Ranieri F, Pellegrino G, Ciancio AL, Musumeci G, Noce E, Insola A, Diaz Balzani LA, Di Lazzaro V, Di Pino G. Sensorimotor integration within the primary motor cortex by selective nerve fascicle stimulation.
J Physiol 2021;
600:1497-1514. [PMID:
34921406 PMCID:
PMC9305922 DOI:
10.1113/jp282259]
[Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/13/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS
Cortical integration of sensory inputs is crucial for dexterous movement. Short-latency somatosensory afferent inhibition of motor cortical output is typically produced by peripheral whole-nerve stimulation. We exploited intraneural multichannel electrodes used to provide sensory feedback for prosthesis control to assess whether and how selective intraneural sensory stimulation affects sensorimotor cortical circuits in humans. The activation of the primary somatosensory cortex (S1) was explored by recording scalp somatosensory evoked potentials. Sensorimotor integration was tested by measuring the inhibitory effect of the afferent stimulation on the output of the primary motor cortex (M1) generated by transcranial magnetic stimulation. We demonstrate in humans that selective intraneural sensory stimulation elicits a measurable activation of S1 and that it inhibits the output of M1 at the same time range of whole-nerve superficial stimulation.
ABSTRACT
The integration of sensory inputs in the motor cortex is crucial for dexterous movement. We recently demonstrated that a closed-loop control based on the feedback provided through intraneural multi-channel electrodes implanted in the median and ulnar nerves of a participant with upper limb amputation improved manipulation skills and increased prosthesis embodiment. Here we assessed, in the same participant, whether and how selective intraneural sensory stimulation also elicits a measurable cortical activation and affects sensorimotor cortical circuits. After estimating the activation of the primary somatosensory cortex evoked by intraneural stimulation, sensorimotor integration was investigated by testing the inhibition of primary motor cortex (M1) output to transcranial magnetic stimulation, after both intraneural and perineural stimulation. Selective sensory intraneural stimulation evoked a low-amplitude, 16 ms-latency, parietal response in the same area of the earliest component evoked by whole-nerve stimulation, compatible with fast-conducting afferent fiber activation. For the first time, we show that the same intraneural stimulation was also capable of decreasing M1 output, at the same time range of the short-latency afferent inhibition effect of whole-nerve superficial stimulation. The inhibition generated by the stimulation of channels activating only sensory fibers was stronger than the one due to intraneural or perineural stimulation of channels activating mixed fibers. We demonstrate in a human subject that the cortical sensorimotor integration inhibiting M1 output previously described after the experimental whole-nerve stimulation is present also with a more ecological selective sensory fiber stimulation. Abstract Figure: Double-sided filament electrodes (ds-FILE), bearing 16 active sites, and perineural Cuff electrodes were implanted in the median and ulnar nerve of the arm in a hand amputee (upper left panel, single nerve represented). Selectivity of stimulation (1), evoked activity in the somatosensory cortex (2), and sensorimotor integration (3) were investigated. TMS: transcranial magnetic stimulation. This article is protected by copyright. All rights reserved.
Collapse