1
|
Bhimanapati GR, Lin Z, Meunier V, Jung Y, Cha J, Das S, Xiao D, Son Y, Strano MS, Cooper VR, Liang L, Louie SG, Ringe E, Zhou W, Kim SS, Naik RR, Sumpter BG, Terrones H, Xia F, Wang Y, Zhu J, Akinwande D, Alem N, Schuller JA, Schaak RE, Terrones M, Robinson JA. Recent Advances in Two-Dimensional Materials beyond Graphene. ACS NANO 2015; 9:11509-39. [PMID: 26544756 DOI: 10.1021/acsnano.5b05556] [Citation(s) in RCA: 930] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The isolation of graphene in 2004 from graphite was a defining moment for the "birth" of a field: two-dimensional (2D) materials. In recent years, there has been a rapidly increasing number of papers focusing on non-graphene layered materials, including transition-metal dichalcogenides (TMDs), because of the new properties and applications that emerge upon 2D confinement. Here, we review significant recent advances and important new developments in 2D materials "beyond graphene". We provide insight into the theoretical modeling and understanding of the van der Waals (vdW) forces that hold together the 2D layers in bulk solids, as well as their excitonic properties and growth morphologies. Additionally, we highlight recent breakthroughs in TMD synthesis and characterization and discuss the newest families of 2D materials, including monoelement 2D materials (i.e., silicene, phosphorene, etc.) and transition metal carbide- and carbon nitride-based MXenes. We then discuss the doping and functionalization of 2D materials beyond graphene that enable device applications, followed by advances in electronic, optoelectronic, and magnetic devices and theory. Finally, we provide perspectives on the future of 2D materials beyond graphene.
Collapse
|
|
10 |
930 |
2
|
Kleinman SL, Ringe E, Valley N, Wustholz KL, Phillips E, Scheidt KA, Schatz GC, Van Duyne RP. Single-Molecule Surface-Enhanced Raman Spectroscopy of Crystal Violet Isotopologues: Theory and Experiment. J Am Chem Soc 2011; 133:4115-22. [DOI: 10.1021/ja110964d] [Citation(s) in RCA: 367] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
|
14 |
367 |
3
|
Wang X, Gong Y, Shi G, Chow WL, Keyshar K, Ye G, Vajtai R, Lou J, Liu Z, Ringe E, Tay BK, Ajayan PM. Chemical vapor deposition growth of crystalline monolayer MoSe2. ACS NANO 2014; 8:5125-5131. [PMID: 24680389 DOI: 10.1021/nn501175k] [Citation(s) in RCA: 335] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Recently, two-dimensional layers of transition metal dichalcogenides, such as MoS2, WS2, MoSe2, and WSe2, have attracted much attention for their potential applications in electronic and optoelectronic devices. The selenide analogues of MoS2 and WS2 have smaller band gaps and higher electron mobilities, making them more appropriate for practical devices. However, reports on scalable growth of high quality transition metal diselenide layers and studies of their properties have been limited. Here, we demonstrate the chemical vapor deposition (CVD) growth of uniform MoSe2 monolayers under ambient pressure, resulting in large single crystalline islands. The photoluminescence intensity and peak position indicates a direct band gap of 1.5 eV for the MoSe2 monolayers. A back-gated field effect transistor based on MoSe2 monolayer shows n-type channel behavior with average mobility of 50 cm(2) V(-1) s(-1), a value much higher than the 4-20 cm(2) V(-1) s(-1) reported for vapor phase grown MoS2.
