1
|
Voli F, Valli E, Lerra L, Kimpton K, Saletta F, Giorgi FM, Mercatelli D, Rouaen JRC, Shen S, Murray JE, Ahmed-Cox A, Cirillo G, Mayoh C, Beavis PA, Haber M, Trapani JA, Kavallaris M, Vittorio O. Intratumoral Copper Modulates PD-L1 Expression and Influences Tumor Immune Evasion. Cancer Res 2020; 80:4129-4144. [PMID: 32816860 DOI: 10.1158/0008-5472.can-20-0471] [Citation(s) in RCA: 198] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/19/2020] [Accepted: 08/03/2020] [Indexed: 11/16/2022]
Abstract
Therapeutic checkpoint antibodies blocking programmed death receptor 1/programmed death ligand 1 (PD-L1) signaling have radically improved clinical outcomes in cancer. However, the regulation of PD-L1 expression on tumor cells is still poorly understood. Here we show that intratumoral copper levels influence PD-L1 expression in cancer cells. Deep analysis of the The Cancer Genome Atlas database and tissue microarrays showed strong correlation between the major copper influx transporter copper transporter 1 (CTR-1) and PD-L1 expression across many cancers but not in corresponding normal tissues. Copper supplementation enhanced PD-L1 expression at mRNA and protein levels in cancer cells and RNA sequencing revealed that copper regulates key signaling pathways mediating PD-L1-driven cancer immune evasion. Conversely, copper chelators inhibited phosphorylation of STAT3 and EGFR and promoted ubiquitin-mediated degradation of PD-L1. Copper-chelating drugs also significantly increased the number of tumor-infiltrating CD8+ T and natural killer cells, slowed tumor growth, and improved mouse survival. Overall, this study reveals an important role for copper in regulating PD-L1 and suggests that anticancer immunotherapy might be enhanced by pharmacologically reducing intratumor copper levels. SIGNIFICANCE: These findings characterize the role of copper in modulating PD-L1 expression and contributing to cancer immune evasion, highlighting the potential for repurposing copper chelators as enhancers of antitumor immunity. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/19/4129/F1.large.jpg.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
198 |
2
|
Marshall GM, Liu PY, Gherardi S, Scarlett CJ, Bedalov A, Xu N, Iraci N, Valli E, Ling D, Thomas W, van Bekkum M, Sekyere E, Jankowski K, Trahair T, MacKenzie KL, Haber M, Norris MD, Biankin AV, Perini G, Liu T. SIRT1 promotes N-Myc oncogenesis through a positive feedback loop involving the effects of MKP3 and ERK on N-Myc protein stability. PLoS Genet 2011; 7:e1002135. [PMID: 21698133 PMCID: PMC3116909 DOI: 10.1371/journal.pgen.1002135] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 05/03/2011] [Indexed: 11/18/2022] Open
Abstract
The N-Myc oncoprotein is a critical factor in neuroblastoma tumorigenesis which requires additional mechanisms converting a low-level to a high-level N-Myc expression. N-Myc protein is stabilized when phosphorylated at Serine 62 by phosphorylated ERK protein. Here we describe a novel positive feedback loop whereby N-Myc directly induced the transcription of the class III histone deacetylase SIRT1, which in turn increased N-Myc protein stability. SIRT1 binds to Myc Box I domain of N-Myc protein to form a novel transcriptional repressor complex at gene promoter of mitogen-activated protein kinase phosphatase 3 (MKP3), leading to transcriptional repression of MKP3, ERK protein phosphorylation, N-Myc protein phosphorylation at Serine 62, and N-Myc protein stabilization. Importantly, SIRT1 was up-regulated, MKP3 down-regulated, in pre-cancerous cells, and preventative treatment with the SIRT1 inhibitor Cambinol reduced tumorigenesis in TH-MYCN transgenic mice. Our data demonstrate the important roles of SIRT1 in N-Myc oncogenesis and SIRT1 inhibitors in the prevention and therapy of N-Myc–induced neuroblastoma. The class III histone deacetylase SIRT1 is repressed by tumor suppressor genes and exerts divergent effects on tumorigenesis depending on its down-stream targets. Small molecule SIRT1 inhibitors have shown promising anti-cancer effects both in vitro and in vivo. Here we identified SIRT1 as a gene directly up-regulated by N-Myc and identified SIRT1-mediated transcriptional repression as a novel mechanism responsible for maintaining N-Myc oncoprotein stability. Moreover, SIRT1 contributed to N-Myc–induced cell proliferation, and preventative treatment with the SIRT1 inhibitor Cambinol reduced tumorigenesis in N-Myc transgenic mice. Our data identify SIRT1 as an important co-factor for N-Myc oncogenesis and provide important evidence for the potential application of SIRT1 inhibitors in the prevention and therapy of N-Myc–induced neuroblastoma.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
125 |
3
|
Gamble LD, Purgato S, Murray J, Xiao L, Yu DMT, Hanssen KM, Giorgi FM, Carter DR, Gifford AJ, Valli E, Milazzo G, Kamili A, Mayoh C, Liu B, Eden G, Sarraf S, Allan S, Di Giacomo S, Flemming CL, Russell AJ, Cheung BB, Oberthuer A, London WB, Fischer M, Trahair TN, Fletcher JI, Marshall GM, Ziegler DS, Hogarty MD, Burns MR, Perini G, Norris MD, Haber M. Inhibition of polyamine synthesis and uptake reduces tumor progression and prolongs survival in mouse models of neuroblastoma. Sci Transl Med 2020; 11:11/477/eaau1099. [PMID: 30700572 DOI: 10.1126/scitranslmed.aau1099] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 01/08/2019] [Indexed: 12/18/2022]
Abstract
Amplification of the MYCN oncogene is associated with an aggressive phenotype and poor outcome in childhood neuroblastoma. Polyamines are highly regulated essential cations that are frequently elevated in cancer cells, and the rate-limiting enzyme in polyamine synthesis, ornithine decarboxylase 1 (ODC1), is a direct transcriptional target of MYCN. Treatment of neuroblastoma cells with the ODC1 inhibitor difluoromethylornithine (DFMO), although a promising therapeutic strategy, is only partially effective at impeding neuroblastoma cell growth due to activation of compensatory mechanisms resulting in increased polyamine uptake from the surrounding microenvironment. In this study, we identified solute carrier family 3 member 2 (SLC3A2) as the key transporter involved in polyamine uptake in neuroblastoma. Knockdown of SLC3A2 in neuroblastoma cells reduced the uptake of the radiolabeled polyamine spermidine, and DFMO treatment increased SLC3A2 protein. In addition, MYCN directly increased polyamine synthesis and promoted neuroblastoma cell proliferation by regulating SLC3A2 and other regulatory components of the polyamine pathway. Inhibiting polyamine uptake with the small-molecule drug AMXT 1501, in combination with DFMO, prevented or delayed tumor development in neuroblastoma-prone mice and extended survival in rodent models of established tumors. Our findings suggest that combining AMXT 1501 and DFMO with standard chemotherapy might be an effective strategy for treating neuroblastoma.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
