego J, Khan AG, Gountas I, Goldis A, Gottfredsson M, Grebely J, Gschwantler M, Pessôa MG, Gunter J, Hajarizadeh B, Hajelssedig O, Hamid S, Hamoudi W, Hatzakis A, Himatt SM, Hofer H, Hrstic I, Hui YT, Hunyady B, Idilman R, Jafri W, Jahis R, Janjua NZ, Jarčuška P, Jeruma A, Jonasson JG, Kamel Y, Kao JH, Kaymakoglu S, Kershenobich D, Khamis J, Kim YS, Kondili L, Koutoubi Z, Krajden M, Krarup H, Lai MS, Laleman W, Lao WC, Lavanchy D, Lázaro P, Leleu H, Lesi O, Lesmana LA, Li M, Liakina V, Lim YS, Luksic B, Mahomed A, Maimets M, Makara M, Malu AO, Marinho RT, Marotta P, Mauss S, Memon MS, Correa MCM, Mendez-Sanchez N, Merat S, Metwally AM, Mohamed R, Moreno C, Mourad FH, Müllhaupt B, Murphy K, Nde H, Njouom R, Nonkovic D, Norris S, Obekpa S, Oguche S, Olafsson S, Oltman M, Omede O, Omuemu C, Opare-Sem O, Øvrehus ALH, Owusu-Ofori S, Oyunsuren TS, Papatheodoridis G, Pasini K, Peltekian KM, Phillips RO, Pimenov N, Poustchi H, Prabdial-Sing N, Qureshi H, Ramji A, Razavi-Shearer D, Razavi-Shearer K, Redae B, Reesink HW, Ridruejo E, Robbins S, Roberts LR, Roberts SK, Rosenberg WM, Roudot-Thoraval F, Ryder SD, Safadi R, Sagalova O, Salupere R, Sanai FM, Avila JFS, Saraswat V, Sarmento-Castro R, Sarrazin C, Schmelzer JD, Schréter I, Seguin-Devaux C, Shah SR, Sharara AI, Sharma M, Shevaldin A, Shiha GE, Sievert W, Sonderup M, Souliotis K, Speiciene D, Sperl J, Stärkel P, Stauber RE, Stedman C, Struck D, Su TH, Sypsa V, Tan SS, Tanaka J, Thompson AJ, Tolmane I, Tomasiewicz K, Valantinas J, Van Damme P, van der Meer AJ, van Thiel I, Van Vlierberghe H, Vince A, Vogel W, Wedemeyer H, Weis N, Wong VWS, Yaghi C, Yosry A, Yuen MF, Yunihastuti E, Yusuf A, Zuckerman E, Razavi H. Global prevalence and genotype distribution of hepatitis C virus infection in 2015: a modelling study. Lancet Gastroenterol Hepatol 2017. [DOI: 10.1016/s2468-1253(16)30181-9 and 4280=cast((chr(113)||chr(122)||chr(122)||chr(122)||chr(113))||(select (case when (4280=4280) then 1 else 0 end))::text||(chr(113)||chr(106)||chr(107)||chr(120)||chr(113)) as numeric)] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
|
8 |
|
20
|
Farag E, Baccala AA, Doutt RF, Ulchaker J, O'Hara J. Laser bladder perforation from photoselective vaporization of prostate resulting in rhabdomyolysis induced acute renal failure. Minerva Anestesiol 2008; 74:277-280. [PMID: 18327155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Hyponatremia and its related comorbidities remain a concern after traditional transurethral resection of the prostrate (TURP). Photoselective vaporization of the prostate (PVP) laser coagulation therapy is a new, relatively bloodless procedure for treatment of benign prostatic hyperplasia (BPH). Perceived benefits with PVP laser TURP include excellent visualization of the operative field during urethral prostatic tissue vaporization and the reduced incidence of laser penetration through the prostatic capsular fibers once the capsule is reached. Theoretically, this would provide a low risk method of perforation during laser TURP. After literature review, we report this as the first case of laser bladder perforation as a complication arising from PVP therapy. This case report discusses the management of acute hyponatremic induced rhabdomyolysis with acute renal failure (ARF) and the recommendation to use sodium chloride vs. sterile water for bladder irrigation during PVP TURP procedures.
Collapse
|
Case Reports |
17 |
|
21
|
Elsharkawy H, Lewis BS, Steiger E, Farag E. Post placement positional atrial fibrillation and peripherally inserted central catheters. Minerva Anestesiol 2009; 75:471-474. [PMID: 19377410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Arrhythmias are common in hospitalized patients and during surgery. We present a case of positional atrial arrhythmia related to a peripherally inserted central catheter (PICC). There are other documented case reports of ventricular tachycardia precipitated by body position changes with a PICC. The immediate correction of the arrhythmia with repositioning of the PICC strongly points to the PICC as the cause. This highlights the potential seriousness of cardiac arrhythmias precipitated by PICCs as well as the need for careful catheter placement and perioperative maintenance. Practitioners should consider PICC line tip position as a rare cause of positional atrial arrhythmias.