Collapse
|
|
11 |
335 |
4
|
Zhang C, Sha J, Fei H, Liu M, Yazdi S, Zhang J, Zhong Q, Zou X, Zhao N, Yu H, Jiang Z, Ringe E, Yakobson BI, Dong J, Chen D, Tour JM. Single-Atomic Ruthenium Catalytic Sites on Nitrogen-Doped Graphene for Oxygen Reduction Reaction in Acidic Medium. ACS NANO 2017; 11:6930-6941. [PMID: 28656759 DOI: 10.1021/acsnano.7b02148] [Citation(s) in RCA: 217] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The cathodic oxygen reduction reaction (ORR) is essential in the electrochemical energy conversion of fuel cells. Here, through the NH3 atmosphere annealing of a graphene oxide (GO) precursor containing trace amounts of Ru, we have synthesized atomically dispersed Ru on nitrogen-doped graphene that performs as an electrocatalyst for the ORR in acidic medium. The Ru/nitrogen-doped GO catalyst exhibits excellent four-electron ORR activity, offering onset and half-wave potentials of 0.89 and 0.75 V, respectively, vs a reversible hydrogen electrode (RHE) in 0.1 M HClO4, together with better durability and tolerance toward methanol and carbon monoxide poisoning than seen in commercial Pt/C catalysts. X-ray adsorption fine structure analysis and aberration-corrected high-angle annular dark-field scanning transmission electron microscopy are performed and indicate that the chemical structure of Ru is predominantly composed of isolated Ru atoms coordinated with nitrogen atoms on the graphene substrate. Furthermore, a density function theory study of the ORR mechanism suggests that a Ru-oxo-N4 structure appears to be responsible for the ORR catalytic activity in the acidic medium. These findings provide a route for the design of efficient ORR single-atom catalysts.
Collapse
|
|
8 |
217 |
5
|
Glavin NR, Rao R, Varshney V, Bianco E, Apte A, Roy A, Ringe E, Ajayan PM. Emerging Applications of Elemental 2D Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1904302. [PMID: 31667920 DOI: 10.1002/adma.201904302] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/08/2019] [Indexed: 05/09/2023]
Abstract
As elemental main group materials (i.e., silicon and germanium) have dominated the field of modern electronics, their monolayer 2D analogues have shown great promise for next-generation electronic materials as well as potential game-changing properties for optoelectronics, energy, and beyond. These atomically thin materials composed of single atomic variants of group III through group VI elements on the periodic table have already demonstrated exciting properties such as near-room-temperature topological insulation in bismuthene, extremely high electron mobilities in phosphorene and silicone, and substantial Li-ion storage capability in borophene. Isolation of these materials within the postgraphene era began with silicene in 2010 and quickly progressed to the experimental identification or theoretical prediction of 15 of the 18 main group elements existing as solids at standard pressure and temperatures. This review first focuses on the significance of defects/functionalization, discussion of different allotropes, and overarching structure-property relationships of 2D main group elemental materials. Then, a complete review of emerging applications in electronics, sensing, spintronics, plasmonics, photodetectors, ultrafast lasers, batteries, supercapacitors, and thermoelectrics is presented by application type, including detailed descriptions of how the material properties may be tailored toward each specific application.
Collapse
|
Review |
5 |
178 |
6
|
Ringe E, Sharma B, Henry AI, Marks LD, Van Duyne RP. Single nanoparticle plasmonics. Phys Chem Chem Phys 2013; 15:4110-29. [DOI: 10.1039/c3cp44574g] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
|
12 |
160 |
7
|
Ringe E, Langille MR, Sohn K, Zhang J, Huang J, Mirkin CA, Van Duyne RP, Marks LD. Plasmon Length: A Universal Parameter to Describe Size Effects in Gold Nanoparticles. J Phys Chem Lett 2012; 3:1479-83. [PMID: 26285624 DOI: 10.1021/jz300426p] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Localized surface plasmon resonances are central to many sensing and signal transmission applications. Tuning of the plasmon energy and line width through particle size and shape is critical to the design of such devices. To gain quantitative information on the size dependence of plasmonic properties, mainly due to retardation effects, we correlated optical spectra and structures for 500 individual gold particles of five different shapes. We show that the effects of size on the dipolar plasmon frequency and line width are shape-independent when size is described by the plasmon length, the length over which the oscillations take place. This result suggests that edge effects are rather unimportant for dipolar modes in a large size range between 50 and 350 nm. Therefore, in describing the size-dependent plasmonic properties of nanoparticles, one should focus on the distance along which the oscillation occurs rather than its intrinsic shape.
Collapse
|
|
13 |
114 |
8
|
McClain MJ, Schlather AE, Ringe E, King NS, Liu L, Manjavacas A, Knight MW, Kumar I, Whitmire KH, Everitt HO, Nordlander P, Halas NJ. Aluminum nanocrystals. NANO LETTERS 2015; 15:2751-5. [PMID: 25790095 DOI: 10.1021/acs.nanolett.5b00614] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We demonstrate the facile synthesis of high purity aluminum nanocrystals over a range of controlled sizes from 70 to 220 nm diameter with size control achieved through a simple modification of solvent ratios in the reaction solution. The monodisperse, icosahedral, and trigonal bipyramidal nanocrystals are air-stable for weeks, due to the formation of a 2-4 nm thick passivating oxide layer on their surfaces. We show that the nanocrystals support size-dependent ultraviolet and visible plasmon modes, providing a far more sustainable alternative to gold and silver nanoparticles currently in widespread use.