5 |
104 |
4
|
Henderson MJ, Haber M, Porro A, Munoz MA, Iraci N, Xue C, Murray J, Flemming CL, Smith J, Fletcher JI, Gherardi S, Kwek CK, Russell AJ, Valli E, London WB, Buxton AB, Ashton LJ, Sartorelli AC, Cohn SL, Schwab M, Marshall GM, Perini G, Norris MD. ABCC multidrug transporters in childhood neuroblastoma: clinical and biological effects independent of cytotoxic drug efflux. J Natl Cancer Inst 2011; 103:1236-51. [PMID: 21799180 PMCID: PMC3156802 DOI: 10.1093/jnci/djr256] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Background Although the prognostic value of the ATP-binding cassette, subfamily C (ABCC) transporters in childhood neuroblastoma is usually attributed to their role in cytotoxic drug efflux, certain observations have suggested that these multidrug transporters might contribute to the malignant phenotype independent of cytotoxic drug efflux. Methods A v-myc myelocytomatosis viral related oncogene, neuroblastoma derived (MYCN)–driven transgenic mouse neuroblastoma model was crossed with an Abcc1-deficient mouse strain (658 hMYCN1/−, 205 hMYCN+/1 mice) or, alternatively, treated with the ABCC1 inhibitor, Reversan (n = 20). ABCC genes were suppressed using short interfering RNA or overexpressed by stable transfection in neuroblastoma cell lines BE(2)-C, SH-EP, and SH-SY5Y, which were then assessed for wound closure ability, clonogenic capacity, morphological differentiation, and cell growth. Real-time quantitative polymerase chain reaction was used to examine the clinical significance of ABCC family gene expression in a large prospectively accrued cohort of patients (n = 209) with primary neuroblastomas. Kaplan–Meier survival analysis and Cox regression were used to test for associations with event-free and overall survival. Except where noted, all statistical tests were two-sided. Results Inhibition of ABCC1 statistically significantly inhibited neuroblastoma development in hMYCN transgenic mice (mean age for palpable tumor: treated mice, 47.2 days; control mice, 41.9 days; hazard ratio [HR] = 9.3, 95% confidence interval [CI] = 2.65 to 32; P < .001). Suppression of ABCC1 in vitro inhibited wound closure (P < .001) and clonogenicity (P = .006); suppression of ABCC4 enhanced morphological differentiation (P < .001) and inhibited cell growth (P < .001). Analysis of 209 neuroblastoma patient tumors revealed that, in contrast with ABCC1 and ABCC4, low rather than high ABCC3 expression was associated with reduced event-free survival (HR of recurrence or death = 2.4, 95% CI = 1.4 to 4.2; P = .001), with 23 of 53 patients with low ABCC3 expression experiencing recurrence or death compared with 31 of 155 patients with high ABCC3. Moreover, overexpression of ABCC3 in vitro inhibited neuroblastoma cell migration (P < .001) and clonogenicity (P = .03). The combined expression of ABCC1, ABCC3, and ABCC4 was associated with patients having an adverse event, such that of the 12 patients with the “poor prognosis” expression pattern, 10 experienced recurrence or death (HR of recurrence or death = 12.3, 95% CI = 6 to 27; P < .001). Conclusion ABCC transporters can affect neuroblastoma biology independently of their role in chemotherapeutic drug efflux, enhancing their potential as targets for therapeutic intervention.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
104 |
5
|
Trazzi S, Mitrugno VM, Valli E, Fuchs C, Rizzi S, Guidi S, Perini G, Bartesaghi R, Ciani E. APP-dependent up-regulation of Ptch1 underlies proliferation impairment of neural precursors in Down syndrome. Hum Mol Genet 2011; 20:1560-73. [PMID: 21266456 DOI: 10.1093/hmg/ddr033] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Mental retardation in Down syndrome (DS) appears to be related to severe neurogenesis impairment during critical phases of brain development. Recent lines of evidence in the cerebellum of a mouse model for DS (the Ts65Dn mouse) have shown a defective responsiveness to Sonic Hedgehog (Shh), a potent mitogen that controls cell division during brain development, suggesting involvement of the Shh pathway in the neurogenesis defects of DS. Based on these premises, we sought to identify the molecular mechanisms underlying derangement of the Shh pathway in neural precursor cells (NPCs) from Ts65Dn mice. By using an in vitro model of NPCs obtained from the subventricular zone and hippocampus, we found that trisomic NPCs had an increased expression of the Shh receptor Patched1 (Ptch1), a membrane protein that suppresses the action of a second receptor, Smoothened (Smo), thereby maintaining the pathway in a repressed state. Partial silencing of Ptch1 expression in trisomic NPCs restored cell proliferation, indicating that proliferation impairment was due to Ptch1 overexpression. The overexpression of Ptch1 in trisomic NPCs resulted from increased levels of AICD [a transcription-promoting fragment of amyloid precursor protein (APP)] and increased AICD binding to the Ptch1 promoter. Our data provide novel evidence that Ptch1 overexpression underlies derangement of the Shh pathway in trisomic NPCs with consequent proliferation impairment. The demonstration that Ptch1 overexpression in trisomic NPCs is due to an APP fragment provides a link between this trisomic gene and the defective neuronal production that characterizes the DS brain.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
97 |
6
|
