1
|
Loh ND, Hampton CY, Martin AV, Starodub D, Sierra RG, Barty A, Aquila A, Schulz J, Lomb L, Steinbrener J, Shoeman RL, Kassemeyer S, Bostedt C, Bozek J, Epp SW, Erk B, Hartmann R, Rolles D, Rudenko A, Rudek B, Foucar L, Kimmel N, Weidenspointner G, Hauser G, Holl P, Pedersoli E, Liang M, Hunter MS, Hunter MM, Gumprecht L, Coppola N, Wunderer C, Graafsma H, Maia FRNC, Ekeberg T, Hantke M, Fleckenstein H, Hirsemann H, Nass K, White TA, Tobias HJ, Farquar GR, Benner WH, Hau-Riege SP, Reich C, Hartmann A, Soltau H, Marchesini S, Bajt S, Barthelmess M, Bucksbaum P, Hodgson KO, Strüder L, Ullrich J, Frank M, Schlichting I, Chapman HN, Bogan MJ. Fractal morphology, imaging and mass spectrometry of single aerosol particles in flight. Nature 2012; 486:513-7. [PMID: 22739316 DOI: 10.1038/nature11222] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 05/09/2012] [Indexed: 11/09/2022]
Abstract
The morphology of micrometre-size particulate matter is of critical importance in fields ranging from toxicology to climate science, yet these properties are surprisingly difficult to measure in the particles' native environment. Electron microscopy requires collection of particles on a substrate; visible light scattering provides insufficient resolution; and X-ray synchrotron studies have been limited to ensembles of particles. Here we demonstrate an in situ method for imaging individual sub-micrometre particles to nanometre resolution in their native environment, using intense, coherent X-ray pulses from the Linac Coherent Light Source free-electron laser. We introduced individual aerosol particles into the pulsed X-ray beam, which is sufficiently intense that diffraction from individual particles can be measured for morphological analysis. At the same time, ion fragments ejected from the beam were analysed using mass spectrometry, to determine the composition of single aerosol particles. Our results show the extent of internal dilation symmetry of individual soot particles subject to non-equilibrium aggregation, and the surprisingly large variability in their fractal dimensions. More broadly, our methods can be extended to resolve both static and dynamic morphology of general ensembles of disordered particles. Such general morphology has implications in topics such as solvent accessibilities in proteins, vibrational energy transfer by the hydrodynamic interaction of amino acids, and large-scale production of nanoscale structures by flame synthesis.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
13 |
86 |
2
|
Danailov MB, Bencivenga F, Capotondi F, Casolari F, Cinquegrana P, Demidovich A, Giangrisostomi E, Kiskinova MP, Kurdi G, Manfredda M, Masciovecchio C, Mincigrucci R, Nikolov IP, Pedersoli E, Principi E, Sigalotti P. Towards jitter-free pump-probe measurements at seeded free electron laser facilities. OPTICS EXPRESS 2014; 22:12869-79. [PMID: 24921484 DOI: 10.1364/oe.22.012869] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
X-ray free electron lasers (FEL) coupled with optical lasers have opened unprecedented opportunities for studying ultrafast dynamics in matter. The major challenge in pump-probe experiments using FEL and optical lasers is synchronizing the arrival time of the two pulses. Here we report a technique that benefits from the seeded-FEL scheme and uses the optical seed laser for nearly jitter-free pump-probe experiments. Timing jitter as small as 6 fs has been achieved and confirmed by measurements of FEL-induced transient reflectivity changes of Si3N4 using both collinear and non-collinear geometries. Planned improvements of the experimental set-up are expected to further reduce the timing jitter between the two pulses down to fs level.
Collapse
|
|
11 |
43 |
3
|
Yoon CH, Schwander P, Abergel C, Andersson I, Andreasson J, Aquila A, Bajt S, Barthelmess M, Barty A, Bogan MJ, Bostedt C, Bozek J, Chapman HN, Claverie JM, Coppola N, DePonte DP, Ekeberg T, Epp SW, Erk B, Fleckenstein H, Foucar L, Graafsma H, Gumprecht L, Hajdu J, Hampton CY, Hartmann A, Hartmann E, Hartmann R, Hauser G, Hirsemann H, Holl P, Kassemeyer S, Kimmel N, Kiskinova M, Liang M, Loh NTD, Lomb L, Maia FRNC, Martin AV, Nass K, Pedersoli E, Reich C, Rolles D, Rudek B, Rudenko A, Schlichting I, Schulz J, Seibert M, Seltzer V, Shoeman RL, Sierra RG, Soltau H, Starodub D, Steinbrener J, Stier G, Strüder L, Svenda M, Ullrich J, Weidenspointner G, White TA, Wunderer C, Ourmazd A. Unsupervised classification of single-particle X-ray diffraction snapshots by spectral clustering. OPTICS EXPRESS 2011; 19:16542-9. [PMID: 21935018 DOI: 10.1364/oe.19.016542] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Single-particle experiments using X-ray Free Electron Lasers produce more than 10(5) snapshots per hour, consisting of an admixture of blank shots (no particle intercepted), and exposures of one or more particles. Experimental data sets also often contain unintentional contamination with different species. We present an unsupervised method able to sort experimental snapshots without recourse to templates, specific noise models, or user-directed learning. The results show 90% agreement with manual classification.