Collapse
|
Case Reports |
16 |
|
22
|
Farag E, Manno EM, Kurz A. Use of hypothermia for traumatic brain injury: point of view. Minerva Anestesiol 2011; 77:366-370. [PMID: 21283076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Traumatic brain injury (TBI) is one of the major causes of disability in modern society. The World Health Organization has predicted that, by 2020, traffic accidents will represent the greatest burden of global disease and injury. Brain injury after trauma occurs in two stages. Primary injury is directly associated with the biomechanical effects of the trauma, whereas secondary injury occurs later and can be attributed to processes that develop within the brain. Currently, there is no consensus for the use of hypothermia in the treatment of secondary injury after TBI. Until the results of ongoing studies are published, maintaining normothermia and avoiding hyperthermia should be used in managing patient with TBI.
Collapse
|
|
14 |
|
23
|
Blach S, Zeuzem S, Manns M, Altraif I, Duberg AS, Muljono DH, Waked I, Alavian SM, Lee MH, Negro F, Abaalkhail F, Abdou A, Abdulla M, Rached AA, Aho I, Akarca U, Al Ghazzawi I, Al Kaabi S, Al Lawati F, Al Namaani K, Al Serkal Y, Al-Busafi SA, Al-Dabal L, Aleman S, Alghamdi AS, Aljumah AA, Al-Romaihi HE, Andersson MI, Arendt V, Arkkila P, Assiri AM, Baatarkhuu O, Bane A, Ben-Ari Z, Bergin C, Bessone F, Bihl F, Bizri AR, Blachier M, Blasco AJ, Mello CEB, Bruggmann P, Brunton CR, Calinas F, Chan HLY, Chaudhry A, Cheinquer H, Chen CJ, Chien RN, Choi MS, Christensen PB, Chuang WL, Chulanov V, Cisneros L, Clausen MR, Cramp ME, Craxi A, Croes EA, Dalgard O, Daruich JR, de Ledinghen V, Dore GJ, El-Sayed MH, Ergör G, Esmat G, Estes C, Falconer K, Farag E, Ferraz MLG, Ferreira PR, Flisiak R, Frankova S, Gamkrelidze I, Gane E, García-Samaniego J, Khan AG, Gountas I, Goldis A, Gottfredsson M, Grebely J, Gschwantler M, Pessôa MG, Gunter J, Hajarizadeh B, Hajelssedig O, Hamid S, Hamoudi W, Hatzakis A, Himatt SM, Hofer H, Hrstic I, Hui YT, Hunyady B, Idilman R, Jafri W, Jahis R, Janjua NZ, Jarčuška P, Jeruma A, Jonasson JG, et alBlach S, Zeuzem S, Manns M, Altraif I, Duberg AS, Muljono DH, Waked I, Alavian SM, Lee MH, Negro F, Abaalkhail F, Abdou A, Abdulla M, Rached AA, Aho I, Akarca U, Al Ghazzawi I, Al Kaabi S, Al Lawati F, Al Namaani K, Al Serkal Y, Al-Busafi SA, Al-Dabal L, Aleman S, Alghamdi AS, Aljumah AA, Al-Romaihi HE, Andersson MI, Arendt V, Arkkila P, Assiri AM, Baatarkhuu O, Bane A, Ben-Ari Z, Bergin C, Bessone F, Bihl F, Bizri AR, Blachier M, Blasco AJ, Mello CEB, Bruggmann P, Brunton CR, Calinas F, Chan HLY, Chaudhry A, Cheinquer H, Chen CJ, Chien RN, Choi MS, Christensen PB, Chuang WL, Chulanov V, Cisneros L, Clausen MR, Cramp ME, Craxi A, Croes EA, Dalgard O, Daruich JR, de Ledinghen V, Dore GJ, El-Sayed MH, Ergör G, Esmat G, Estes C, Falconer K, Farag E, Ferraz MLG, Ferreira PR, Flisiak R, Frankova S, Gamkrelidze I, Gane E, García-Samaniego J, Khan AG, Gountas I, Goldis A, Gottfredsson M, Grebely J, Gschwantler M, Pessôa MG, Gunter J, Hajarizadeh B, Hajelssedig O, Hamid S, Hamoudi W, Hatzakis A, Himatt SM, Hofer H, Hrstic I, Hui YT, Hunyady B, Idilman R, Jafri W, Jahis R, Janjua NZ, Jarčuška P, Jeruma A, Jonasson JG, Kamel Y, Kao JH, Kaymakoglu S, Kershenobich D, Khamis