Iraci N, Diolaiti D, Papa A, Porro A, Valli E, Gherardi S, Herold S, Eilers M, Bernardoni R, Della Valle G, Perini G. A SP1/MIZ1/MYCN repression complex recruits HDAC1 at the TRKA and p75NTR promoters and affects neuroblastoma malignancy by inhibiting the cell response to NGF. Cancer Res 2010; 71:404-12. [PMID: 21123453 DOI: 10.1158/0008-5472.can-10-2627] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Neuroblastoma is the most common extracranial solid tumor of childhood. One important factor that predicts a favorable prognosis is the robust expression of the TRKA and p75NTR neurotrophin receptor genes. Interestingly, TRKA and p75NTR expression is often attenuated in aggressive MYCN-amplified tumors, suggesting a causal link between elevated MYCN activity and the transcriptional repression of TRKA and p75NTR, but the precise mechanisms involved are unclear. Here, we show that MYCN acts directly to repress TRKA and p75NTR gene transcription. Specifically, we found that MYCN levels were critical for repression and that MYCN targeted proximal/core promoter regions by forming a repression complex with transcription factors SP1 and MIZ1. When bound to the TRKA and p75NTR promoters, MYCN recruited the histone deacetylase HDAC1 to induce a repressed chromatin state. Forced re-expression of endogenous TRKA and p75NTR with exposure to the HDAC inhibitor TSA sensitized neuroblastoma cells to NGF-mediated apoptosis. By directly connecting MYCN to the repression of TRKA and p75NTR, our findings establish a key pathway of clinical pathogenicity and aggressiveness in neuroblastoma.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
76 |
7
|
Porro A, Haber M, Diolaiti D, Iraci N, Henderson M, Gherardi S, Valli E, Munoz MA, Xue C, Flemming C, Schwab M, Wong JH, Marshall GM, Della Valle G, Norris MD, Perini G. Direct and coordinate regulation of ATP-binding cassette transporter genes by Myc factors generates specific transcription signatures that significantly affect the chemoresistance phenotype of cancer cells. J Biol Chem 2010; 285:19532-43. [PMID: 20233711 DOI: 10.1074/jbc.m109.078584] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Increased expression of specific ATP-binding cassette (ABC) transporters is known to mediate the efflux of chemotherapeutic agents from cancer cells. Therefore, establishing how ABC transporter genes are controlled at their transcription level may help provide insight into the role of these multifaceted transporters in the malignant phenotype. We have investigated ABC transporter gene expression in a large neuroblastoma data set of 251 tumor samples. Clustering analysis demonstrated a strong association between differential ABC gene expression patterns in tumor samples and amplification of the MYCN oncogene, suggesting a correlation with MYCN function. Using expression profiling and chromatin immunoprecipitation studies, we show that MYCN oncoprotein coordinately regulates transcription of specific ABC transporter genes, by acting as either an activator or a repressor. Finally, we extend these notions to c-MYC showing that it can also regulate the same set of ABC transporter genes in other tumor cells through similar dynamics. Overall our findings provide insight into MYC-driven molecular mechanisms that contribute to coordinate transcriptional regulation of a large set of ABC transporter genes, thus affecting global drug efflux.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
75 |
8
|
Corvetta D, Chayka O, Gherardi S, D'Acunto CW, Cantilena S, Valli E, Piotrowska I, Perini G, Sala A. Physical interaction between MYCN oncogene and polycomb repressive complex 2 (PRC2) in neuroblastoma: functional and therapeutic implications. J Biol Chem 2013; 288:8332-8341. [PMID: 23362253 PMCID: PMC3605651 DOI: 10.1074/jbc.m113.454280] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
CLU (clusterin) is a tumor suppressor gene that we have previously shown to be negatively modulated by the MYCN proto-oncogene, but the mechanism of repression was unclear. Here, we show that MYCN inhibits the expression of CLU by direct interaction with the non-canonical E box sequence CACGCG in the 5'-flanking region. Binding of MYCN to the CLU gene induces bivalent epigenetic marks and recruitment of repressive proteins such as histone deacetylases and Polycomb members. MYCN physically binds in vitro and in vivo to EZH2, a component of the Polycomb repressive complex 2, required to repress CLU. Notably, EZH2 interacts with the Myc box domain 3, a segment of MYC known to be essential for its transforming effects. The expression of CLU can be restored in MYCN-amplified cells by epigenetic drugs with therapeutic results. Importantly, the anticancer effects of the drugs are ablated if CLU expression is blunted by RNA interference. Our study implies that MYC tumorigenesis can be effectively antagonized by epigenetic drugs that interfere with the recruitment of chromatin modifiers at repressive E boxes of tumor suppressor genes such as CLU.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
72 |
9
|
Trazzi S, Fuchs C, Viggiano R, De Franceschi M, Valli E, Jedynak P, Hansen FK, Perini G, Rimondini R, Kurz T, Bartesaghi R, Ciani E. HDAC4: a key factor underlying brain developmental alterations in CDKL5 disorder. Hum Mol Genet 2016; 25:3887-3907. [PMID: 27466189 DOI: 10.1093/hmg/ddw231] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/07/2016] [Accepted: 07/08/2016] [Indexed: 12/12/2022] Open
Abstract
Cyclin-dependent kinase-like 5 (CDKL5) is a Ser/Thr protein kinase predominantly expressed in the brain. Mutations of the CDKL5 gene lead to CDKL5 disorder, a neurodevelopmental pathology that shares several features with Rett Syndrome and is characterized by severe intellectual disability. The phosphorylation targets of CDKL5 are largely unknown, which hampers the discovery of therapeutic strategies for improving the neurological phenotype due to CDKL5 mutations. Here, we show that the histone deacetylase 4 (HDAC4) is a direct phosphorylation target of CDKL5 and that CDKL5-dependent phosphorylation promotes HDAC4 cytoplasmic retention. Nuclear HDAC4 binds to chromatin as well as to MEF2A transcription factor, leading to histone deacetylation and altered neuronal gene expression. By using a Cdkl5 knockout (Cdkl5 -/Y) mouse model, we found that hypophosphorylated HDAC4 translocates to the nucleus of neural precursor cells, thereby reducing histone 3 acetylation. This effect was reverted by re-expression of CDKL5 or by inhibition of HDAC4 activity through the HDAC4 inhibitor LMK235. In Cdkl5 -/Y mice treated with LMK235, defective survival and maturation of neuronal precursor cells and hippocampus-dependent memory were fully normalized. These results demonstrate a critical role of HDAC4 in the neurodevelopmental alterations due to CDKL5 mutations and suggest the possibility of HDAC4-targeted pharmacological interventions.