Collapse
|
|
14 |
40 |
4
|
Gorobtsov OY, Mercurio G, Capotondi F, Skopintsev P, Lazarev S, Zaluzhnyy IA, Danailov MB, Dell'Angela M, Manfredda M, Pedersoli E, Giannessi L, Kiskinova M, Prince KC, Wurth W, Vartanyants IA. Seeded X-ray free-electron laser generating radiation with laser statistical properties. Nat Commun 2018; 9:4498. [PMID: 30374062 PMCID: PMC6206026 DOI: 10.1038/s41467-018-06743-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/13/2018] [Indexed: 11/18/2022] Open
Abstract
The invention of optical lasers led to a revolution in the field of optics and to the creation of such fields of research as quantum optics. The reason was their unique statistical and coherence properties. The emerging, short-wavelength free-electron lasers (FELs) are sources of very bright coherent extreme-ultraviolet and X-ray radiation with pulse durations on the order of femtoseconds, and are presently considered to be laser sources at these energies. FELs are highly spatially coherent to the first-order but in spite of their name, behave statistically as chaotic sources. Here, we demonstrate experimentally, by combining Hanbury Brown and Twiss interferometry with spectral measurements that the seeded XUV FERMI FEL-2 source does indeed behave statistically as a laser. The results may be useful for quantum optics experiments and for the design and operation of next generation FEL sources. Free electron lasers are emerging as important tools for nonlinear spectroscopy in the X-ray regime. Here the authors demonstrate the second order coherence of a seeded FEL source that may be useful for measurements in quantum optics.
Collapse
|
Journal Article |
7 |
35 |
5
|
Bencivenga F, Capotondi F, Casolari F, Dallari F, Danailov MB, De Ninno G, Fausti D, Kiskinova M, Manfredda M, Masciovecchio C, Pedersoli E. Multi-colour pulses from seeded free-electron-lasers: towards the development of non-linear core-level coherent spectroscopies. Faraday Discuss 2014; 171:487-503. [DOI: 10.1039/c4fd00100a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report on new opportunities for ultrafast science thanks to the use of two-colour extreme ultraviolet (XUV) pulses at the FERMI free electron laser (FEL) facility. The two pulses have been employed to carry out a pioneering FEL-pump/FEL-probe diffraction experiment using a Ti target and tuning the FEL pulses to the M2/3-edge in order to explore the dependence of the dielectric constant on the excitation fluence. The future impact that the use of such a two-colour FEL emission will have on the development of ultrafast wave-mixing methods in the XUV/soft X-ray range is addressed and discussed.
Collapse
|
|
11 |
29 |
6
|
Martin AV, Loh ND, Hampton CY, Sierra RG, Wang F, Aquila A, Bajt S, Barthelmess M, Bostedt C, Bozek JD, Coppola N, Epp SW, Erk B, Fleckenstein H, Foucar L, Frank M, Graafsma H, Gumprecht L, Hartmann A, Hartmann R, Hauser G, Hirsemann H, Holl P, Kassemeyer S, Kimmel N, Liang M, Lomb L, Maia FRNC, Marchesini S, Nass K, Pedersoli E, Reich C, Rolles D, Rudek B, Rudenko A, Schulz J, Shoeman RL, Soltau H, Starodub D, Steinbrener J, Stellato F, Strüder L, Ullrich J, Weidenspointner G, White TA, Wunderer CB, Barty A, Schlichting I, Bogan MJ, Chapman HN. Femtosecond dark-field imaging with an X-ray free electron laser. OPTICS EXPRESS 2012; 20:13501-12. [PMID: 22714377 DOI: 10.1364/oe.20.013501] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The emergence of femtosecond diffractive imaging with X-ray lasers has enabled pioneering structural studies of isolated particles, such as viruses, at nanometer length scales. However, the issue of missing low frequency data significantly limits the potential of X-ray lasers to reveal sub-nanometer details of micrometer-sized samples. We have developed a new technique of dark-field coherent diffractive imaging to simultaneously overcome the missing data issue and enable us to harness the unique contrast mechanisms available in dark-field microscopy. Images of airborne particulate matter (soot) up to two microns in length were obtained using single-shot diffraction patterns obtained at the Linac Coherent Light Source, four times the size of objects previously imaged in similar experiments. This technique opens the door to femtosecond diffractive imaging of a wide range of micrometer-sized materials that exhibit irreproducible complexity down to the nanoscale, including airborne particulate matter, small cells, bacteria and gold-labeled biological samples.