Collapse
|
|
10 |
113 |
9
|
Byers CP, Zhang H, Swearer DF, Yorulmaz M, Hoener BS, Huang D, Hoggard A, Chang WS, Mulvaney P, Ringe E, Halas NJ, Nordlander P, Link S, Landes CF. From tunable core-shell nanoparticles to plasmonic drawbridges: Active control of nanoparticle optical properties. SCIENCE ADVANCES 2015; 1:e1500988. [PMID: 26665175 PMCID: PMC4672758 DOI: 10.1126/sciadv.1500988] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/28/2015] [Indexed: 05/17/2023]
Abstract
The optical properties of metallic nanoparticles are highly sensitive to interparticle distance, giving rise to dramatic but frequently irreversible color changes. By electrochemical modification of individual nanoparticles and nanoparticle pairs, we induced equally dramatic, yet reversible, changes in their optical properties. We achieved plasmon tuning by oxidation-reduction chemistry of Ag-AgCl shells on the surfaces of both individual and strongly coupled Au nanoparticle pairs, resulting in extreme but reversible changes in scattering line shape. We demonstrated reversible formation of the charge transfer plasmon mode by switching between capacitive and conductive electronic coupling mechanisms. Dynamic single-particle spectroelectrochemistry also gave an insight into the reaction kinetics and evolution of the charge transfer plasmon mode in an electrochemically tunable structure. Our study represents a highly useful approach to the precise tuning of the morphology of narrow interparticle gaps and will be of value for controlling and activating a range of properties such as extreme plasmon modulation, nanoscopic plasmon switching, and subnanometer tunable gap applications.
Collapse
|
research-article |
10 |
85 |
10
|
Ringe E, Van Duyne RP, Marks LD. Wulff construction for alloy nanoparticles. NANO LETTERS 2011; 11:3399-403. [PMID: 21744799 DOI: 10.1021/nl2018146] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The Wulff construction is an invaluable tool to understand and predict the shape of nanoparticles. We demonstrate here that this venerable model, which gives a size-independent thermodynamic shape, becomes size dependent in the nanoscale regime for an alloy and that the infinite reservoir approximation breaks down. The improvements in structure and energetic modeling have wide-ranging implications both in areas where energetics govern (e.g., nucleation and growth) and where the surface composition is important (e.g., heterogeneous catalysis).
Collapse
|
|
14 |
77 |
11
|
Peng L, Ringe E, Van Duyne RP, Marks LD. Segregation in bimetallic nanoparticles. Phys Chem Chem Phys 2015; 17:27940-51. [DOI: 10.1039/c5cp01492a] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Theoretical models and experimental results for segregation in bimetallic nanoparticles are discussed and compared in this perspective.
Collapse
|
|
10 |
67 |
12
|
Abstract
Nanoparticles of some metals (Cu/Ag/Au) sustain oscillations of their electron cloud called localized surface plasmon resonances (LSPRs). These resonances can occur at optical frequencies and be driven by light, generating enhanced electric fields and spectacular photon scattering. However, current plasmonic metals are rare, expensive, and have a limited resonant frequency range. Recently, much attention has been focused on earth-abundant Al, but Al nanoparticles cannot resonate in the IR. The earth-abundant Mg nanoparticles reported here surmount this limitation. A colloidal synthesis forms hexagonal nanoplates, reflecting Mg's simple hexagonal lattice. The NPs form a thin self-limiting oxide layer that renders them stable suspended in 2-propanol solution for months and dry in air for at least two week. They sustain LSPRs observable in the far-field by optical scattering spectroscopy. Electron energy loss spectroscopy experiments and simulations reveal multiple size-dependent resonances with energies across the UV, visible, and IR. The symmetry of the modes and their interaction with the underlying substrate are studied using numerical methods. Colloidally synthesized Mg thus offers a route to inexpensive, stable nanoparticles with novel shapes and resonances spanning the entire UV-vis-NIR spectrum, making them a flexible addition to the nanoplasmonics toolbox.
