1
|
Desroy N, Housseman C, Bock X, Joncour A, Bienvenu N, Cherel L, Labeguere V, Rondet E, Peixoto C, Grassot JM, Picolet O, Annoot D, Triballeau N, Monjardet A, Wakselman E, Roncoroni V, Le Tallec S, Blanque R, Cottereaux C, Vandervoort N, Christophe T, Mollat P, Lamers M, Auberval M, Hrvacic B, Ralic J, Oste L, van der Aar E, Brys R, Heckmann B. Discovery of 2-[[2-Ethyl-6-[4-[2-(3-hydroxyazetidin-1-yl)-2-oxoethyl]piperazin-1-yl]-8-methylimidazo[1,2-a]pyridin-3-yl]methylamino]-4-(4-fluorophenyl)thiazole-5-carbonitrile (GLPG1690), a First-in-Class Autotaxin Inhibitor Undergoing Clinical Evaluation for the Treatment of Idiopathic Pulmonary Fibrosis. J Med Chem 2017; 60:3580-3590. [PMID: 28414242 DOI: 10.1021/acs.jmedchem.7b00032] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Autotaxin is a circulating enzyme with a major role in the production of lysophosphatic acid (LPA) species in blood. A role for the autotaxin/LPA axis has been suggested in many disease areas including pulmonary fibrosis. Structural modifications of the known autotaxin inhibitor lead compound 1, to attenuate hERG inhibition, remove CYP3A4 time-dependent inhibition, and improve pharmacokinetic properties, led to the identification of clinical candidate GLPG1690 (11). Compound 11 was able to cause a sustained reduction of LPA levels in plasma in vivo and was shown to be efficacious in a bleomycin-induced pulmonary fibrosis model in mice and in reducing extracellular matrix deposition in the lung while also reducing LPA 18:2 content in bronchoalveolar lavage fluid. Compound 11 is currently being evaluated in an exploratory phase 2a study in idiopathic pulmonary fibrosis patients.
Collapse
|
Journal Article |
8 |
112 |
2
|
Pizzonero M, Dupont S, Babel M, Beaumont S, Bienvenu N, Blanqué R, Cherel L, Christophe T, Crescenzi B, De Lemos E, Delerive P, Deprez P, De Vos S, Djata F, Fletcher S, Kopiejewski S, L’Ebraly C, Lefrançois JM, Lavazais S, Manioc M, Nelles L, Oste L, Polancec D, Quénéhen V, Soulas F, Triballeau N, van der Aar EM, Vandeghinste N, Wakselman E, Brys R, Saniere L. Discovery and Optimization of an Azetidine Chemical Series As a Free Fatty Acid Receptor 2 (FFA2) Antagonist: From Hit to Clinic. J Med Chem 2014; 57:10044-57. [DOI: 10.1021/jm5012885] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
|
11 |
67 |
3
|
Joncour A, Desroy N, Housseman C, Bock X, Bienvenu N, Cherel L, Labeguere V, Peixoto C, Annoot D, Lepissier L, Heiermann J, Hengeveld WJ, Pilzak G, Monjardet A, Wakselman E, Roncoroni V, Le Tallec S, Galien R, David C, Vandervoort N, Christophe T, Conrath K, Jans M, Wohlkonig A, Soror S, Steyaert J, Touitou R, Fleury D, Vercheval L, Mollat P, Triballeau N, van der Aar E, Brys R, Heckmann B. Discovery, Structure–Activity Relationship, and Binding Mode of an Imidazo[1,2-a]pyridine Series of Autotaxin Inhibitors. J Med Chem 2017; 60:7371-7392. [DOI: 10.1021/acs.jmedchem.7b00647] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
|
8 |
40 |
4
|