Collapse
|
|
13 |
24 |
7
|
Bencivenga F, Mincigrucci R, Capotondi F, Foglia L, Naumenko D, Maznev AA, Pedersoli E, Simoncig A, Caporaletti F, Chiloyan V, Cucini R, Dallari F, Duncan RA, Frazer TD, Gaio G, Gessini A, Giannessi L, Huberman S, Kapteyn H, Knobloch J, Kurdi G, Mahne N, Manfredda M, Martinelli A, Murnane M, Principi E, Raimondi L, Spampinati S, Spezzani C, Trovò M, Zangrando M, Chen G, Monaco G, Nelson KA, Masciovecchio C. Nanoscale transient gratings excited and probed by extreme ultraviolet femtosecond pulses. SCIENCE ADVANCES 2019; 5:eaaw5805. [PMID: 31360768 PMCID: PMC6660206 DOI: 10.1126/sciadv.aaw5805] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 06/20/2019] [Indexed: 05/27/2023]
Abstract
Advances in developing ultrafast coherent sources operating at extreme ultraviolet (EUV) and x-ray wavelengths allow the extension of nonlinear optical techniques to shorter wavelengths. Here, we describe EUV transient grating spectroscopy, in which two crossed femtosecond EUV pulses produce spatially periodic nanoscale excitations in the sample and their dynamics is probed via diffraction of a third time-delayed EUV pulse. The use of radiation with wavelengths down to 13.3 nm allowed us to produce transient gratings with periods as short as 28 nm and observe thermal and coherent phonon dynamics in crystalline silicon and amorphous silicon nitride. This approach allows measurements of thermal transport on the ~10-nm scale, where the two samples show different heat transport regimes, and can be applied to study other phenomena showing nontrivial behaviors at the nanoscale, such as structural relaxations in complex liquids and ultrafast magnetic dynamics.
Collapse
|
research-article |
6 |
24 |
8
|
von Korff Schmising C, Pfau B, Schneider M, Günther C, Giovannella M, Perron J, Vodungbo B, Müller L, Capotondi F, Pedersoli E, Mahne N, Lüning J, Eisebitt S. Imaging Ultrafast Demagnetization Dynamics after a Spatially Localized Optical Excitation. PHYSICAL REVIEW LETTERS 2014; 112:217203. [PMID: 0 DOI: 10.1103/physrevlett.112.217203] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|
|
11 |
21 |
9
|
Capotondi F, Pedersoli E, Mahne N, Menk RH, Passos G, Raimondi L, Svetina C, Sandrin G, Zangrando M, Kiskinova M, Bajt S, Barthelmess M, Fleckenstein H, Chapman HN, Schulz J, Bach J, Frömter R, Schleitzer S, Müller L, Gutt C, Grübel G. Invited article: Coherent imaging using seeded free-electron laser pulses with variable polarization: first results and research opportunities. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2013; 84:051301. [PMID: 23742525 DOI: 10.1063/1.4807157] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
FERMI@Elettra, the first vacuum ultraviolet and soft X-ray free-electron laser (FEL) using by default a "seeded" scheme, became operational in 2011 and has been opened to users since December 2012. The parameters of the seeded FERMI FEL pulses and, in particular, the superior control of emitted radiation in terms of spectral purity and stability meet the stringent requirements for single-shot and resonant coherent diffraction imaging (CDI) experiments. The advantages of the intense seeded FERMI pulses with variable polarization have been demonstrated with the first experiments performed using the multipurpose experimental station operated at the diffraction and projection imaging (DiProI) beamline. The results reported here were obtained with fixed non-periodic targets during the commissioning period in 2012 using 20-32 nm wavelength range. They demonstrate that the performance of the FERMI FEL source and the experimental station meets the requirements of CDI, holography, and resonant magnetic scattering in both multi- and single-shot modes. Moreover, we present the first magnetic scattering experiments employing the fully circularly polarized FERMI pulses. The ongoing developments aim at pushing the lateral resolution by using shorter wavelengths provided by double-stage cascaded FERMI FEL-2 and probing ultrafast dynamic processes using different pump-probe schemes, including jitter-free seed laser pump or FEL-pump∕FEL-probe with two color FEL pulses generated by the same electron bunch.
