1
|
Chiang GCK, Barua D, Dittmar E, Kramer EM, de Casas RR, Donohue K. Pleiotropy in the wild: the dormancy gene DOG1 exerts cascading control on life cycles. Evolution 2012; 67:883-93. [PMID: 23461337 DOI: 10.1111/j.1558-5646.2012.01828.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the wild, organismal life cycles occur within seasonal cycles, so shifts in the timing of developmental transitions can alter the seasonal environment experienced subsequently. Effects of genes that control the timing of prior developmental events can therefore be magnified in the wild because they determine seasonal conditions experienced by subsequent life stages, which can influence subsequent phenotypic expression. We examined such environmentally induced pleiotropy of developmental-timing genes in a field experiment with Arabidopsis thaliana. When studied in the field under natural seasonal variation, an A. thaliana seed-dormancy gene, Delay Of Germination 1 (DOG1), was found to influence not only germination, but also flowering time, overall life history, and fitness. Flowering time of the previous generation, in turn, imposed maternal effects that altered germination, the effects of DOG1 alleles, and the direction of natural selection on these alleles. Thus under natural conditions, germination genes act as flowering genes and potentially vice versa. These results illustrate how seasonal environmental variation can alter pleiotropic effects of developmental-timing genes, such that effects of genes that regulate prior life stages ramify to influence subsequent life stages. In this case, one gene acting at the seed stage impacted the entire life cycle.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
13 |
69 |
2
|
Dittmar EL, Oakley CG, Ågren J, Schemske DW. Flowering time QTL in natural populations ofArabidopsis thalianaand implications for their adaptive value. Mol Ecol 2014; 23:4291-303. [DOI: 10.1111/mec.12857] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 06/27/2014] [Indexed: 01/31/2023]
|
|
11 |
68 |
3
|
Dittmar EL, Oakley CG, Conner JK, Gould BA, Schemske DW. Factors influencing the effect size distribution of adaptive substitutions. Proc Biol Sci 2016; 283:20153065. [PMID: 27053750 PMCID: PMC4843649 DOI: 10.1098/rspb.2015.3065] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/15/2016] [Indexed: 12/17/2022] Open
Abstract
The distribution of effect sizes of adaptive substitutions has been central to evolutionary biology since the modern synthesis. Early theory proposed that because large-effect mutations have negative pleiotropic consequences, only small-effect mutations contribute to adaptation. More recent theory suggested instead that large-effect mutations could be favoured when populations are far from their adaptive peak. Here we suggest that the distributions of effect sizes are expected to differ among study systems, reflecting the wide variation in evolutionary forces and ecological conditions experienced in nature. These include selection, mutation, genetic drift, gene flow, and other factors such as the degree of pleiotropy, the distance to the phenotypic optimum, whether the optimum is stable or moving, and whether new mutation or standing genetic variation provides the source of adaptive alleles. Our goal is to review how these factors might affect the distribution of effect sizes and to identify new research directions. Until more theory and empirical work is available, we feel that it is premature to make broad generalizations about the effect size distribution of adaptive substitutions important in nature.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
58 |
4
|
de Casas RR, Kovach K, Dittmar E, Barua D, Barco B, Donohue K. Seed after-ripening and dormancy determine adult life history independently of germination timing. THE NEW PHYTOLOGIST 2012; 194:868-879. [PMID: 22404637 DOI: 10.1111/j.1469-8137.2012.04097.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
• Seed dormancy can affect life history through its effects on germination time. Here, we investigate its influence on life history beyond the timing of germination. • We used the response of Arabidopsis thaliana to chilling at the germination and flowering stages to test the following: how seed dormancy affects germination responses to the environment; whether variation in dormancy affects adult phenology independently of germination time; and whether environmental cues experienced by dormant seeds have an effect on adult life history. • Dormancy conditioned the germination response to low temperatures, such that prolonged periods of chilling induced dormancy in nondormant seeds, but stimulated germination in dormant seeds. The alleviation of dormancy through after-ripening was associated with earlier flowering, independent of germination date. Experimental dormancy manipulations showed that prolonged chilling at the seed stage always induced earlier flowering, regardless of seed dormancy. Surprisingly, this effect of seed chilling on flowering time was observed even when low temperatures did not induce germination. • In summary, seed dormancy influences flowering time and hence life history independent of its effects on germination timing. We conclude that the seed stage has a pronounced effect on life history, the influence of which goes well beyond the timing of germination.