Collapse
|
Journal Article |
9 |
65 |
10
|
Iacobucci I, Iraci N, Messina M, Lonetti A, Chiaretti S, Valli E, Ferrari A, Papayannidis C, Paoloni F, Vitale A, Storlazzi CT, Ottaviani E, Guadagnuolo V, Durante S, Vignetti M, Soverini S, Pane F, Foà R, Baccarani M, Müschen M, Perini G, Martinelli G. IKAROS deletions dictate a unique gene expression signature in patients with adult B-cell acute lymphoblastic leukemia. PLoS One 2012; 7:e40934. [PMID: 22848414 PMCID: PMC3405023 DOI: 10.1371/journal.pone.0040934] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Accepted: 06/15/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Deletions of IKAROS (IKZF1) frequently occur in B-cell precursor acute lymphoblastic leukemia (B-ALL) but the mechanisms by which they influence pathogenesis are unclear. To address this issue, a cohort of 144 adult B-ALL patients (106 BCR-ABL1-positive and 38 B-ALL negative for known molecular rearrangements) was screened for IKZF1 deletions by single nucleotide polymorphism (SNP) arrays; a sub-cohort of these patients (44%) was then analyzed for gene expression profiling. PRINCIPAL FINDINGS Total or partial deletions of IKZF1 were more frequent in BCR-ABL1-positive than in BCR-ABL1-negative B-ALL cases (75% vs 58%, respectively, p = 0.04). Comparison of the gene expression signatures of patients carrying IKZF1 deletion vs those without showed a unique signature featured by down-regulation of B-cell lineage and DNA repair genes and up-regulation of genes involved in cell cycle, JAK-STAT signalling and stem cell self-renewal. Through chromatin immunoprecipitation and luciferase reporter assays we corroborated these findings both in vivo and in vitro, showing that Ikaros deleted isoforms lacked the ability to directly regulate a large group of the genes in the signature, such as IGLL1, BLK, EBF1, MSH2, BUB3, ETV6, YES1, CDKN1A (p21), CDKN2C (p18) and MCL1. CONCLUSIONS Here we identified and validated for the first time molecular pathways specifically controlled by IKZF1, shedding light into IKZF1 role in B-ALL pathogenesis.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
64 |
11
|
Bovolenta M, Erriquez D, Valli E, Brioschi S, Scotton C, Neri M, Falzarano MS, Gherardi S, Fabris M, Rimessi P, Gualandi F, Perini G, Ferlini A. The DMD locus harbours multiple long non-coding RNAs which orchestrate and control transcription of muscle dystrophin mRNA isoforms. PLoS One 2012; 7:e45328. [PMID: 23028937 PMCID: PMC3448672 DOI: 10.1371/journal.pone.0045328] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 08/20/2012] [Indexed: 11/18/2022] Open
Abstract
The 2.2 Mb long dystrophin (DMD) gene, the largest gene in the human genome, corresponds to roughly 0.1% of the entire human DNA sequence. Mutations in this gene cause Duchenne muscular dystrophy and other milder X-linked, recessive dystrophinopathies. Using a custom-made tiling array, specifically designed for the DMD locus, we identified a variety of novel long non-coding RNAs (lncRNAs), both sense and antisense oriented, whose expression profiles mirror that of DMD gene. Importantly, these transcripts are intronic in origin and specifically localized to the nucleus and are transcribed contextually with dystrophin isoforms or primed by MyoD-induced myogenic differentiation. Furthermore, their forced ectopic expression in both human muscle and neuronal cells causes a specific and negative regulation of endogenous dystrophin full length isoforms and significantly down-regulate the activity of a luciferase reporter construct carrying the minimal promoter regions of the muscle dystrophin isoform. Consistent with this apparently repressive role, we found that, in muscle samples of dystrophinopathic female carriers, lncRNAs expression levels inversely correlate with those of muscle full length DMD isoforms. Overall these findings unveil an unprecedented complexity of the transcriptional pattern of the DMD locus and reveal that DMD lncRNAs may contribute to the orchestration and homeostasis of the muscle dystrophin expression pattern by either selective targeting and down-modulating the dystrophin promoter transcriptional activity.
Collapse
|
research-article |
13 |
44 |
12
|
Trazzi S, Fuchs C, Valli E, Perini G, Bartesaghi R, Ciani E. The amyloid precursor protein (APP) triplicated gene impairs neuronal precursor differentiation and neurite development through two different domains in the Ts65Dn mouse model for Down syndrome. J Biol Chem 2013; 288:20817-20829. [PMID: 23740250 DOI: 10.1074/jbc.m113.451088] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Intellectual disability in Down syndrome (DS) appears to be related to severe proliferation impairment during brain development. Recent evidence shows that it is not only cellular proliferation that is heavily compromised in DS, but also cell fate specification and dendritic maturation. The amyloid precursor protein (APP), a gene that is triplicated in DS, plays a key role in normal brain development by influencing neural precursor cell proliferation, cell fate specification, and neuronal maturation. APP influences these processes via two separate domains, the APP intracellular domain (AICD) and the soluble secreted APP. We recently found that the proliferation impairment of neuronal precursors (NPCs) from the Ts65Dn mouse model for DS was caused by derangement of the Shh pathway due to overexpression of patched1(Ptch1), its inhibitory regulator. Ptch1 overexpression was related to increased levels within the APP/AICD system. The overall goal of this study was to determine whether APP contributes to neurogenesis impairment in DS by influencing in addition to proliferation, cell fate specification, and neurite development. We found that normalization of APP expression restored the reduced neuronogenesis, the increased astrogliogenesis, and the reduced neurite length of trisomic NPCs, indicating that APP overexpression underpins all aspects of neurogenesis impairment. Moreover, we found that two different domains of APP impair neuronal differentiation and maturation in trisomic NPCs. The APP/AICD system regulates neuronogenesis and neurite length through the Shh pathway, whereas the APP/secreted AP system promotes astrogliogenesis through an IL-6-associated signaling cascade. These results provide novel insight into the mechanisms underlying brain development alterations in DS.