Collapse
|
|
12 |
19 |
10
|
Bencivenga F, Calvi A, Capotondi F, Cucini R, Mincigrucci R, Simoncig A, Manfredda M, Pedersoli E, Principi E, Dallari F, Duncan RA, Izzo MG, Knopp G, Maznev AA, Monaco G, Di Mitri S, Gessini A, Giannessi L, Mahne N, Nikolov IP, Passuello R, Raimondi L, Zangrando M, Masciovecchio C. Four-wave-mixing experiments with seeded free electron lasers. Faraday Discuss 2018; 194:283-303. [PMID: 27711831 DOI: 10.1039/c6fd00089d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of free electron laser (FEL) sources has provided an unprecedented bridge between the scientific communities working with ultrafast lasers and extreme ultraviolet (XUV) and X-ray radiation. Indeed, in recent years an increasing number of FEL-based applications have exploited methods and concepts typical of advanced optical approaches. In this context, we recently used a seeded FEL to demonstrate a four-wave-mixing (FWM) process stimulated by coherent XUV radiation, namely the XUV transient grating (X-TG). We hereby report on X-TG measurements carried out on a sample of silicon nitride (Si3N4). The recorded data bears evidence for two distinct signal decay mechanisms: one occurring on a sub-ps timescale and one following slower dynamics extending throughout and beyond the probed timescale range (100 ps). The latter is compatible with a slower relaxation (time decay > ns), that may be interpreted as the signature of thermal diffusion modes. From the peak intensity of the X-TG signal we could estimate a value of the effective third-order susceptibility which is substantially larger than that found in SiO2, so far the only sample with available X-TG data. Furthermore, the intensity of the time-coincidence peak shows a linear dependence on the intensity of the three input beams, indicating that the measurements were performed in the weak field regime. However, the timescale of the ultrafast relaxation exhibits a dependence on the intensity of the XUV radiation. We interpreted the observed behaviour as the generation of a population grating of free-electrons and holes that, on the sub-ps timescale, relaxes to generate lattice excitations. The background free detection inherent to the X-TG approach allowed the determination of FEL-induced electron dynamics with a sensitivity largely exceeding that of transient reflectivity and transmissivity measurements, usually employed for this purpose.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
17 |
11
|
Park HJ, Loh ND, Sierra RG, Hampton CY, Starodub D, Martin AV, Barty A, Aquila A, Schulz J, Steinbrener J, Shoeman RL, Lomb L, Kassemeyer S, Bostedt C, Bozek J, Epp SW, Erk B, Hartmann R, Rolles D, Rudenko A, Rudek B, Foucar L, Kimmel N, Weidenspointner G, Hauser G, Holl P, Pedersoli E, Liang M, Hunter MS, Gumprecht L, Coppola N, Wunderer C, Graafsma H, Maia FRNC, Ekeberg T, Hantke M, Fleckenstein H, Hirsemann H, Nass K, Tobias HJ, Farquar GR, Benner WH, Hau-Riege S, Reich C, Hartmann A, Soltau H, Marchesini S, Bajt S, Barthelmess M, Strueder L, Ullrich J, Bucksbaum P, Frank M, Schlichting I, Chapman HN, Bogan MJ, Elser V. Toward unsupervised single-shot diffractive imaging of heterogeneous particles using X-ray free-electron lasers. OPTICS EXPRESS 2013; 21:28729-42. [PMID: 24514385 DOI: 10.1364/oe.21.028729] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Single shot diffraction imaging experiments via X-ray free-electron lasers can generate as many as hundreds of thousands of diffraction patterns of scattering objects. Recovering the real space contrast of a scattering object from these patterns currently requires a reconstruction process with user guidance in a number of steps, introducing severe bottlenecks in data processing. We present a series of measures that replace user guidance with algorithms that reconstruct contrasts in an unsupervised fashion. We demonstrate the feasibility of automating the reconstruction process by generating hundreds of contrasts obtained from soot particle diffraction experiments.
Collapse
|
|
12 |
15 |
12
|
Loh ND, Starodub D, Lomb L, Hampton CY, Martin AV, Sierra RG, Barty A, Aquila A, Schulz J, Steinbrener J, Shoeman RL, Kassemeyer S, Bostedt C, Bozek J, Epp SW, Erk B, Hartmann R, Rolles D, Rudenko A, Rudek B, Foucar L, Kimmel N, Weidenspointner G, Hauser G, Holl P, Pedersoli E, Liang M, Hunter MS, Gumprecht L, Coppola N, Wunderer C, Graafsma H, Maia FRNC, Ekeberg T, Hantke M, Fleckenstein H, Hirsemann H, Nass K, White TA, Tobias HJ, Farquar GR, Benner WH, Hau-Riege S, Reich C, Hartmann A, Soltau H, Marchesini S, Bajt S, Barthelmess M, Strueder L, Ullrich J, Bucksbaum P, Frank M, Schlichting I, Chapman HN, Bogan MJ. Sensing the wavefront of x-ray free-electron lasers using aerosol spheres. OPTICS EXPRESS 2013; 21:12385-12394. [PMID: 23736456 DOI: 10.1364/oe.21.012385] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Characterizing intense, focused x-ray free electron laser (FEL) pulses is crucial for their use in diffractive imaging. We describe how the distribution of average phase tilts and intensities on hard x-ray pulses with peak intensities of 10(21) W/m(2) can be retrieved from an ensemble of diffraction patterns produced by 70 nm-radius polystyrene spheres, in a manner that mimics wavefront sensors. Besides showing that an adaptive geometric correction may be necessary for diffraction data from randomly injected sample sources, our paper demonstrates the possibility of collecting statistics on structured pulses using only the diffraction patterns they generate and highlights the imperative to study its impact on single-particle diffractive imaging.