Collapse
|
|
7 |
61 |
13
|
Agrawal A, Singh A, Yazdi S, Singh A, Ong GK, Bustillo K, Johns RW, Ringe E, Milliron DJ. Resonant Coupling between Molecular Vibrations and Localized Surface Plasmon Resonance of Faceted Metal Oxide Nanocrystals. NANO LETTERS 2017; 17:2611-2620. [PMID: 28337921 DOI: 10.1021/acs.nanolett.7b00404] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Doped metal oxides are plasmonic materials that boast both synthetic and postsynthetic spectral tunability. They have already enabled promising smart window and optoelectronic technologies and have been proposed for use in surface enhanced infrared absorption spectroscopy (SEIRA) and sensing applications. Herein, we report the first step toward realization of the former utilizing cubic F and Sn codoped In2O3 nanocrystals (NCs) to couple to the C-H vibration of surface-bound oleate ligands. Electron energy loss spectroscopy is used to map the strong near-field enhancement around these NCs that enables localized surface plasmon resonance (LSPR) coupling between adjacent nanocrystals and LSPR-molecular vibration coupling. Fourier transform infrared spectroscopy measurements and finite element simulations are applied to observe and explain the nature of the coupling phenomena, specifically addressing coupling in mesoscale assembled films. The Fano line shape signatures of LSPR-coupled molecular vibrations are rationalized with two-port temporal coupled mode theory. With this combined theoretical and experimental approach, we describe the influence of coupling strength and relative detuning between the molecular vibration and LSPR on the enhancement factor and further explain the basis of the observed Fano line shape by deconvoluting the combined response of the LSPR and molecular vibration in transmission, absorption and reflection. This study therefore illustrates various factors involved in determining the LSPR-LSPR and LSPR-molecular vibration coupling for metal oxide materials and provides a fundamental basis for the design of sensing or SEIRA substrates.
Collapse
|
|
8 |
55 |
14
|
Swearer DF, Leary RK, Newell R, Yazdi S, Robatjazi H, Zhang Y, Renard D, Nordlander P, Midgley PA, Halas NJ, Ringe E. Transition-Metal Decorated Aluminum Nanocrystals. ACS NANO 2017; 11:10281-10288. [PMID: 28945360 DOI: 10.1021/acsnano.7b04960] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Recently, aluminum has been established as an earth-abundant alternative to gold and silver for plasmonic applications. Particularly, aluminum nanocrystals have shown to be promising plasmonic photocatalysts, especially when coupled with catalytic metals or oxides into "antenna-reactor" heterostructures. Here, a simple polyol synthesis is presented as a flexible route to produce aluminum nanocrystals decorated with eight varieties of size-tunable transition-metal nanoparticle islands, many of which have precedence as heterogeneous catalysts. High-resolution and three-dimensional structural analysis using scanning transmission electron microscopy and electron tomography shows that abundant nanoparticle island decoration in the catalytically relevant few-nanometer size range can be achieved, with many islands spaced closely to their neighbors. When coupled with the Al nanocrystal plasmonic antenna, these small decorating islands will experience increased light absorption and strong hot-spot generation. This combination makes transition-metal decorated aluminum nanocrystals a promising material platform to develop plasmonic photocatalysis, surface-enhanced spectroscopies, and quantum plasmonics.