Collapse
|
Retracted Publication |
12 |
42 |
13
|
Valli E, Zupi E, Marconi D, Vaquero E, Giovannini P, Lazzarin N, Romanini C. Hysteroscopic findings in 344 women with recurrent spontaneous abortion. THE JOURNAL OF THE AMERICAN ASSOCIATION OF GYNECOLOGIC LAPAROSCOPISTS 2001; 8:398-401. [PMID: 11509781 DOI: 10.1016/s1074-3804(05)60338-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
STUDY OBJECTIVE To evaluate the prevalence of different anatomic factors in women with recurrent spontaneous abortion (RSA). DESIGN Retrospective analysis over 9 years (Canadian Task Force classification II-2). SETTING University hospital-affiliated endoscopic unit. PATIENTS Three hundred forty-four consecutive patients with RSA and 922 controls referred for abnormal uterine bleeding. INTERVENTION Diagnostic hysteroscopy. MEASUREMENTS AND MAIN RESULTS Major and minor uterine mullerian abnormalities (septate, unicornuate uteri) were found significantly more often in women with RSA than in controls (32% vs 6%, p <0.001). The frequency of acquired uterine anomalies (submucous myomas, polyps) was significantly higher in controls (32% vs 9%, p <0.001). No significant differences were observed between groups in frequency of adhesions (4% vs 2%). CONCLUSION Major mullerian uterine abnormalities are associated with RSA, and minor uterine anomalies may be correlated with an increased risk of recurrent miscarriage.
Collapse
|
|
24 |
40 |
14
|
Porro A, Iraci N, Soverini S, Diolaiti D, Gherardi S, Terragna C, Durante S, Valli E, Kalebic T, Bernardoni R, Perrod C, Haber M, Norris MD, Baccarani M, Martinelli G, Perini G. c-MYC oncoprotein dictates transcriptional profiles of ATP-binding cassette transporter genes in chronic myelogenous leukemia CD34+ hematopoietic progenitor cells. Mol Cancer Res 2011; 9:1054-66. [PMID: 21693596 DOI: 10.1158/1541-7786.mcr-10-0510] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Resistance to chemotherapeutic agents remains one of the major impediments to a successful treatment of chronic myeloid leukemia (CML). Misregulation of the activity of a specific group of ATP-binding cassette transporters (ABC) is responsible for reducing the intracellular concentration of drugs in leukemic cells. Moreover, a consistent body of evidence also suggests that ABC transporters play a role in cancer progression beyond the efflux of cytotoxic drugs. Despite a large number of studies that investigated the function of the ABC transporters, little is known about the transcriptional regulation of the ABC genes. Here, we present data showing that the oncoprotein c-MYC is a direct transcriptional regulator of a large set of ABC transporters in CML. Furthermore, molecular analysis carried out in CD34+ hematopoietic cell precursors of 21 CML patients reveals that the overexpression of ABC transporters driven by c-MYC is a peculiar characteristic of the CD34+ population in CML and was not found either in the population of mononuclear cells from which they had been purified nor in CD34+ cells isolated from healthy donors. Finally, we describe how the methylation state of CpG islands may regulate the access of c-MYC to ABCG2 gene promoter, a well-studied gene associated with multidrug resistance in CML, hence, affecting its expression. Taken together, our findings support a model in which c-MYC-driven transcriptional events, combined with epigenetic mechanisms, direct and regulate the expression of ABC genes with possible implications in tumor malignancy and drug efflux in CML.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
39 |
15
|
Le Grand M, Mukha A, Püschel J, Valli E, Kamili A, Vittorio O, Dubrovska A, Kavallaris M. Interplay between MycN and c-Myc regulates radioresistance and cancer stem cell phenotype in neuroblastoma upon glutamine deprivation. Am J Cancer Res 2020; 10:6411-6429. [PMID: 32483461 PMCID: PMC7255021 DOI: 10.7150/thno.42602] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 03/26/2020] [Indexed: 12/16/2022] Open
Abstract
Targeting glutamine metabolism has emerged as a potential therapeutic strategy for Myc overexpressing cancer cells. Myc proteins contribute to an aggressive neuroblastoma phenotype. Radiotherapy is one of the treatment modalities for high-risk neuroblastoma patients. Herein, we investigated the effect of glutamine deprivation in combination with irradiation in neuroblastoma cells representative of high-risk disease and studied the role of Myc member interplay in regulating neuroblastoma cell radioresistance. Methods: Cell proliferation and viability assays were used to establish the effect of glutamine deprivation in neuroblastoma cells expressing c-Myc or MycN. Gene silencing and overexpression were used to modulate the expression of Myc genes to determine their role in neuroblastoma radioresistance. qPCR and western blot investigated interplay between expression of Myc members. The impact of glutamine deprivation on cell response following irradiation was explored using a radiobiological 3D colony assay. DNA repair gene pathways as well as CSC-related genes were studied by qPCR array. Reactive Oxygen Species (ROS) and glutathione (GSH) levels were detected by fluorescence and luminescence probes respectively. Cancer-stem cell (CSC) properties were investigated by sphere-forming assay and flow cytometry to quantify CSC markers. Expression of DNA repair genes and CSC-related genes was analysed by mining publicly available patient datasets. Results: Our results showed that glutamine deprivation decreased neuroblastoma cell proliferation and viability and modulated Myc member expression. We then demonstrated for the first time that combined glutamine deprivation with irradiation led to a selective radioresistance of MYCN-amplified neuroblastoma cells. By exploring the underlying mechanism of neuroblastoma radioresistance properties, our results highlight interplay between c-Myc and MycN expression suggesting compensatory mechanisms in Myc proteins leading to radioresistance in MYCN-amplified cells. This result was associated with the ability of MYCN-amplified cells to dysregulate the DNA repair gene pathway, maintain GSH and ROS levels and to increase the CSC-like population and properties. Conversely, glutamine deprivation led to radiosensitization in non-MYCN amplified cell lines through a disruption of the cell redox balance and a trend to decrease in the CSC-like populations. Mining publicly available gene expression dataset obtained from pediatric neuroblastoma patients, we identified a correlation pattern between Myc members and CSC-related genes as well as a specific group of DNA repair gene pathways. Conclusions: This study demonstrated that MycN and c-Myc tightly cooperate in regulation of the neuroblastoma CSC phenotypes and radioresistance upon glutamine deprivation. Pharmacologically, strategies targeting glutamine metabolism may prove beneficial in Myc-driven tumors. Consideration of MycN/c-Myc status in selecting neuroblastoma patients for glutamine metabolism treatment will be important to avoid potential radioresistance.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