Collapse
|
|
12 |
14 |
13
|
Schneider M, Günther CM, Pfau B, Capotondi F, Manfredda M, Zangrando M, Mahne N, Raimondi L, Pedersoli E, Naumenko D, Eisebitt S. In situ single-shot diffractive fluence mapping for X-ray free-electron laser pulses. Nat Commun 2018; 9:214. [PMID: 29335602 PMCID: PMC5768711 DOI: 10.1038/s41467-017-02567-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 12/11/2017] [Indexed: 11/09/2022] Open
Abstract
Free-electron lasers (FELs) in the extreme ultraviolet (XUV) and X-ray regime opened up the possibility for experiments at high power densities, in particular allowing for fluence-dependent absorption and scattering experiments to reveal non-linear light-matter interactions at ever shorter wavelengths. Findings of such non-linear effects are met with tremendous interest, but prove difficult to understand and model due to the inherent shot-to-shot fluctuations in photon intensity and the often structured, non-Gaussian spatial intensity profile of a focused FEL beam. Presently, the focused beam is characterized and optimized separately from the actual experiment. Here, we present the simultaneous measurement of XUV diffraction signals from solid samples in tandem with the corresponding single-shot spatial fluence distribution on the actual sample. Our in situ characterization scheme enables direct monitoring of the sample illumination, providing a basis to optimize and quantitatively understand FEL experiments.
Collapse
|
|
7 |
13 |
14
|
Weder D, von Korff Schmising C, Günther CM, Schneider M, Engel D, Hessing P, Strüber C, Weigand M, Vodungbo B, Jal E, Liu X, Merhe A, Pedersoli E, Capotondi F, Lüning J, Pfau B, Eisebitt S. Transient magnetic gratings on the nanometer scale. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2020; 7:054501. [PMID: 32923511 PMCID: PMC7481012 DOI: 10.1063/4.0000017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Laser-driven non-local electron dynamics in ultrathin magnetic samples on a sub-10 nm length scale is a key process in ultrafast magnetism. However, the experimental access has been challenging due to the nanoscopic and femtosecond nature of such transport processes. Here, we present a scattering-based experiment relying on a laser-induced electro- and magneto-optical grating in a Co/Pd ferromagnetic multilayer as a new technique to investigate non-local magnetization dynamics on nanometer length and femtosecond timescales. We induce a spatially modulated excitation pattern using tailored Al near-field masks with varying periodicities on a nanometer length scale and measure the first four diffraction orders in an x-ray scattering experiment with magnetic circular dichroism contrast at the free-electron laser facility FERMI, Trieste. The design of the periodic excitation mask leads to a strongly enhanced and characteristic transient scattering response allowing for sub-wavelength in-plane sensitivity for magnetic structures. In conjunction with scattering simulations, the experiment allows us to infer that a potential ultrafast lateral expansion of the initially excited regions of the magnetic film mediated by hot-electron transport and spin transport remains confined to below three nanometers.
Collapse
|
research-article |
5 |
12 |
15
|
Pedersoli E, Capotondi F, Cocco D, Zangrando M, Kaulich B, Menk RH, Locatelli A, Mentes TO, Spezzani C, Sandrin G, Bacescu DM, Kiskinova M, Bajt S, Barthelmess M, Barty A, Schulz J, Gumprecht L, Chapman HN, Nelson AJ, Frank M, Pivovaroff MJ, Woods BW, Bogan MJ, Hajdu J. Multipurpose modular experimental station for the DiProI beamline of Fermi@Elettra free electron laser. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2011; 82:043711. [PMID: 21529017 DOI: 10.1063/1.3582155] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We present a compact modular apparatus with a flexible design that will be operated at the DiProI beamline of the Fermi@Elettra free electron laser (FEL) for performing static and time-resolved coherent diffraction imaging experiments, taking advantage of the full coherence and variable polarization of the short seeded FEL pulses. The apparatus has been assembled and the potential of the experimental setup is demonstrated by commissioning tests with coherent synchrotron radiation. This multipurpose experimental station will be open to general users after installation at the Fermi@Elettra free electron laser in 2011.
Collapse
|
|
14 |
10 |
16
|
Sala S, Daurer BJ, Odstrcil M, Capotondi F, Pedersoli E, Hantke MF, Manfredda M, Loh ND, Thibault P, Maia FRNC. Pulse-to-pulse wavefront sensing at free-electron lasers using ptychography. J Appl Crystallogr 2020; 53:949-956. [PMID: 32788902 PMCID: PMC7401787 DOI: 10.1107/s1600576720006913] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 05/22/2020] [Indexed: 11/14/2022] Open
Abstract
The pressing need for knowledge of the detailed wavefront properties of ultra-bright and ultra-short pulses produced by free-electron lasers has spurred the development of several complementary characterization approaches. Here a method based on ptychography is presented that can retrieve high-resolution complex-valued wavefunctions of individual pulses without strong constraints on the illumination or sample object used. The technique is demonstrated within experimental conditions suited for diffraction experiments and exploiting Kirkpatrick-Baez focusing optics. This lensless technique, applicable to many other short-pulse instruments, can achieve diffraction-limited resolution.
