1
|
Heath RJ, Rubin JR, Holland DR, Zhang E, Snow ME, Rock CO. Mechanism of triclosan inhibition of bacterial fatty acid synthesis. J Biol Chem 1999; 274:11110-4. [PMID: 10196195 DOI: 10.1074/jbc.274.16.11110] [Citation(s) in RCA: 363] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Triclosan is a broad-spectrum antibacterial agent that inhibits bacterial fatty acid synthesis at the enoyl-acyl carrier protein reductase (FabI) step. Resistance to triclosan in Escherichia coli is acquired through a missense mutation in the fabI gene that leads to the expression of FabI[G93V]. The specific activity and substrate affinities of FabI[G93V] are similar to FabI. Two different binding assays establish that triclosan dramatically increases the affinity of FabI for NAD+. In contrast, triclosan does not increase the binding of NAD+ to FabI[G93V]. The x-ray crystal structure of the FabI-NAD+-triclosan complex confirms that hydrogen bonds and hydrophobic interactions between triclosan and both the protein and the NAD+ cofactor contribute to the formation of a stable ternary complex, with the drug binding at the enoyl substrate site. These data show that the formation of a noncovalent "bi-substrate" complex accounts for the effectiveness of triclosan as a FabI inhibitor and illustrates that mutations in the FabI active site that interfere with the formation of a stable FabI-NAD+-triclosan ternary complex acquire resistance to the drug.
Collapse
|
|
26 |
363 |
2
|
Kanki PJ, Hamel DJ, Sankalé JL, Hsieh CC, Thior I, Barin F, Woodcock SA, Guèye-Ndiaye A, Zhang E, Montano M, Siby T, Marlink R, NDoye I, Essex ME, MBoup S. Human immunodeficiency virus type 1 subtypes differ in disease progression. J Infect Dis 1999; 179:68-73. [PMID: 9841824 DOI: 10.1086/314557] [Citation(s) in RCA: 272] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
At least 10 different genetic human immunodeficiency virus type 1 (HIV-1) subtypes (A-J) are responsible for the AIDS pandemic. Much of the understanding of HIV-1 disease progression derives from studies in the developed world where HIV infection is almost exclusively subtype B. This has led many to question whether the properties and consequences of HIV-1 infection can be generalized across subtypes that afflict the majority of infected persons in the developing world. From 1985 to 1997, a prospective study of registered female sex workers in Senegal tracked the introduction and spread of HIV-1 subtypes A, C, D, and G. In clinical follow-up, the AIDS-free survival curves differed by HIV-1 subtype. Women infected with a non-A subtype were 8 times more likely to develop AIDS than were those infected with subtype A (hazard ratio=8.23; P=. 009), the predominant subtype in the study. These data suggest that HIV-1 subtypes may differ in rates of progression to AIDS.