Collapse
|
|
13 |
26 |
5
|
Baldus SE, Zirbes TK, Weidner IC, Flucke U, Dittmar E, Thiele J, Dienes HP. Comparative quantitative analysis of macrophage populations defined by CD68 and carbohydrate antigens in normal and pathologically altered human liver tissue. Anal Cell Pathol 1998; 16:141-50. [PMID: 9699943 PMCID: PMC4611100 DOI: 10.1155/1998/192975] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Liver macrophages, which are involved in the different types of hepatitis, may indirectly induce hepatic fibrogenesis, since they have the possibility to activate hepatic stellate cells and fibroblasts by secretion of TGF-beta, TNF-alpha and IL-1. To evaluate variations of the number of liver macrophages and their subpopulations, a quantification was carried out in normal human liver tissue, fatty liver, fatty liver hepatitis and hepatitis B. Identification was performed by the mab PG-M1 (anti-CD68) and, comparatively, four lectins, Griffonia simplicifolia agglutinin I (GSA-I), Erythrina cristagalli agglutinin (ECA), peanut agglutinin (PNA) and soybean agglutinin (SBA). A slight decrease in the frequency of macrophages in pericentral fields was observable in fatty liver and fatty liver hepatitis as compared to normal liver tissue. On the other hand, the number of CD68+ cells was significantly enhanced in hepatitis B with moderate and severe inflammatory activity. The highest incidence of macrophages was found in portal tracts of liver with fatty liver hepatitis and, particularly, hepatitis B. The fraction of cells stained by ECA, PNA or SBA did not increase significantly under pathological conditions. In contrast, the percentage of GSA-I binding macrophages was higher in liver parenchyma of hepatitis B and in portal tract macrophages in fatty liver hepatitis and also hepatitis B. In conclusion, our results indicate that GSA-I may aid in the detection of the subpopulation of activated macrophages which are assumed to play a pivotal role in liver pathology.
Collapse
|
other |
27 |
13 |
6
|
Himms-Hagen J, Dittmar E, Zaror-Behrens G. Polypeptide turnover in brown adipose tissue mitochondria during acclimation of rats to cold. CANADIAN JOURNAL OF BIOCHEMISTRY 1980; 58:336-44. [PMID: 7378879 DOI: 10.1139/o80-044] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
During the initial phase of cold-induced growth of brown adipose tissue in rats there is a selective increase in the incorporation of infused [3H]phenylalanine into mitochondrial membrane polypeptides of molecular weight 25 000–35 000. This is interpreted as a selective increase in the synthesis of a 32 000 polypeptide, of which the proportion is known to increase in brown adipose tissue mitochondria when the tissue has a high capacity for thermogenesis, as in the cold-acclimated rat. This polypeptide is known to be associated with the thermogenic proton conductance pathway. A simultaneous selective decrease in degradation or the formation from larger mitochondrial membrane polypeptides may also occur. In fully cold-acclimated rats, in which a new steady state is reached, there is a general increase in turnover of all mitochondrial membrane polypeptides but no marked selective changes in pattern of incorporation of radioactive amino acid or in rates of disappearance of radioactivity from groups of polypeptides. Isolated brown adipose tissue mitochondria incorporate [3H]phenylalanine principally into polypeptides of molecular weight 25 000–35 000. No change in the pattern of incorporation occurred in mitochondria isolated from brown adipose tissue of cold-exposed (2 weeks) rats. On the basis of these and preceding results it is concluded that the cold-induced change in mitochondrial composition in brown adipose tissue, which occurs at the same time as tissue and mitochondrial growth, is brought about by selective changes in cytosolic protein synthesis and possibly also by selectively altered degradation or conversion of mitochondrial polypeptides.