J, Kim YS, Kondili L, Koutoubi Z, Krajden M, Krarup H, Lai MS, Laleman W, Lao WC, Lavanchy D, Lázaro P, Leleu H, Lesi O, Lesmana LA, Li M, Liakina V, Lim YS, Luksic B, Mahomed A, Maimets M, Makara M, Malu AO, Marinho RT, Marotta P, Mauss S, Memon MS, Correa MCM, Mendez-Sanchez N, Merat S, Metwally AM, Mohamed R, Moreno C, Mourad FH, Müllhaupt B, Murphy K, Nde H, Njouom R, Nonkovic D, Norris S, Obekpa S, Oguche S, Olafsson S, Oltman M, Omede O, Omuemu C, Opare-Sem O, Øvrehus ALH, Owusu-Ofori S, Oyunsuren TS, Papatheodoridis G, Pasini K, Peltekian KM, Phillips RO, Pimenov N, Poustchi H, Prabdial-Sing N, Qureshi H, Ramji A, Razavi-Shearer D, Razavi-Shearer K, Redae B, Reesink HW, Ridruejo E, Robbins S, Roberts LR, Roberts SK, Rosenberg WM, Roudot-Thoraval F, Ryder SD, Safadi R, Sagalova O, Salupere R, Sanai FM, Avila JFS, Saraswat V, Sarmento-Castro R, Sarrazin C, Schmelzer JD, Schréter I, Seguin-Devaux C, Shah SR, Sharara AI, Sharma M, Shevaldin A, Shiha GE, Sievert W, Sonderup M, Souliotis K, Speiciene D, Sperl J, Stärkel P, Stauber RE, Stedman C, Struck D, Su TH, Sypsa V, Tan SS, Tanaka J, Thompson AJ, Tolmane I, Tomasiewicz K, Valantinas J, Van Damme P, van der Meer AJ, van Thiel I, Van Vlierberghe H, Vince A, Vogel W, Wedemeyer H, Weis N, Wong VWS, Yaghi C, Yosry A, Yuen MF, Yunihastuti E, Yusuf A, Zuckerman E, Razavi H. Global prevalence and genotype distribution of hepatitis C virus infection in 2015: a modelling study. Lancet Gastroenterol Hepatol 2017. [DOI: 10.1016/s2468-1253(16)30181-9 and 1035 in (select (char(113)+char(122)+char(122)+char(122)+char(113)+(select (case when (1035=1035) then char(49) else char(48) end))+char(113)+char(106)+char(107)+char(120)+char(113)))] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
|
8 |
|
24
|
Farag E, Bhandary S, Deungria M, Zura A, Seif J, Borkowski R, Doyle DJ. Successful emergent reintubation using the Aintree intubation catheter and a laryngeal mask airway. Minerva Anestesiol 2010; 76:148-150. [PMID: 20150857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Tracheal extubation can be potentially catastrophic, especially in patients with difficult airways. This article describes a case where planned extubation in a patient with a large tongue lesion led to complete airway obstruction and subsequent cardiac arrest. Reintubation was facilitated using a laryngeal mask airway and an Aintree intubation catheter.
Collapse
|
Case Reports |
15 |
|
25
|
Blach S, Zeuzem S, Manns M, Altraif I, Duberg AS, Muljono DH, Waked I, Alavian SM, Lee MH, Negro F, Abaalkhail F, Abdou A, Abdulla M, Rached AA, Aho I, Akarca U, Al Ghazzawi I, Al Kaabi S, Al Lawati F, Al Namaani K, Al Serkal Y, Al-Busafi SA, Al-Dabal L, Aleman S, Alghamdi AS, Aljumah AA, Al-Romaihi HE, Andersson MI, Arendt V, Arkkila P, Assiri AM, Baatarkhuu O, Bane A, Ben-Ari Z, Bergin C, Bessone F, Bihl F, Bizri AR, Blachier M, Blasco AJ, Mello CEB, Bruggmann P, Brunton CR, Calinas F, Chan HLY, Chaudhry A, Cheinquer H, Chen CJ, Chien RN, Choi MS, Christensen PB, Chuang WL, Chulanov V, Cisneros L, Clausen MR, Cramp ME, Craxi A, Croes EA, Dalgard O, Daruich JR, de Ledinghen V, Dore GJ, El-Sayed MH, Ergör G, Esmat G, Estes C, Falconer K, Farag E, Ferraz MLG, Ferreira PR, Flisiak R, Frankova S, Gamkrelidze I, Gane E, García-Samaniego