Collapse
|
|
26 |
272 |
3
|
Kan B, Wang M, Jing H, Xu H, Jiang X, Yan M, Liang W, Zheng H, Wan K, Liu Q, Cui B, Xu Y, Zhang E, Wang H, Ye J, Li G, Li M, Cui Z, Qi X, Chen K, Du L, Gao K, Zhao YT, Zou XZ, Feng YJ, Gao YF, Hai R, Yu D, Guan Y, Xu J. Molecular evolution analysis and geographic investigation of severe acute respiratory syndrome coronavirus-like virus in palm civets at an animal market and on farms. J Virol 2005; 79:11892-900. [PMID: 16140765 PMCID: PMC1212604 DOI: 10.1128/jvi.79.18.11892-11900.2005] [Citation(s) in RCA: 252] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Massive numbers of palm civets were culled to remove sources for the reemergence of severe acute respiratory syndrome (SARS) in Guangdong Province, China, in January 2004, following SARS coronavirus detection in market animals. The virus was identified in all 91 palm civets and 15 raccoon dogs of animal market origin sampled prior to culling, but not in 1,107 palm civets later sampled at 25 farms, spread over 12 provinces, which were claimed to be the source of traded animals. Twenty-seven novel signature variation residues (SNVs) were identified on the spike gene and were analyzed for their phylogenetic relationships, based on 17 sequences obtained from animals in our study and from other published studies. Analysis indicated that the virus in palm civets at the live-animal market had evolved to infect humans. The evolutionary starting point was a prototype group consisting of three viral sequences of animal origin. Initially, seven SNV sites caused six amino acid changes, at positions 147, 228, 240, 479, 821, and 1080 of the spike protein, to generate low-pathogenicity viruses. One of these was linked to the first SARS patient in the 2003-2004 period. A further 14 SNVs caused 11 amino acid residue changes, at positions 360, 462, 472, 480, 487, 609, 613, 665, 743, 765, and 1163. The resulting high-pathogenicity groups were responsible for infections during the so-called early-phase epidemic of 2003. Finally, the remaining six SNVs caused four amino acid changes, at positions 227, 244, 344, and 778, which resulted in the group of viruses responsible for the global epidemic.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
252 |
4
|
Wang M, Yan M, Xu H, Liang W, Kan B, Zheng B, Chen H, Zheng H, Xu Y, Zhang E, Wang H, Ye J, Li G, Li M, Cui Z, Liu YF, Guo RT, Liu XN, Zhan LH, Zhou DH, Zhao A, Hai R, Yu D, Guan Y, Xu J. SARS-CoV infection in a restaurant from palm civet. Emerg Infect Dis 2006; 11:1860-5. [PMID: 16485471 PMCID: PMC3367621 DOI: 10.3201/eid1112.041293] [Citation(s) in RCA: 205] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Epidemiologic investigations showed that 2 of 4 patients with severe acute respiratory syndrome (SARS) identified in the winter of 2003-2004 were a waitresss at a restaurant in Guangzhou, China, that served palm civets as food and a customer who ate in the restaurant ashort distance from animal cages. All 6 palm civets at the restaurant were positive for SARS-associated coronavirus (SARS-CoV). Partial spike (S) gene sequences of SARS-CoV from the 2 patients were identical to 4 of 5 Sgene viral sequences from palm civets. Phylogenetic analysis showed that SARS-CoV from palm civets in the restaurant was most closely related to animal isolates. SARS cases at the restaurant were the result of recent interspecies transfer from the putative palm civet reservoir, and not the result of continued circulation of SARS-CoV in the human population.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
205 |
5
|
Barvian M, Boschelli DH, Cossrow J, Dobrusin E, Fattaey A, Fritsch A, Fry D, Harvey P, Keller P, Garrett M, La F, Leopold W, McNamara D, Quin M, Trumpp-Kallmeyer S, Toogood P, Wu Z, Zhang E. Pyrido[2,3-d]pyrimidin-7-one inhibitors of cyclin-dependent kinases. J Med Chem 2000; 43:4606-16. [PMID: 11101352 DOI: 10.1021/jm000271k] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The identification of 8-ethyl-2-phenylamino-8H-pyrido[2, 3-d]pyrimidin-7-one (1) as an inhibitor of Cdk4 led to the initiation of a program to evaluate related pyrido[2, 3-d]pyrimidin-7-ones for inhibition of cyclin-dependent kinases (Cdks). Analysis of more than 60 analogues has identified some clear SAR trends that may be exploited in the design of more potent Cdk inhibitors. The most potent Cdk4 inhibitors reported in this study inhibit Cdk4 with IC(50) = 0.004 microM ([ATP] = 25 microM). X-ray crystallographic analysis of representative compounds bound to the related kinase, Cdk2, reveals that they occupy the ATP binding site. Modest selectivity between Cdks is exhibited by some compounds, and Cdk4-selective inhibitors block pRb(+) cells in the G(1)-phase of the cell division cycle.