Collapse
|
|
45 |
11 |
7
|
Dittmar EL, Schemske DW. The Edaphic Environment Mediates Flowering-Time Differentiation Between Adjacent Populations of Leptosiphon Parviflorus. J Hered 2017; 109:90-99. [DOI: 10.1093/jhered/esx090] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 10/16/2017] [Indexed: 12/19/2022] Open
|
|
8 |
6 |
8
|
Temme AA, Kerr KL, Nolting KM, Dittmar EL, Masalia RR, Bucksch AK, Burke JM, Donovan LA. The genomic basis of nitrogen utilization efficiency and trait plasticity to improve nutrient stress tolerance in cultivated sunflower. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2527-2544. [PMID: 38270266 DOI: 10.1093/jxb/erae025] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/23/2024] [Indexed: 01/26/2024]
Abstract
Maintaining crop productivity is challenging as population growth, climate change, and increasing fertilizer costs necessitate expanding crop production to poorer lands whilst reducing inputs. Enhancing crops' nutrient use efficiency is thus an important goal, but requires a better understanding of related traits and their genetic basis. We investigated variation in low nutrient stress tolerance in a diverse panel of cultivated sunflower genotypes grown under high and low nutrient conditions, assessing relative growth rate (RGR) as performance. We assessed variation in traits related to nitrogen utilization efficiency (NUtE), mass allocation, and leaf elemental content. Across genotypes, nutrient limitation generally reduced RGR. Moreover, there was a negative correlation between vigor (RGR in control) and decline in RGR in response to stress. Given this trade-off, we focused on nutrient stress tolerance independent of vigor. This tolerance metric correlated with the change in NUtE, plasticity for a suite of morphological traits, and leaf element content. Genome-wide associations revealed regions associated with variation and plasticity in multiple traits, including two regions with seemingly additive effects on NUtE change. Our results demonstrate potential avenues for improving sunflower nutrient stress tolerance independent of vigor, and highlight specific traits and genomic regions that could play a role in enhancing tolerance.
Collapse
|
|
1 |
2 |
9
|
Baldus SE, Wickenhauser C, Dittmar E, Stefanovic A, Thiele J. Visualization of carbohydrate-binding molecules expressed by myelomono- and erythropoietic cells derived from human bone marrow: an immunoenzymatic double-staining study. THE HISTOCHEMICAL JOURNAL 2000; 32:27-32. [PMID: 10805382 DOI: 10.1023/a:1003954111600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Interactions between human haematopoietic and bone marrow stromal cells are governed by complex carbohydrate-mediated adhesion processes. In order to evaluate corresponding carbohydrate-binding sites on human myelo- and erythropoietic cells which were able to react with mono- or oligosaccharides, we established an immunocytochemical double-staining assay. In a first step, cell lineages were visualized using Lewis(x) (CD15) or glycophorin C-specific monoclonal antibodies. The second step included polyacrylamide-conjugated carbohydrate structures. According to our results, the carbohydrate-binding potential of granulopoietic cells increased during the process of maturation, contrasting a reduction of carbohydrate-binding sites on erythroid precursor cells during differentiation. With respect to previous in vitro studies, these findings shed some light on certain aspects of bone marrow homing as well as on the trafficking of mature cellular elements into circulation. It is tempting to speculate that carbohydrate-mediated adhesion mechanisms may be involved in the various functional defects of progenitor cells in chronic myelogenic leukaemia, especially regarding their complex interactions with the marrow microenvironment.
Collapse
|
|
25 |
1 |
10
|
Dittmar E. [The professional status of female radiographic assistants at home and abroad]. RONTGENPRAXIS; ZEITSCHRIFT FUR RADIOLOGISCHE TECHNIK 1968; 21:Suppl:107-14. [PMID: 5687229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
|
57 |
|
11
|
Dittmar EL, Schemske DW. Temporal Variation in Selection Influences Microgeographic Local Adaptation. Am Nat 2023; 202:471-485. [PMID: 37792918 DOI: 10.1086/725865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
AbstractEcological heterogeneity can lead to local adaptation when populations exhibit fitness trade-offs among habitats. However, the degree to which local adaptation is affected by the spatial and temporal scale of environmental variation is poorly understood. A multiyear reciprocal transplant experiment was performed with populations of the annual plant Leptosiphon parviflorus living on adjacent serpentine and nonserpentine soil. Local adaptation over this small geographic scale was observed, but there were differences in the temporal variability of selection across habitats. On serpentine soil, the local population had a consistently large survival advantage, presumably as a result of the temporal stability in selection imposed by soil cation content. In contrast, a fecundity advantage was observed for the sandstone population on its native soil type but only in the two study years with the highest rainfall. A manipulative greenhouse experiment demonstrated that the fitness advantage of the sandstone population in its native soil type depends critically on water availability. The temporal variability in local adaptation driven by variation in precipitation suggests that continued drought conditions have the potential to erode local adaptation in these populations. These results show how different selective factors can influence spatial and temporal patterns of variation in fitness trade-offs.