Collapse
|
|
8 |
52 |
15
|
Zhang Y, Yang P, Habeeb Muhammed MA, Alsaiari SK, Moosa B, Almalik A, Kumar A, Ringe E, Khashab NM. Tunable and Linker Free Nanogaps in Core-Shell Plasmonic Nanorods for Selective and Quantitative Detection of Circulating Tumor Cells by SERS. ACS APPLIED MATERIALS & INTERFACES 2017; 9:37597-37605. [PMID: 28990755 DOI: 10.1021/acsami.7b10959] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Controlling the size, number, and shape of nanogaps in plasmonic nanostructures is of significant importance for the development of novel quantum plasmonic devices and quantitative sensing techniques such as surface-enhanced Raman scattering (SERS). Here, we introduce a new synthetic method based on coordination interactions and galvanic replacement to prepare core-shell plasmonic nanorods with tunable enclosed nanogaps. Decorating Au nanorods with Raman reporters that strongly coordinate Ag+ ions (e.g., 4-mercaptopyridine) afforded uniform nucleation sites to form a sacrificial Ag shell. Galvanic replacement of the Ag shell by HAuCl4 resulted in Au-AgAu core-shell structure with a uniform intra-nanoparticle gap. The size (length and width) and morphology of the core-shell plasmonic nanorods as well as the nanogap size depend on the concentration of the coordination complexes formed between Ag+ ions and 4-mercaptopyridine. Moreover, encapsulating Raman reporters within the nanogaps afforded an internal standard for sensitive and quantitative SERS analysis. To test the applicability, core-shell plasmonic nanorods were functionalized with aptamers specific to circulating tumor cells such as MCF-7 (Michigan Cancer Foundation-7, breast cancer cell line). This system could selectively detect as low as 20 MCF-7 cells in a blood mimicking fluid employing SERS. The linking DNA duplex on core-shell plasmonic nanorods can also intercalate hydrophobic drug molecules such as Doxorubicin, thereby increasing the versatility of this sensing platform to include drug delivery. Our synthetic method offers the possibility of developing multifunctional SERS-active materials with a wide range of applications including biosensing, imaging, and therapy.
Collapse
|
|
8 |
41 |
16
|
Ringe E. Shapes, Plasmonic Properties, and Reactivity of Magnesium Nanoparticles. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2020; 124:15665-15679. [PMID: 32905178 PMCID: PMC7467285 DOI: 10.1021/acs.jpcc.0c03871] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/10/2020] [Indexed: 05/19/2023]
Abstract
Localized surface plasmon resonances have attracted much attention due to their ability to enhance light-matter interactions and manipulate light at the subwavelength level. Recently, alternatives to the rare and expensive noble metals Ag and Au have been sought for more sustainable and large-scale plasmonic utilization. Mg supports plasmon resonances, is one of the most abundant elements in earth's crust, and is fully biocompatible, making it an attractive framework for plasmonics. This feature article first reports the hexagonal, folded, and kite-like shapes expected theoretically from a modified Wulff construction for single crystal and twinned Mg structures and describes their excellent match with experimental results. Then, the optical response of Mg nanoparticles is overviewed, highlighting Mg's ability to sustain localized surface plasmon resonances across the ultraviolet, visible, and near-infrared electromagnetic ranges. The various resonant modes of hexagons, leading to the highly localized electric field characteristic of plasmonic behavior, are presented numerically and experimentally. The evolution of these modes and the associated field from hexagons to the lower symmetry folded structures is then probed, again by matching simulations, optical, and electron spectroscopy data. Lastly, results demonstrating the opportunities and challenges related to the high chemical reactivity of Mg are discussed, including surface oxide formation and galvanic replacement as a synthetic tool for bimetallics. This Feature Article concludes with a summary of the next steps, open questions, and future directions in the field of Mg nanoplasmonics.
Collapse
|
Review |
5 |
36 |
17
|
Zhang X, Jin Z, Wang L, Hachtel JA, Villarreal E, Wang Z, Ha T, Nakanishi Y, Tiwary CS, Lai J, Dong L, Yang J, Vajtai R, Ringe E, Idrobo JC, Yakobson BI, Lou J, Gambin V, Koltun R, Ajayan PM. Low Contact Barrier in 2H/1T' MoTe 2 In-Plane Heterostructure Synthesized by Chemical Vapor Deposition. ACS APPLIED MATERIALS & INTERFACES 2019; 11:12777-12785. [PMID: 30854848 DOI: 10.1021/acsami.9b00306] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Metal-semiconductor contact has been a critical topic in the semiconductor industry because it influences device performance remarkably. Conventional metals have served as the major contact material in electronic and optoelectronic devices, but such a selection becomes increasingly inadequate for emerging novel materials such as two-dimensional (2D) materials. Deposited metals on semiconducting 2D channels usually form large resistance contacts due to the high Schottky barrier. A few approaches have been reported to reduce the contact resistance but they are not suitable for large-scale application or they cannot create a clean and sharp interface. In this study, a chemical vapor deposition (CVD) technique is introduced to produce large-area semiconducting 2D material (2H MoTe2) planarly contacted by its metallic phase (1T' MoTe2). We demonstrate the phase-controllable synthesis and systematic characterization of large-area MoTe2 films, including pure 2H phase or 1T' phase, and 2H/1T' in-plane heterostructure. Theoretical simulation shows a lower Schottky barrier in 2H/1T' junction than in Ti/2H contact, which is confirmed by electrical measurement. This one-step CVD method to synthesize large-area, seamless-bonding 2D lateral metal-semiconductor junction can improve the performance of 2D electronic and optoelectronic devices, paving the way for large-scale 2D integrated circuits.