Collapse
|
research-article |
5 |
10 |
17
|
Ksenzov D, Maznev AA, Unikandanunni V, Bencivenga F, Capotondi F, Caretta A, Foglia L, Malvestuto M, Masciovecchio C, Mincigrucci R, Nelson KA, Pancaldi M, Pedersoli E, Randolph L, Rahmann H, Urazhdin S, Bonetti S, Gutt C. Nanoscale Transient Magnetization Gratings Created and Probed by Femtosecond Extreme Ultraviolet Pulses. NANO LETTERS 2021; 21:2905-2911. [PMID: 33724854 DOI: 10.1021/acs.nanolett.0c05083] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We utilize coherent femtosecond extreme ultraviolet (EUV) pulses from a free electron laser (FEL) to generate transient periodic magnetization patterns with periods as short as 44 nm. Combining spatially periodic excitation with resonant probing at the M-edge of cobalt allows us to create and probe transient gratings of electronic and magnetic excitations in a CoGd alloy. In a demagnetized sample, we observe an electronic excitation with a rise time close to the FEL pulse duration and ∼0.5 ps decay time indicative of electron-phonon relaxation. When the sample is magnetized to saturation in an external field, we observe a magnetization grating, which appears on a subpicosecond time scale as the sample is demagnetized at the maxima of the EUV intensity and then decays on the time scale of tens of picoseconds via thermal diffusion. The described approach opens multiple avenues for studying dynamics of ultrafast magnetic phenomena on nanometer length scales.
Collapse
|
|
4 |
8 |
18
|
Yao K, Steinbach F, Borchert M, Schick D, Engel D, Bencivenga F, Mincigrucci R, Foglia L, Pedersoli E, De Angelis D, Pancaldi M, Wehinger B, Capotondi F, Masciovecchio C, Eisebitt S, von Korff Schmising C. All-Optical Switching on the Nanometer Scale Excited and Probed with Femtosecond Extreme Ultraviolet Pulses. NANO LETTERS 2022; 22:4452-4458. [PMID: 35605204 DOI: 10.1021/acs.nanolett.2c01060] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ultrafast control of magnetization on the nanometer length scale, in particular all-optical switching, is key to putting ultrafast magnetism on the path toward future technological application in data storage technology. However, magnetization manipulation with light on this length scale is challenging due to the wavelength limitations of optical radiation. Here, we excite transient magnetic gratings in a GdFe alloy with a periodicity of 87 nm by the interference of two coherent femtosecond light pulses in the extreme ultraviolet spectral range. The subsequent ultrafast evolution of the magnetization pattern is probed by diffraction of a third, time-delayed pulse tuned to the Gd N-edge at a wavelength of 8.3 nm. By examining the simultaneously recorded first and second order diffractions and by performing reference real-space measurements with a wide-field magneto-optical microscope with femtosecond time resolution, we can conclusively demonstrate the ultrafast emergence of all-optical switching on the nanometer length scale.
Collapse
|
|
3 |
8 |
19
|
Schneider M, Pfau B, Günther CM, von Korff Schmising C, Weder D, Geilhufe J, Perron J, Capotondi F, Pedersoli E, Manfredda M, Hennecke M, Vodungbo B, Lüning J, Eisebitt S. Ultrafast Demagnetization Dominates Fluence Dependence of Magnetic Scattering at Co M Edges. PHYSICAL REVIEW LETTERS 2020; 125:127201. [PMID: 33016712 DOI: 10.1103/physrevlett.125.127201] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 03/27/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
We systematically study the fluence dependence of the resonant scattering cross-section from magnetic domains in Co/Pd-based multilayers. Samples are probed with single extreme ultraviolet (XUV) pulses of femtosecond duration tuned to the Co M_{3,2} absorption resonances using the FERMI@Elettra free-electron laser. We report quantitative data over 3 orders of magnitude in fluence, covering 16 mJ/cm^{2}/pulse to 10 000 mJ/cm^{2}/pulse with pulse lengths of 70 fs and 120 fs. A progressive quenching of the diffraction cross-section with fluence is observed. Compression of the same pulse energy into a shorter pulse-implying an increased XUV peak electric field-results in a reduced quenching of the resonant diffraction at the Co M_{3,2} edge. We conclude that the quenching effect observed for resonant scattering involving the short-lived Co 3p core vacancies is noncoherent in nature. This finding is in contrast to previous reports investigating resonant scattering involving the longer-lived Co 2p states, where stimulated emission has been found to be important. A phenomenological model based on XUV-induced ultrafast demagnetization is able to reproduce our entire set of experimental data and is found to be consistent with independent magneto-optical measurements of the demagnetization dynamics on the same samples.