Collapse
|
|
25 |
130 |
6
|
Zhang E, Brewer JM, Minor W, Carreira LA, Lebioda L. Mechanism of enolase: the crystal structure of asymmetric dimer enolase-2-phospho-D-glycerate/enolase-phosphoenolpyruvate at 2.0 A resolution. Biochemistry 1997; 36:12526-34. [PMID: 9376357 DOI: 10.1021/bi9712450] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Enolase, a glycolytic enzyme that catalyzes the dehydration of 2-phospho-d-glycerate (PGA) to form phosphoenolpyruvate (PEP), is a homodimer in all eukaryotes and many prokaryotes. Here, we report the crystal structure of a complex between yeast enolase and an equilibrium mixture of PGA and PEP. The structure has been refined using 29 854 reflections with an F/sigma(F) of >/=3 to an R of 0.137 with average deviations of bond lengths and bond angles from ideal values of 0.013 A and 3.1 degrees , respectively. In this structure, the dimer constitutes the crystallographic asymmetric unit. The two subunits are similar, and their superposition gives a rms distance between Calpha atoms of 0.91 A. The exceptions to this are the catalytic loop Val153-Phe169 where the atomic positions in the two subunits differ by up to 4 A and the loop Ser250-Gln277, which follows the catalytic loop Val153-Phe169. In the first subunit, the imidazole side chain of His159 is in contact with the phosphate group of the substrate/product molecule; in the other it is separated by water molecules. A series of hydrogen bonds leading to a neighboring enolase dimer can be identified as being responsible for ordering and stabilization of the conformationally different subunits in the crystal lattice. The electron density present in the active site suggests that in the active site with the direct ligand-His159 hydrogen bond PGA is predominantly bound while in the active site where water molecules separate His159 from the ligand the binding of PEP dominates. The structure indicates that the water molecule hydrating carbon-3 of PEP in the PEP --> PGA reaction is activated by the carboxylates of Glu168 and Glu211. The crystals are unique because they have resolved two intermediates on the opposite sides of the transition state.
Collapse
|
|
28 |
95 |
7
|
Abstract
When Na+ binds to thrombin, a conformational change is induced that renders the enzyme kinetically faster and more specific in the activation of fibrinogen. Two Na+ binding sites have here been identified crystallographically by exchanging Na+ with Rb+. One is intermolecular, found on the surface between two symmetry-related thrombin molecules. Since it is not present in thrombin crystal structures having different crystal systems, the other Na+ site is the functionally relevant one. The second site has octahedral coordination with the carbonyl oxygen atoms of Arg221A and Lys224 and four conserved water molecules. It is located near Asp189 of the S1 specificity site in an elongated solvent channel (8 x 18 A) formed by four antiparallel beta-strands between Cys182-Cys191 and Val213-Tyr228. This channel, extending from the active site to the opposite surface of the enzyme, was first noted in the hirudin-thrombin structure and contains about 20 conserved water molecules linked together by a hydrogen bonding network that connects to the main chain of thrombin. Although the antiparallel beta-strand interactions of the functional Na+ binding site are the same in prethrombin2, the loops between the strands are very different, so that Asp189 and Arg221A are not positioned properly for either substrate or Na+ binding in prethrombin2. A water molecule with octahedral coordination has also been identified in factor Xa at the topologically equivalent Na+ site position of thrombin. Since activated protein C shows enhanced activity with monovalant cation binding, the same position is probably utilized by Na+. Since thrombin crystals could not be grown in the absence of Na+, the cation was leached from Na(+)-bound thrombin crystals by diffusion/exchange. Although both Na+ and their coordinating water molecules were removed from the Na+ binding sites, the remainder of the thrombin structure was, unexpectedly, the same. The lack of an allosteric change is most likely attributable to crystal packing effects. Thus, the structure of the slow form remains to be established crystallographically.