Labéguère F, Dupont S, Alvey L, Soulas F, Newsome G, Tirera A, Quenehen V, Mai TTT, Deprez P, Blanqué R, Oste L, Le Tallec S, De Vos S, Hagers A, Vandevelde A, Nelles L, Vandervoort N, Conrath K, Christophe T, van der Aar E, Wakselman E, Merciris D, Cottereaux C, da Costa C, Saniere L, Clement-Lacroix P, Jenkins L, Milligan G, Fletcher S, Brys R, Gosmini R. Discovery of 9-Cyclopropylethynyl-2-(( S)-1-[1,4]dioxan-2-ylmethoxy)-6,7-dihydropyrimido[6,1- a]isoquinolin-4-one (GLPG1205), a Unique GPR84 Negative Allosteric Modulator Undergoing Evaluation in a Phase II Clinical Trial. J Med Chem 2020; 63:13526-13545. [PMID: 32902984 DOI: 10.1021/acs.jmedchem.0c00272] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
GPR84 is a medium chain free fatty acid-binding G-protein-coupled receptor associated with inflammatory and fibrotic diseases. As the only reported antagonist of GPR84 (PBI-4050) that displays relatively low potency and selectivity, a clear need exists for an improved modulator. Structural optimization of GPR84 antagonist hit 1, identified through high-throughput screening, led to the identification of potent and selective GPR84 inhibitor GLPG1205 (36). Compared with the initial hit, 36 showed improved potency in a guanosine 5'-O-[γ-thio]triphosphate assay, exhibited metabolic stability, and lacked activity against phosphodiesterase-4. This novel pharmacological tool allowed investigation of the therapeutic potential of GPR84 inhibition. At once-daily doses of 3 and 10 mg/kg, GLPG1205 reduced disease activity index score and neutrophil infiltration in a mouse dextran sodium sulfate-induced chronic inflammatory bowel disease model, with efficacy similar to positive-control compound sulfasalazine. The drug discovery steps leading to GLPG1205 identification, currently under phase II clinical investigation, are described herein.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
23 |
5
|
Mammoliti O, Palisse A, Joannesse C, El Bkassiny S, Allart B, Jaunet A, Menet C, Coornaert B, Sonck K, Duys I, Clément-Lacroix P, Oste L, Borgonovi M, Wakselman E, Christophe T, Houvenaghel N, Jans M, Heckmann B, Sanière L, Brys R. Discovery of the S1P2 Antagonist GLPG2938 (1-[2-Ethoxy-6-(trifluoromethyl)-4-pyridyl]-3-[[5-methyl-6-[1-methyl-3-(trifluoromethyl)pyrazol-4-yl]pyridazin-3-yl]methyl]urea), a Preclinical Candidate for the Treatment of Idiopathic Pulmonary Fibrosis. J Med Chem 2021; 64:6037-6058. [PMID: 33939425 DOI: 10.1021/acs.jmedchem.1c00138] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Mounting evidence from the literature suggests that blocking S1P2 receptor (S1PR2) signaling could be effective for the treatment of idiopathic pulmonary fibrosis (IPF). However, only a few antagonists have been so far disclosed. A chemical enablement strategy led to the discovery of a pyridine series with good antagonist activity. A pyridazine series with improved lipophilic efficiency and with no CYP inhibition liability was identified by scaffold hopping. Further optimization led to the discovery of 40 (GLPG2938), a compound with exquisite potency on a phenotypic IL8 release assay, good pharmacokinetics, and good activity in a bleomycin-induced model of pulmonary fibrosis.