Collapse
|
|
2 |
|
12
|
Barnhart MH, McAssey EV, Dittmar EL, Burke JM. Transcriptomics of developing wild sunflower seeds from the extreme ends of a latitudinal gradient differing in seed oil composition. PLANT DIRECT 2022; 6:e423. [PMID: 35898559 PMCID: PMC9307388 DOI: 10.1002/pld3.423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/06/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Seed oil composition, an important agronomic trait in cultivated sunflower, varies latitudinally across the native range of its wild progenitor. This pattern is thought to be driven by selection for a higher proportion of saturated fatty acids in southern populations compared with northern populations, likely due to the different temperatures experienced during seed germination. To investigate whether these differences in fatty acid composition between northern and southern populations correspond to transcriptional variation in the expression of genes involved in fatty acid metabolism, we sequenced RNA from developing seeds of sunflowers from Texas, USA, and Saskatchewan, Canada (the extreme ends of sunflower's latitudinal range) grown in a common garden. We found 4,741 genes to be differentially expressed between Texas and Canada, including several genes involved in lipid metabolism. Several differentially expressed lipid metabolism genes also colocalized with known oil quantitative trait loci (QTL). The genes producing stearoyl-ACP-desaturases (SAD) were of particular interest because of their known role in the conversion of fully saturated into unsaturated fatty acids. Two SAD genes were more highly expressed in seeds from Canadian populations, consistent with the observation of increased levels of unsaturated fatty acids in seeds from that region. We also constructed a gene co-expression network to investigate regional variation in network modules. The results of this analysis revealed regional differentiation for eight of 12 modules but no clear relationship with oil biosynthesis. Overall, the differential expression of SAD genes offers a partial explanation for the observed differences in seed oil composition between Texas and Canada, while the expression patterns of other metabolic genes suggest complex regulation of fatty acid production and usage across latitudes.
Collapse
|
research-article |
3 |
|
13
|
Janzen GM, Dittmar EL, Langlade NB, Blanchet N, Donovan LA, Temme AA, Burke JM. Similar Transcriptomic Responses to Early and Late Drought Stresses Produce Divergent Phenotypes in Sunflower ( Helianthus annuus L.). Int J Mol Sci 2023; 24:ijms24119351. [PMID: 37298305 DOI: 10.3390/ijms24119351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Cultivated sunflower (Helianthus annuus L.) exhibits numerous phenotypic and transcriptomic responses to drought. However, the ways in which these responses vary with differences in drought timing and severity are insufficiently understood. We used phenotypic and transcriptomic data to evaluate the response of sunflower to drought scenarios of different timing and severity in a common garden experiment. Using a semi-automated outdoor high-throughput phenotyping platform, we grew six oilseed sunflower lines under control and drought conditions. Our results reveal that similar transcriptomic responses can have disparate phenotypic effects when triggered at different developmental time points. Leaf transcriptomic responses, however, share similarities despite timing and severity differences (e.g., 523 differentially expressed genes (DEGs) were shared across all treatments), though increased severity elicited greater differences in expression, particularly during vegetative growth. Across treatments, DEGs were highly enriched for genes related to photosynthesis and plastid maintenance. A co-expression analysis identified a single module (M8) enriched in all drought stress treatments. Genes related to drought, temperature, proline biosynthesis, and other stress responses were overrepresented in this module. In contrast to transcriptomic responses, phenotypic responses were largely divergent between early and late drought. Early-stressed sunflowers responded to drought with reduced overall growth, but became highly water-acquisitive during recovery irrigation, resulting in overcompensation (higher aboveground biomass and leaf area) and a greater overall shift in phenotypic correlations, whereas late-stressed sunflowers were smaller and more water use-efficient. Taken together, these results suggest that drought stress at an earlier growth stage elicits a change in development that enables greater uptake and transpiration of water during recovery, resulting in higher growth rates despite similar initial transcriptomic responses.
Collapse
|
|
2 |
|