Collapse
|
|
28 |
93 |
8
|
Niu Y, Sun N, Li C, Lei Y, Huang Z, Wu J, Si C, Dai X, Liu C, Wei J, Liu L, Feng S, Kang Y, Si W, Wang H, Zhang E, Zhao L, Li Z, Luo X, Cui G, Peng G, Izpisúa Belmonte JC, Ji W, Tan T. Dissecting primate early post-implantation development using long-term in vitro embryo culture. Science 2019; 366:science.aaw5754. [DOI: 10.1126/science.aaw5754] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 10/16/2019] [Indexed: 12/12/2022]
Abstract
The transition from peri-implantation to gastrulation in mammals entails the specification and organization of the lineage progenitors into a body plan. Technical and ethical challenges have limited understanding of the cellular and molecular mechanisms that underlie this transition. We established a culture system that enabled the development of cynomolgus monkey embryos in vitro for up to 20 days. Cultured embryos underwent key primate developmental stages, including lineage segregation, bilaminar disc formation, amniotic and yolk sac cavitation, and primordial germ cell–like cell (PGCLC) differentiation. Single-cell RNA-sequencing analysis revealed development trajectories of primitive endoderm, trophectoderm, epiblast lineages, and PGCLCs. Analysis of single-cell chromatin accessibility identified transcription factors specifying each cell type. Our results reveal critical developmental events and complex molecular mechanisms underlying nonhuman primate embryogenesis in the early postimplantation period, with possible relevance to human development.
Collapse
|
|
6 |
92 |
9
|
Qiu M, Xu Y, Wang J, Zhang E, Sun M, Zheng Y, Li M, Xia W, Feng D, Yin R, Xu L. A novel lncRNA, LUADT1, promotes lung adenocarcinoma proliferation via the epigenetic suppression of p27. Cell Death Dis 2015; 6:e1858. [PMID: 26291312 PMCID: PMC4558496 DOI: 10.1038/cddis.2015.203] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 06/17/2015] [Accepted: 06/24/2015] [Indexed: 12/15/2022]
Abstract
Long noncoding RNAs (lncRNAs) are known to regulate the development and progression of various cancers. However, few lncRNAs have been well characterized in lung adenocarcinoma (LUAD). Here, we identified the expression profile of lncRNAs and protein-coding genes via microarrays analysis of paired LUAD tissues and adjacent non-tumor tissues from five female non-smokes with LUAD. A total of 498 lncRNAs and 1691 protein-coding genes were differentially expressed between LUAD tissues and paired adjacent normal tissues. A novel lncRNA, LUAD transcript 1 (LUADT1), which is highly expressed in LUAD and correlates with T stage, was characterized. Both in vitro and in vivo data showed that LUADT1 knockdown significantly inhibited proliferation of LUAD cells and induced cell cycle arrest at the G0–G1 phase. Further analysis indicated that LUADT1 may regulate cell cycle progression by epigenetically inhibiting the expression of p27. RNA immunoprecipitation and chromatin immunoprecipitation assays confirmed that LUADT1 binds to SUZ12, a core component of polycomb repressive complex 2, and mediates the trimethylation of H3K27 at the promoter region of p27. The negative correlation between LUADT1 and p27 expression was confirmed in LUAD tissue samples. These data suggested that a set of lncRNAs and protein-coding genes were differentially expressed in LUAD. LUADT1 is an oncogenic lncRNA that regulates LUAD progression, suggesting that dysregulated lncRNAs may serve as key regulatory factors in LUAD progression.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
87 |
10
|