Collapse
|
|
6 |
35 |
18
|
Prochaska L, Li X, MacFarland DC, Andrews AM, Bonta M, Bianco EF, Yazdi S, Schrenk W, Detz H, Limbeck A, Si Q, Ringe E, Strasser G, Kono J, Paschen S. Singular charge fluctuations at a magnetic quantum critical point. Science 2020; 367:285-288. [DOI: 10.1126/science.aag1595] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/07/2019] [Accepted: 12/05/2019] [Indexed: 11/02/2022]
|
|
5 |
31 |
19
|
Masson JF, Biggins JS, Ringe E. Machine learning for nanoplasmonics. NATURE NANOTECHNOLOGY 2023; 18:111-123. [PMID: 36702956 DOI: 10.1038/s41565-022-01284-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 10/27/2022] [Indexed: 06/18/2023]
Abstract
Plasmonic nanomaterials have outstanding optoelectronic properties potentially enabling the next generation of catalysts, sensors, lasers and photothermal devices. Owing to optical and electron techniques, modern nanoplasmonics research generates large datasets characterizing features across length scales. Furthermore, optimizing syntheses leading to specific nanostructures requires time-consuming multiparametric approaches. These complex datasets and trial-and-error practices make nanoplasmonics research ripe for the application of machine learning (ML) and advanced data processing methods. ML algorithms capture relationships between synthesis, structure and performance in a way that far exceeds conventional simulation and theory approaches, enabling effective performance optimization. For example, neural networks can tailor the nanostructure morphology to target desired properties, identify synthetic conditions and extract quantitative information from complex data. Here we discuss the nascent field of ML for nanoplasmonics, describe the opportunities and limitations of ML in nanoplasmonic research, and conclude that ML is potentially transformative, especially if the community curates and shares its big data.
Collapse
|
Review |
2 |
27 |
20
|
Asselin J, Boukouvala C, Hopper ER, Ramasse QM, Biggins JS, Ringe E. Tents, Chairs, Tacos, Kites, and Rods: Shapes and Plasmonic Properties of Singly Twinned Magnesium Nanoparticles. ACS NANO 2020; 14:5968-5980. [PMID: 32286792 PMCID: PMC7254836 DOI: 10.1021/acsnano.0c01427] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/14/2020] [Indexed: 05/26/2023]
Abstract
Nanostructures of some metals can sustain light-driven electron oscillations called localized surface plasmon resonances, or LSPRs, that give rise to absorption, scattering, and local electric field enhancement. Their resonant frequency is dictated by the nanoparticle (NP) shape and size, fueling much research geared toward discovery and control of new structures. LSPR properties also depend on composition; traditional, rare, and expensive noble metals (Ag, Au) are increasingly eclipsed by earth-abundant alternatives, with Mg being an exciting candidate capable of sustaining resonances across the ultraviolet, visible, and near-infrared spectral ranges. Here, we report numerical predictions and experimental verifications of a set of shapes based on Mg NPs displaying various twinning patterns including (101̅1), (101̅2), (101̅3), and (112̅1), that create tent-, chair-, taco-, and kite-shaped NPs, respectively. These are strikingly different from what is obtained for typical plasmonic metals because Mg crystallizes in a hexagonal close packed structure, as opposed to the cubic Al, Cu, Ag, and Au. A numerical survey of the optical response of the various structures, as well as the effect of size and aspect ratio, reveals their rich array of resonances, which are supported by single-particle optical scattering experiments. Further, corresponding numerical and experimental studies of the near-field plasmon distribution via scanning transmission electron microscopy electron-energy loss spectroscopy unravels a mode nature and distribution that are unlike those of either hexagonal plates or cylindrical rods. These NPs, made from earth-abundant Mg, provide interesting ways to control light at the nanoscale across the ultraviolet, visible, and near-infrared spectral ranges.