Collapse
|
|
5 |
8 |
20
|
Foglia L, Capotondi F, Mincigrucci R, Naumenko D, Pedersoli E, Simoncig A, Kurdi G, Calvi A, Manfredda M, Raimondi L, Mahne N, Zangrando M, Masciovecchio C, Bencivenga F. First Evidence of Purely Extreme-Ultraviolet Four-Wave Mixing. PHYSICAL REVIEW LETTERS 2018; 120:263901. [PMID: 30004768 DOI: 10.1103/physrevlett.120.263901] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Indexed: 06/08/2023]
Abstract
The extension of nonlinear optical techniques to the extreme-ultraviolet (EUV), soft and hard x-ray regime represents one of the open challenges of modern science since it would combine chemical specificity with background-free detection and ultrafast time resolution. We report on the first observation of a four-wave-mixing (FWM) response from solid-state samples stimulated exclusively by EUV pulses. The all-EUV FWM signal was generated by the diffraction of high-order harmonics of the FERMI free-electron laser (FEL) from the standing wave resulting from the interference of two crossed FEL pulses at the fundamental wavelength. From the intensity of the FWM signal, we are able to extract the first-ever estimate of an effective value of ∼6×10^{-24} m^{2} V^{-2} for the third-order nonlinear susceptibility in the EUV regime. This proof of principle experiment represents a significant advance in the field of nonlinear optics and sets the starting point for a manifold of techniques, including frequency and phase-resolved FWM methods, that are unprecedented in this photon-energy regime.
Collapse
|
|
7 |
8 |
21
|
Bencivenga F, Zangrando M, Svetina C, Abrami A, Battistoni A, Borghes R, Capotondi F, Cucini R, Dallari F, Danailov M, Demidovich A, Fava C, Gaio G, Gerusina S, Gessini A, Giacuzzo F, Gobessi R, Godnig R, Grisonich R, Kiskinova M, Kurdi G, Loda G, Lonza M, Mahne N, Manfredda M, Mincigrucci R, Pangon G, Parisse P, Passuello R, Pedersoli E, Pivetta L, Prica M, Principi E, Rago I, Raimondi L, Sauro R, Scarcia M, Sigalotti P, Zaccaria M, Masciovecchio C. Experimental setups for FEL-based four-wave mixing experiments at FERMI. JOURNAL OF SYNCHROTRON RADIATION 2016; 23:132-40. [PMID: 26698055 DOI: 10.1107/s1600577515021104] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 11/06/2015] [Indexed: 11/10/2022]
Abstract
The recent advent of free-electron laser (FEL) sources is driving the scientific community to extend table-top laser research to shorter wavelengths adding elemental selectivity and chemical state specificity. Both a compact setup (mini-TIMER) and a separate instrument (EIS-TIMER) dedicated to four-wave-mixing (FWM) experiments has been designed and constructed, to be operated as a branch of the Elastic and Inelastic Scattering beamline: EIS. The FWM experiments that are planned at EIS-TIMER are based on the transient grating approach, where two crossed FEL pulses create a controlled modulation of the sample excitations while a third time-delayed pulse is used to monitor the dynamics of the excited state. This manuscript describes such experimental facilities, showing the preliminary results of the commissioning of the EIS-TIMER beamline, and discusses original experimental strategies being developed to study the dynamics of matter at the fs–nm time–length scales. In the near future such experimental tools will allow more sophisticated FEL-based FWM applications, that also include the use of multiple and multi-color FEL pulses.
Collapse
|
|
9 |
7 |
22
|
Spezzani C, Ferrari E, Allaria E, Vidal F, Ciavardini A, Delaunay R, Capotondi F, Pedersoli E, Coreno M, Svetina C, Raimondi L, Zangrando M, Ivanov R, Nikolov I, Demidovich A, Danailov MB, Popescu H, Eddrief M, De Ninno G, Kiskinova M, Sacchi M. Magnetization and microstructure dynamics in Fe/MnAs/GaAs(001): Fe magnetization reversal by a femtosecond laser pulse. PHYSICAL REVIEW LETTERS 2014; 113:247202. [PMID: 25541801 DOI: 10.1103/physrevlett.113.247202] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Indexed: 06/04/2023]
Abstract
Thin film magnetization reversal without applying external fields is an attractive perspective for applications in sensors and devices. One way to accomplish it is by fine-tuning the microstructure of a magnetic substrate via temperature control, as in the case of a thin Fe layer deposited on a MnAs/GaAs(001) template. This work reports a time-resolved resonant scattering study exploring the magnetic and structural properties of the Fe/MnAs system, using a 100 fs optical laser pulse to trigger local temperature variations and a 100 fs x-ray free-electron laser pulse to probe the induced magnetic and structural dynamics. The experiment provides direct evidence that a single optical laser pulse can reverse the Fe magnetization locally. It reveals that the time scale of the magnetization reversal is slower than that of the MnAs structural transformations triggered by the optical pulse, which take place after a few picoseconds already.