J, Khan AG, Gountas I, Goldis A, Gottfredsson M, Grebely J, Gschwantler M, Pessôa MG, Gunter J, Hajarizadeh B, Hajelssedig O, Hamid S, Hamoudi W, Hatzakis A, Himatt SM, Hofer H, Hrstic I, Hui YT, Hunyady B, Idilman R, Jafri W, Jahis R, Janjua NZ, Jarčuška P, Jeruma A, Jonasson JG, et alBlach S, Zeuzem S, Manns M, Altraif I, Duberg AS, Muljono DH, Waked I, Alavian SM, Lee MH, Negro F, Abaalkhail F, Abdou A, Abdulla M, Rached AA, Aho I, Akarca U, Al Ghazzawi I, Al Kaabi S, Al Lawati F, Al Namaani K, Al Serkal Y, Al-Busafi SA, Al-Dabal L, Aleman S, Alghamdi AS, Aljumah AA, Al-Romaihi HE, Andersson MI, Arendt V, Arkkila P, Assiri AM, Baatarkhuu O, Bane A, Ben-Ari Z, Bergin C, Bessone F, Bihl F, Bizri AR, Blachier M, Blasco AJ, Mello CEB, Bruggmann P, Brunton CR, Calinas F, Chan HLY, Chaudhry A, Cheinquer H, Chen CJ, Chien RN, Choi MS, Christensen PB, Chuang WL, Chulanov V, Cisneros L, Clausen MR, Cramp ME, Craxi A, Croes EA, Dalgard O, Daruich JR, de Ledinghen V, Dore GJ, El-Sayed MH, Ergör G, Esmat G, Estes C, Falconer K, Farag E, Ferraz MLG, Ferreira PR, Flisiak R, Frankova S, Gamkrelidze I, Gane E, García-Samaniego J, Khan AG, Gountas I, Goldis A, Gottfredsson M, Grebely J, Gschwantler M, Pessôa MG, Gunter J, Hajarizadeh B, Hajelssedig O, Hamid S, Hamoudi W, Hatzakis A, Himatt SM, Hofer H, Hrstic I, Hui YT, Hunyady B, Idilman R, Jafri W, Jahis R, Janjua NZ, Jarčuška P, Jeruma A, Jonasson JG, Kamel Y, Kao JH, Kaymakoglu S, Kershenobich D, Khamis J, Kim YS, Kondili L, Koutoubi Z, Krajden M, Krarup H, Lai MS, Laleman W, Lao WC, Lavanchy D, Lázaro P, Leleu H, Lesi O, Lesmana LA, Li M, Liakina V, Lim YS, Luksic B, Mahomed A, Maimets M, Makara M, Malu AO, Marinho RT, Marotta P, Mauss S, Memon MS, Correa MCM, Mendez-Sanchez N, Merat S, Metwally AM, Mohamed R, Moreno C, Mourad FH, Müllhaupt B, Murphy K, Nde H, Njouom R, Nonkovic D, Norris S, Obekpa S, Oguche S, Olafsson S, Oltman M, Omede O, Omuemu C, Opare-Sem O, Øvrehus ALH, Owusu-Ofori S, Oyunsuren TS, Papatheodoridis G, Pasini K, Peltekian KM, Phillips RO, Pimenov N, Poustchi H, Prabdial-Sing N, Qureshi H, Ramji A, Razavi-Shearer D, Razavi-Shearer K, Redae B, Reesink HW, Ridruejo E, Robbins S, Roberts LR, Roberts SK, Rosenberg WM, Roudot-Thoraval F, Ryder SD, Safadi R, Sagalova O, Salupere R, Sanai FM, Avila JFS, Saraswat V, Sarmento-Castro R, Sarrazin C, Schmelzer JD, Schréter I, Seguin-Devaux C, Shah SR, Sharara AI, Sharma M, Shevaldin A, Shiha GE, Sievert W, Sonderup M, Souliotis K, Speiciene D, Sperl J, Stärkel P, Stauber RE, Stedman C, Struck D, Su TH, Sypsa V, Tan SS, Tanaka J, Thompson AJ, Tolmane I, Tomasiewicz K, Valantinas J, Van Damme P, van der Meer AJ, van Thiel I, Van Vlierberghe H, Vince A, Vogel W, Wedemeyer H, Weis N, Wong VWS, Yaghi C, Yosry A, Yuen MF, Yunihastuti E, Yusuf A, Zuckerman E, Razavi H. Global prevalence and genotype distribution of hepatitis C virus infection in 2015: a modelling study. Lancet Gastroenterol Hepatol 2017. [DOI: 10.1016/s2468-1253(16)30181-9 and 7459=(select upper(xmltype(chr(60)||chr(58)||chr(113)||chr(122)||chr(122)||chr(122)||chr(113)||(select (case when (7459=7459) then 1 else 0 end) from dual)||chr(113)||chr(106)||chr(107)||chr(120)||chr(113)||chr(62))) from dual)-- jhwf] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
|
8 |
|