Collapse
|
research-article |
5 |
26 |
21
|
Mesbah A, Ringe E, Lebègue S, Van Duyne RP, Ibers JA. Ba2An(S2)2S2 (An = U, Th): Syntheses, Structures, Optical, and Electronic Properties. Inorg Chem 2012. [DOI: 10.1021/ic302223m] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
|
13 |
25 |
22
|
Zheng J, Boukouvala C, Lewis GR, Ma Y, Chen Y, Ringe E, Shao L, Huang Z, Wang J. Halide-assisted differential growth of chiral nanoparticles with threefold rotational symmetry. Nat Commun 2023; 14:3783. [PMID: 37355650 DOI: 10.1038/s41467-023-39456-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/14/2023] [Indexed: 06/26/2023] Open
Abstract
Enriching the library of chiral plasmonic nanoparticles that can be chemically mass-produced will greatly facilitate the applications of chiral plasmonics in areas ranging from constructing optical metamaterials to sensing chiral molecules and activating immune cells. Here we report on a halide-assisted differential growth strategy that can direct the anisotropic growth of chiral Au nanoparticles with tunable sizes and diverse morphologies. Anisotropic Au nanodisks are employed as seeds to yield triskelion-shaped chiral nanoparticles with threefold rotational symmetry and high dissymmetry factors. The averaged scattering g-factors of the L- and D-nanotriskelions are as large as 0.57 and - 0.49 at 650 nm, respectively. The Au nanotriskelions have been applied in chiral optical switching devices and chiral nanoemitters. We also demonstrate that the manipulation of the directional growth rate enables the generation of a variety of chiral morphologies in the presence of homochiral ligands.
Collapse
|
|
2 |
22 |
23
|
Jin GB, Ringe E, Long GJ, Grandjean F, Sougrati MT, Choi ES, Wells DM, Balasubramanian M, Ibers JA. Structural, Electronic, and Magnetic Properties of UFeS3 and UFeSe3. Inorg Chem 2010; 49:10455-67. [PMID: 20964309 DOI: 10.1021/ic101474e] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
|
15 |
20 |
24
|
Bruzas I, Unser S, Yazdi S, Ringe E, Sagle L. Ultrasensitive Plasmonic Platform for Label-Free Detection of Membrane-Associated Species. Anal Chem 2016; 88:7968-74. [PMID: 27436204 DOI: 10.1021/acs.analchem.6b00801] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lipid membranes and membrane proteins are important biosensing targets, motivating the development of label-free methods with improved sensitivity. Silica-coated metal nanoparticles allow these systems to be combined with supported lipid bilayers for sensing membrane proteins through localized surface plasmon resonance (LSPR). However, the small sensing volume of LSPR makes the thickness of the silica layer critical for performance. Here, we develop a simple, inexpensive, and rapid sol-gel method for preparing thin conformal, continuous silica films and demonstrate its applicability using gold nanodisk arrays with LSPRs in the near-infrared range. Silica layers as thin as ∼5 nm are observed using cross-sectional scanning transmission electron microscopy. The loss in sensitivity due to the thin silica coating was found to be only 16%, and the biosensing capabilities of the substrates were assessed through the binding of cholera toxin B to GM1 lipids. This sensor platform should prove useful in the rapid, multiplexed detection and screening of membrane-associated biological targets.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
20 |
25
|
Koscielski LA, Ringe E, Van Duyne RP, Ellis DE, Ibers JA. Single-crystal structures, optical absorptions, and electronic distributions of thorium oxychalcogenides ThOQ (Q = S, Se, Te). Inorg Chem 2012; 51:8112-8. [PMID: 22799890 DOI: 10.1021/ic300510x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The compounds ThOS, ThOSe, and ThOTe have been synthesized, and their structures have been determined by means of single-crystal X-ray diffraction methods. All three compounds adopt the PbFCl structure type in the tetragonal space group D(4h)(7) - P4/nmm. More precise crystallographic data have been obtained for ThOS and ThOSe, which had previously only been known from X-ray powder diffraction data. ThOS, ThOSe, and ThOTe are yellow-, orange-, and black-colored, respectively. From single-crystal optical absorption measurements the band gaps are 2.22, 1.65, and 1.45 eV, respectively. Optical band gaps, ionic charges, and densities of states were calculated for the three compounds with the use of Density Functional methods.
Collapse
|
Journal Article |
13 |
19 |