35 |
16
|
Gherardi S, Valli E, Erriquez D, Perini G. MYCN-mediated transcriptional repression in neuroblastoma: the other side of the coin. Front Oncol 2013; 3:42. [PMID: 23482921 PMCID: PMC3593680 DOI: 10.3389/fonc.2013.00042] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 02/12/2013] [Indexed: 01/02/2023] Open
Abstract
Neuroblastoma is the most common extra cranial solid tumor in childhood and the most frequently diagnosed neoplasm during the infancy. MYCN amplification and overexpression occur in about 25% of total neuroblastoma cases and this percentage increases at 30% in advanced stage neuroblastoma. So far, MYCN expression profile is still one of the most robust and significant prognostic markers for neuroblastoma outcome. MYCN is a transcription factor that belongs to the family of MYC oncoproteins, comprising c-MYC and MYCL genes. Deregulation of MYC oncoprotein expression is a crucial event involved in the occurrence of different types of malignant tumors. MYCN, as well as c-MYC, can heterodimerize with its partner MAX and activate the transcription of several target genes containing E-Box sites in their promoter regions. However, recent several lines of evidence have revealed that MYCN can repress at least as many genes as it activates, thus proposing a novel function of this protein in neuroblastoma biology. Whereas the mechanism by which MYCN can act as a transcriptional activator is relatively well known, very few studies has been done in the attempt to explain how MYCN can exert its transcription repression function. Here, we will review current knowledge about the mechanism of MYCN-mediated transcriptional repression and will emphasize its role as a repressor in the recruitment of a precise set of proteins to form complexes capable of down-regulating specific subsets of genes whose function is actively involved in apoptosis, cell differentiation, chemosensitivity, and cell motility. The finding that MYCN can also act as a repressor has widen our view on its role in oncogenesis and has posed the bases to search for novel therapeutic drugs that can specifically target its transcriptional repression function.
Collapse
|
Journal Article |
12 |
33 |
17
|
Cirillo G, Vittorio O, Kunhardt D, Valli E, Voli F, Farfalla A, Curcio M, Spizzirri UG, Hampel S. Combining Carbon Nanotubes and Chitosan for the Vectorization of Methotrexate to Lung Cancer Cells. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2889. [PMID: 31500165 PMCID: PMC6766185 DOI: 10.3390/ma12182889] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 12/11/2022]
Abstract
A hybrid system composed of multi-walled carbon nanotubes coated with chitosan was proposed as a pH-responsive carrier for the vectorization of methotrexate to lung cancer. The effective coating of the carbon nanostructure by chitosan, quantified (20% by weight) by thermogravimetric analysis, was assessed by combined scanning and transmission electron microscopy, and X-ray photoelectron spectroscopy (N1s signal), respectively. Furthermore, Raman spectroscopy was used to characterize the interaction between polysaccharide and carbon counterparts. Methotrexate was physically loaded onto the nanohybrid and the release profiles showed a pH-responsive behavior with higher and faster release in acidic (pH 5.0) vs. neutral (pH 7.4) environments. Empty nanoparticles were found to be highly biocompatible in either healthy (MRC-5) or cancerous (H1299) cells, with the nanocarrier being effective in reducing the drug toxicity on MRC-5 while enhancing the anticancer activity on H1299.
Collapse
|
research-article |
6 |
31 |
18
|
Valli E, Trazzi S, Fuchs C, Erriquez D, Bartesaghi R, Perini G, Ciani E. CDKL5, a novel MYCN-repressed gene, blocks cell cycle and promotes differentiation of neuronal cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:1173-85. [PMID: 22921766 PMCID: PMC3787793 DOI: 10.1016/j.bbagrm.2012.08.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 07/20/2012] [Accepted: 08/13/2012] [Indexed: 01/08/2023]
Abstract
Mutations in the CDKL5 (cyclin-dependent kinase-like 5) gene are associated with a severe epileptic encephalopathy (early infantile epileptic encephalopathy type 2, EIEE2) characterized by early-onset intractable seizures, infantile spasms, severe developmental delay, intellectual disability, and Rett syndrome (RTT)-like features. Despite the clear involvement of CDKL5 mutations in intellectual disability, the function of this protein during brain development and the molecular mechanisms involved in its regulation are still unknown. Using human neuroblastoma cells as a model system we found that an increase in CDKL5 expression caused an arrest of the cell cycle in the G0/G1 phases and induced cellular differentiation. Interestingly, CDKL5 expression was inhibited by MYCN, a transcription factor that promotes cell proliferation during brain development and plays a relevant role in neuroblastoma biology. Through a combination of different and complementary molecular and cellular approaches we could show that MYCN acts as a direct repressor of the CDKL5 promoter. Overall our findings unveil a functional axis between MYCN and CDKL5 governing both neuron proliferation rate and differentiation. The fact that CDKL5 is involved in the control of both neuron proliferation and differentiation may help understand the early appearance of neurological symptoms in patients with mutations in CDKL5.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
30 |
19
|
Valli E, Harriett AJ, Nowakowska MK, Baudier RL, Provosty WB, McSween Z, Lawson LB, Nakanishi Y, Norton EB. LTA1 is a safe, intranasal enterotoxin-based adjuvant that improves vaccine protection against influenza in young, old and B-cell-depleted (μMT) mice. Sci Rep 2019; 9:15128. [PMID: 31641151 PMCID: PMC6805908 DOI: 10.1038/s41598-019-51356-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 09/19/2019] [Indexed: 01/17/2023] Open