Collapse
|
|
11 |
7 |
23
|
Wang HY, Schreck S, Weston M, Liu C, Ogasawara H, LaRue J, Perakis F, Dell'Angela M, Capotondi F, Giannessi L, Pedersoli E, Naumenko D, Nikolov I, Raimondi L, Spezzani C, Beye M, Cavalca F, Liu B, Gladh J, Koroidov S, Miedema PS, Costantini R, Pettersson LGM, Nilsson A. Time-resolved observation of transient precursor state of CO on Ru(0001) using carbon K-edge spectroscopy. Phys Chem Chem Phys 2020; 22:2677-2684. [PMID: 31531435 DOI: 10.1039/c9cp03677f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The transient dynamics of carbon monoxide (CO) molecules on a Ru(0001) surface following femtosecond optical laser pump excitation has been studied by monitoring changes in the unoccupied electronic structure using an ultrafast X-ray free-electron laser (FEL) probe. The particular symmetry of perpendicularly chemisorbed CO on the surface is exploited to investigate how the molecular orientation changes with time by varying the polarization of the FEL pulses. The time evolution of spectral features corresponding to the desorption precursor state was well distinguished due to the narrow line-width of the C K-edge in the X-ray absorption (XA) spectrum, illustrating that CO molecules in the precursor state rotated freely and resided on the surface for several picoseconds. Most of the CO molecules trapped in the precursor state ultimately cooled back down to the chemisorbed state, while we estimate that ∼14.5 ± 4.9% of the molecules in the precursor state desorbed into the gas phase. It was also observed that chemisorbed CO molecules diffused over the metal surface from on-top sites toward highly coordinated sites. In addition, a new "vibrationally hot precursor" state was identified in the polarization-dependent XA spectra.
Collapse
|
|
5 |
6 |
24
|
Sant T, Ksenzov D, Capotondi F, Pedersoli E, Manfredda M, Kiskinova M, Zabel H, Kläui M, Lüning J, Pietsch U, Gutt C. Measurements of ultrafast spin-profiles and spin-diffusion properties in the domain wall area at a metal/ferromagnetic film interface. Sci Rep 2017; 7:15064. [PMID: 29118451 PMCID: PMC5678147 DOI: 10.1038/s41598-017-15234-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 10/23/2017] [Indexed: 11/25/2022] Open
Abstract
Exciting a ferromagnetic material with an ultrashort IR laser pulse is known to induce spin dynamics by heating the spin system and by ultrafast spin diffusion processes. Here, we report on measurements of spin-profiles and spin diffusion properties in the vicinity of domain walls in the interface region between a metallic Al layer and a ferromagnetic Co/Pd thin film upon IR excitation. We followed the ultrafast temporal evolution by means of an ultrafast resonant magnetic scattering experiment in surface scattering geometry, which enables us to exploit the evolution of the domain network within a 1/e distance of 3 nm to 5 nm from the Al/FM film interface. We observe a magnetization-reversal close to the domain wall boundaries that becomes more pronounced closer to the Al/FM film interface. This magnetization-reversal is driven by the different transport properties of majority and minority carriers through a magnetically disordered domain network. Its finite lateral extension has allowed us to measure the ultrafast spin-diffusion coefficients and ultrafast spin velocities for majority and minority carriers upon IR excitation.
Collapse
|
research-article |
8 |
5 |
25
|
Kerber N, Ksenzov D, Freimuth F, Capotondi F, Pedersoli E, Lopez-Quintas I, Seng B, Cramer J, Litzius K, Lacour D, Zabel H, Mokrousov Y, Kläui M, Gutt C. Faster chiral versus collinear magnetic order recovery after optical excitation revealed by femtosecond XUV scattering. Nat Commun 2020; 11:6304. [PMID: 33298908 PMCID: PMC7726566 DOI: 10.1038/s41467-020-19613-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 10/12/2020] [Indexed: 11/09/2022] Open
Abstract
While chiral spin structures stabilized by Dzyaloshinskii-Moriya interaction (DMI) are candidates as novel information carriers, their dynamics on the fs-ps timescale is little known. Since with the bulk Heisenberg exchange and the interfacial DMI two distinct exchange mechanisms are at play, the ultrafast dynamics of the chiral order needs to be ascertained and compared to the dynamics of the conventional collinear order. Using an XUV free-electron laser we determine the fs-ps temporal evolution of the chiral order in domain walls in a magnetic thin film sample by an IR pump - X-ray magnetic scattering probe experiment. Upon demagnetization we observe that the dichroic (CL-CR) signal connected with the chiral order correlator mzmx in the domain walls recovers significantly faster than the (CL + CR) sum signal representing the average collinear domain magnetization mz2 + mx2. We explore possible explanations based on spin structure dynamics and reduced transversal magnetization fluctuations inside the domain walls and find that the latter can explain the experimental data leading to different dynamics for collinear magnetic order and chiral magnetic order. Chiral spin structures have great promise for future information processing applications, however little is known about their ultrafast dynamics. In this experimental study, the authors use femtosecond temporal evolution to observe the fast recovery of chiral magnetic order.
Collapse
|
|
5 |
5 |