Collapse
|
Journal Article |
4 |
12 |
6
|
Mammoliti O, Jansen K, El Bkassiny S, Palisse A, Triballeau N, Bucher D, Allart B, Jaunet A, Tricarico G, De Wachter M, Menet C, Blanc J, Letfus V, Rupčić R, Šmehil M, Poljak T, Coornaert B, Sonck K, Duys I, Waeckel L, Lecru L, Marsais F, Jagerschmidt C, Auberval M, Pujuguet P, Oste L, Borgonovi M, Wakselman E, Christophe T, Houvenaghel N, Jans M, Heckmann B, Sanière L, Brys R. Discovery and Optimization of Orally Bioavailable Phthalazone and Cinnolone Carboxylic Acid Derivatives as S1P2 Antagonists against Fibrotic Diseases. J Med Chem 2021; 64:14557-14586. [PMID: 34581584 DOI: 10.1021/acs.jmedchem.1c01066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive lung disease. Current treatments only slow down disease progression, making new therapeutic strategies compelling. Increasing evidence suggests that S1P2 antagonists could be effective agents against fibrotic diseases. Our compound collection was mined for molecules possessing substructure features associated with S1P2 activity. The weakly potent indole hit 6 evolved into a potent phthalazone series, bearing a carboxylic acid, with the aid of a homology model. Suboptimal pharmacokinetics of a benzimidazole subseries were improved by modifications targeting potential interactions with transporters, based on concepts deriving from the extended clearance classification system (ECCS). Scaffold hopping, as a part of a chemical enablement strategy, permitted the rapid exploration of the position adjacent to the carboxylic acid. Compound 38, with good pharmacokinetics and in vitro potency, was efficacious at 10 mg/kg BID in three different in vivo mouse models of fibrotic diseases in a therapeutic setting.
Collapse
|
|
4 |
2 |
7
|
Joncour A, Desroy N, Housseman C, Bock X, Bienvenu N, Cherel L, Labeguere V, Peixoto C, Annoot D, Lepissier L, Heiermann J, Hengeveld WJ, Pilzak G, Monjardet A, Wakselman E, Roncoroni V, Le Tallec S, Galien R, David C, Vandervoort N, Christophe T, Conrath K, Jans M, Wohlkonig A, Soror S, Steyaert J, Touitou R, Fleury D, Vercheval L, Mollat P, Triballeau N, van der Aar E, Brys R, Heckmann B. Correction to Discovery, Structure–Activity Relationship, and Binding Mode of an Imidazo[1,2- a]pyridine Series of Autotaxin Inhibitors. J Med Chem 2018; 61:4270. [DOI: 10.1021/acs.jmedchem.8b00579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
|
7 |
|
8
|
Peixoto C, Joncour A, Temal-Laib T, Tirera A, Dos Santos A, Jary H, Bucher D, Laenen W, Pereira Fernandes A, Lavazais S, Delachaume C, Merciris D, Saccomani C, Drennan M, López-Ramos M, Wakselman E, Dupont S, Borgonovi M, Roca Magadan C, Monjardet A, Brys R, De Vos S, Andrews M, Jimenez JM, Amantini D, Desroy N. Discovery of Clinical Candidate GLPG3970: A Potent and Selective Dual SIK2/SIK3 Inhibitor for the Treatment of Autoimmune and Inflammatory Diseases. J Med Chem 2024; 67:5233-5258. [PMID: 38552030 PMCID: PMC11017251 DOI: 10.1021/acs.jmedchem.3c02246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/04/2024] [Accepted: 03/14/2024] [Indexed: 04/12/2024]
Abstract
The salt-inducible kinases (SIKs) SIK1, SIK2, and SIK3 belong to the adenosine monophosphate-activated protein kinase (AMPK) family of serine/threonine kinases. SIK inhibition represents a new therapeutic approach modulating pro-inflammatory and immunoregulatory pathways that holds potential for the treatment of inflammatory diseases. Here, we describe the identification of GLPG3970 (32), a first-in-class dual SIK2/SIK3 inhibitor with selectivity against SIK1 (IC50 of 282.8 nM on SIK1, 7.8 nM on SIK2 and 3.8 nM on SIK3). We outline efforts made to increase selectivity against SIK1 and improve CYP time-dependent inhibition properties through the structure-activity relationship. The dual activity of 32 in modulating the pro-inflammatory cytokine TNFα and the immunoregulatory cytokine IL-10 is demonstrated in vitro in human primary myeloid cells and human whole blood, and in vivo in mice stimulated with lipopolysaccharide. Compound 32 shows dose-dependent activity in disease-relevant mouse pharmacological models.
Collapse
|
research-article |
1 |
|