Abstract
Enterotoxin-based adjuvants including cholera toxin and heat-labile toxin (LT) are powerful manipulators of mucosal immunity; however, past clinical trials identified unacceptable neurological toxicity when LT or mutant AB5 adjuvant proteins were added to intranasal vaccines. Here, we examined the isolated enzymatic A1 domain of LT (LTA1) for intranasal safety and efficacy in combination with influenza (flu) vaccination. LTA1-treated mice exhibited no neurotoxicity, as measured by olfactory system testing and H&E staining of nasal tissue in contrast with cholera toxin. In vaccination studies, intranasal LTA1 enhanced immune responses to inactivated virus antigen and subsequent protection against H1N1 flu challenge in mice (8-week or 24-months). In addition, lung H1N1 viral titers post-challenge correlated to serum antibody responses; however, enhanced protection was also observed in μMT mice lacking B-cells while activation and recruitment of CD4 T-cells into the lung was apparent. Thus, we report that LTA1 protein is a novel, safe and effective enterotoxin adjuvant that improves protection of an intranasal flu vaccination by a mechanism that does not appear to require B-cells.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
27 |
20
|
Valli E, Zupi E, Marconi D, Solima E, Nagar G, Romanini C. Outpatient diagnostic hysteroscopy. THE JOURNAL OF THE AMERICAN ASSOCIATION OF GYNECOLOGIC LAPAROSCOPISTS 1998; 5:397-402. [PMID: 9782145 DOI: 10.1016/s1074-3804(98)80054-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
STUDY OBJECTIVE To evaluate the feasibility, validity, indications, and results of a large series of diagnostic hysteroscopies performed without anesthesia. DESIGN Retrospective analysis of hysteroscopy charts performed between 1989 and 1996 (Canadian Task Force classification II-2). SETTING University-affiliated endoscopy unit. PATIENTS Four thousand consecutive women referred for different indications. INTERVENTIONS Diagnostic hysteroscopy was performed in 91% of patients without premedication or anesthetics. In some women premedication or general or local anesthesia was required to access the uterine cavity. MEASUREMENTS AND MAIN RESULTS The success rate, validity indication, complication rate, and number of biopsies were critically evaluated and assessed in relation to increased experience of operators. In 91% of women we accessed the uterine cavity at the first attempt without premedication, whereas 207 (5. 1%) patients required local anesthesia and 99 (2.4%) premedication. Only 1.6% required general anesthesia. In 52% intrauterine pathology was diagnosed and in 21% further surgical treatment was suggested. CONCLUSION Hysteroscopy was feasible when performed in an outpatient setting without general or local anesthesia in more than 90% of women. The operator's experience seems a key factor both for accurate endometrial evaluation and to reduce failure and endometrial biopsy rates. The low frequency of further surgical treatment justifies performing the procedure in the office.
Collapse
|
|
27 |
26 |
21
|
Murray J, Valli E, Yu DMT, Truong AM, Gifford AJ, Eden GL, Gamble LD, Hanssen KM, Flemming CL, Tan A, Tivnan A, Allan S, Saletta F, Cheung L, Ruhle M, Schuetz JD, Henderson MJ, Byrne JA, Norris MD, Haber M, Fletcher JI. Suppression of the ATP-binding cassette transporter ABCC4 impairs neuroblastoma tumour growth and sensitises to irinotecan in vivo. Eur J Cancer 2017; 83:132-141. [PMID: 28735070 DOI: 10.1016/j.ejca.2017.06.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 06/20/2017] [Indexed: 01/08/2023]
Abstract
The ATP-binding cassette transporter ABCC4 (multidrug resistance protein 4, MRP4) mRNA level is a strong predictor of poor clinical outcome in neuroblastoma which may relate to its export of endogenous signalling molecules and chemotherapeutic agents. We sought to determine whether ABCC4 contributes to development, growth and drug response in neuroblastoma in vivo. In neuroblastoma patients, high ABCC4 protein levels were associated with reduced overall survival. Inducible knockdown of ABCC4 strongly inhibited the growth of human neuroblastoma cells in vitro and impaired the growth of neuroblastoma xenografts. Loss of Abcc4 in the Th-MYCN transgenic neuroblastoma mouse model did not impact tumour formation; however, Abcc4-null neuroblastomas were strongly sensitised to the ABCC4 substrate drug irinotecan. Our findings demonstrate a role for ABCC4 in neuroblastoma cell proliferation and chemoresistance and provide rationale for a strategy where inhibition of ABCC4 should both attenuate the growth of neuroblastoma and sensitise tumours to ABCC4 chemotherapeutic substrates.
Collapse
|
Journal Article |
8 |
22 |
22
|
Makharza SA, Cirillo G, Vittorio O, Valli E, Voli F, Farfalla A, Curcio M, Iemma F, Nicoletta FP, El-Gendy AA, Goya GF, Hampel S. Magnetic Graphene Oxide Nanocarrier for Targeted Delivery of Cisplatin: A Perspective for Glioblastoma Treatment. Pharmaceuticals (Basel) 2019; 12:E76. [PMID: 31109098 PMCID: PMC6631527 DOI: 10.3390/ph12020076] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/10/2019] [Accepted: 05/16/2019] [Indexed: 12/19/2022] Open
Abstract
Selective vectorization of Cisplatin (CisPt) to Glioblastoma U87 cells was exploited by the fabrication of a hybrid nanocarrier composed of magnetic γ-Fe2O3 nanoparticles and nanographene oxide (NGO). The magnetic component, obtained by annealing magnetite Fe3O4 and characterized by XRD measurements, was combined with NGO sheets prepared via a modified Hummer's method. The morphological and thermogravimetric analysis proved the effective binding of γ-Fe2O3 nanoparticles onto NGO layers. The magnetization measured under magnetic fields up to 7 Tesla at room temperature revealed superparamagnetic-like behavior with a maximum value of MS = 15 emu/g and coercivity HC ≈ 0 Oe within experimental error. The nanohybrid was found to possess high affinity towards CisPt, and a rather slow fractional release profile of 80% after 250 h. Negligible toxicity was observed for empty nanoparticles, while the retainment of CisPt anticancer activity upon loading into the carrier was observed, together with the possibility to spatially control the drug delivery at a target site.
Collapse
|
research-article |
6 |
21 |
23
|
Marconi D, Exacoustos C, Cangi B, Perroni A, Zupi E, Valli E, Romanini C. Transvaginal sonographic and hysteroscopic findings in postmenopausal women receiving tamoxifen. THE JOURNAL OF THE AMERICAN ASSOCIATION OF GYNECOLOGIC LAPAROSCOPISTS 1997; 4:331-9. [PMID: 9154782 DOI: 10.1016/s1074-3804(05)80224-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
STUDY OBJECTIVE To evaluate the effect of tamoxifen on the endometrium. DESIGN Prospective study. SETTING Department of Obstetrics and Gynecology of the University of Rome. PATIENTS One hundred one postmenopausal women with breast cancer receiving tamoxifen 20 to 30 mg/day for at least 1 year; of these 78 were asymptomatic and 23 had vaginal bleeding. INTERVENTIONS All patients underwent transvaginal color Doppler sonography. Those with endometrial thickness greater than 5 mm were advised to undergo hysteroscopy and if necessary endometrial biopsy. For women with endometrial thickness less than 5 mm, hysteroscopy was recommended only if irregular endometrial echotexture was observed. MEASUREMENTS AND MAIN RESULTS Eleven (14%) asymptomatic patients and 1 (4.3%) with vaginal bleeding had endometrial thickness less than 5 mm (p = 0.4, NS). Women with vaginal bleeding had a significantly thicker endometrium than asymptomatic patients (15.8 +/- 7.5 vs 11.1 +/- 5.7 mm, p = 0.003). In the asymptomatic group 31 polyps, 15 atrophic endometria, and 6 hyperplasias were observed. Two endometrial cancers, 13 polyps, and 3 hyperplasias were detected in patients with vaginal bleeding. Hysteroscopy did not always allow endometrial biopsy, even in the presence of increased endometrial thickness with or without irregular surface. No statistical differences were found for mean pulsatility and resistance indexes of uterine and endometrial arteries between symptomatic and asymptomatic women, but these indexes were significantly lower compared with normal postmenopausal values. CONCLUSION Women receiving tamoxifen, especially those who are asymptomatic, should be closely monitored by transvaginal sonography and hysteroscopy to detect endometrial pathologies.
Collapse
|
Comparative Study |
28 |
18 |
24
|
Sterle HA, Valli E, Cayrol F, Paulazo MA, Martinel Lamas DJ, Diaz Flaqué MC, Klecha AJ, Colombo L, Medina VA, Cremaschi GA, Barreiro Arcos ML. Thyroid status modulates T lymphoma growth via cell cycle regulatory proteins and angiogenesis. J Endocrinol 2014; 222:243-55. [PMID: 24928937 DOI: 10.1530/joe-14-0159] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We have shown in vitro that thyroid hormones (THs) regulate the balance between proliferation and apoptosis of T lymphoma cells. The effects of THs on tumor development have been studied, but the results are still controversial. Herein, we show the modulatory action of thyroid status on the in vivo growth of T lymphoma cells. For this purpose, euthyroid, hypothyroid, and hyperthyroid mice received inoculations of EL4 cells to allow the development of solid tumors. Tumors in the hyperthyroid animals exhibited a higher growth rate, as evidenced by the early appearance of palpable solid tumors and the increased tumor volume. These results are consistent with the rate of cell division determined by staining tumor cells with carboxyfluorescein succinimidyl ester. Additionally, hyperthyroid mice exhibited reduced survival. Hypothyroid mice did not differ significantly from the euthyroid controls with respect to these parameters. Additionally, only tumors from hyperthyroid animals had increased expression levels of proliferating cell nuclear antigen and active caspase 3. Differential expression of cell cycle regulatory proteins was also observed. The levels of cyclins D1 and D3 were augmented in the tumors of the hyperthyroid animals, whereas the cell cycle inhibitors p16/INK4A (CDKN2A) and p27/Kip1 (CDKN1B) and the tumor suppressor p53 (TRP53) were increased in hypothyroid mice. Intratumoral and peritumoral vasculogenesis was increased only in hyperthyroid mice. Therefore, we propose that the thyroid status modulates the in vivo growth of EL4 T lymphoma through the regulation of cyclin, cyclin-dependent kinase inhibitor, and tumor suppressor gene expression, as well as the stimulation of angiogenesis.
Collapse
|
|
11 |
14 |
25
|
Xue C, Yu DMT, Gherardi S, Koach J, Milazzo G, Gamble L, Liu B, Valli E, Russell AJ, London WB, Liu T, Cheung BB, Marshall GM, Perini G, Haber M, Norris MD. MYCN promotes neuroblastoma malignancy by establishing a regulatory circuit with transcription factor AP4. Oncotarget 2018; 7:54937-54951. [PMID: 27448979 PMCID: PMC5342392 DOI: 10.18632/oncotarget.10709] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 06/16/2016] [Indexed: 12/11/2022] Open
Abstract
Amplification of the MYCN oncogene, a member of the MYC family of transcriptional regulators, is one of the most powerful prognostic markers identified for poor outcome in neuroblastoma, the most common extracranial solid cancer in childhood. While MYCN has been established as a key driver of malignancy in neuroblastoma, the underlying molecular mechanisms are poorly understood. Transcription factor activating enhancer binding protein-4 (TFAP4) has been reported to be a direct transcriptional target of MYC. We show for the first time that high expression of TFAP4 in primary neuroblastoma patients is associated with poor clinical outcome. siRNA-mediated suppression of TFAP4 in MYCN-expressing neuroblastoma cells led to inhibition of cell proliferation and migration. Chromatin immunoprecipitation assay demonstrated that TFAP4 expression is positively regulated by MYCN. Microarray analysis identified genes regulated by both MYCN and TFAP4 in neuroblastoma cells, including Phosphoribosyl-pyrophosphate synthetase-2 (PRPS2) and Syndecan-1 (SDC1), which are involved in cancer cell proliferation and metastasis. Overall this study suggests a regulatory circuit in which MYCN by elevating TFAP4 expression, cooperates with it to control a specific set of genes involved in tumor progression. These findings highlight the existence of a MYCN-TFAP4 axis in MYCN-driven neuroblastoma as well as identifying potential therapeutic targets for aggressive forms of this disease.
Collapse
|
Journal Article |
7 |
14 |