Prigoda NL, Savas S, Abdalla SA, Piovesan B, Rushlow D, Vandezande K, Zhang E, Ozcelik H, Gallie BL, Letarte M. Hereditary haemorrhagic telangiectasia: mutation detection, test sensitivity and novel mutations. J Med Genet 2006; 43:722-8. [PMID: 16690726 PMCID: PMC2564570 DOI: 10.1136/jmg.2006.042606] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Hereditary haemorrhagic telangiectasia (HHT) is a genetic disorder present in 1 in 8000 people and associated with arteriovenous malformations. Genetic testing can identify individuals at risk of developing the disease and is a useful diagnostic tool. OBJECTIVE To present a strategy for mutation detection in families clinically diagnosed with HHT. METHODS An optimised strategy for detecting mutations that predispose to HHT is presented. The strategy includes quantitative multiplex polymerase chain reaction, sequence analysis, RNA analysis, validation of missense mutations by amino acid conservation analysis for the ENG (endoglin) and ACVRL1 (ALK1) genes, and analysis of an ACVRL1 protein structural model. If no causative ENG or ACVRL1 mutation is found, proband samples are referred for sequence analysis of MADH4 (associated with a combined syndrome of juvenile polyposis and HHT). RESULTS Data obtained over the past eight years were summarised and 16 novel mutations described. Mutations were identified in 155 of 194 families with a confirmed clinical diagnosis (80% sensitivity). Of 155 mutations identified, 94 were in ENG (61%), 58 in ACVRL1 (37%), and three in MADH4 (2%). CONCLUSIONS For most missense variants of ENG and ACVRL1 reported to date, study of amino acid conservation showed good concordance between prediction of altered protein function and disease occurrence. The 39 families (20%) yet to be resolved may carry ENG, ACVRL1, or MADH4 mutations too complex or difficult to detect, or mutations in genes yet to be identified.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
87 |
11
|
Sussman N, Kaza V, Barshes N, Stribling R, Goss J, O'Mahony C, Zhang E, Vierling J, Frost A. Successful liver transplantation following medical management of portopulmonary hypertension: a single-center series. Am J Transplant 2006; 6:2177-82. [PMID: 16796721 DOI: 10.1111/j.1600-6143.2006.01432.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Severe portopulmonary hypertension (POPH) is an absolute contraindication to orthotopic liver transplantation (OLT). Vasodilators have been used, but the safety of subsequent transplantation and the reversibility of pulmonary hypertension after transplantation are uncertain. This study examined the feasibility and post-transplant effects of liver transplantation following medical control of POPH. Eight consecutive patients (three females and five males, ages 39-51) with POPH as their only contraindication to transplantation were treated with continuous intravenous epoprostenol. Liver transplantation was considered if the mean pulmonary artery pressure (PAM) was lowered to <35 mmHg. Epoprostenol 2-8 ng/kg/min successfully improved hemodynamics in seven of eight patients, usually within 6.5 months of initiating therapy. PAM declined from an average of 43-33 mmHg (p=0.03); mean pulmonary vascular resistance declined from 410 to 192 dyn s cm-5 (p=0.01) and cardiac output increased from 6.6 to 10 L/min (p=0.02). Six of the seven responders were actively listed for liver transplantation. Two died on the waiting list; the remaining four were transplanted and remain alive and well 9-18 months post-OLT-two without vasodilators, and two on oral medication. We conclude that pulmonary vasodilators permit safe liver transplantation in some cases, and that POPH may be reversible after transplantation.
Collapse
|
|
19 |
86 |
12
|
Wang S, Lei B, Zhang E, Gong P, Gu J, He L, Han L, Yuan Z. Targeted Therapy for Inflammatory Diseases with Mesenchymal Stem Cells and Their Derived Exosomes: From Basic to Clinics. Int J Nanomedicine 2022; 17:1757-1781. [PMID: 35469174 PMCID: PMC9034888 DOI: 10.2147/ijn.s355366] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/09/2022] [Indexed: 12/13/2022] Open
Abstract
Inflammation is a beneficial and physiological process, but there are a number of inflammatory diseases which have detrimental effects on the body. In addition, the drugs used to treat inflammation have toxic side effects when used over a long period of time. Mesenchymal stem cells (MSCs) are pluripotent stem cells that can be isolated from a variety of tissues and can be differentiate into diverse cell types under appropriate conditions. They also exhibit noteworthy anti-inflammatory properties, providing new options for the treatment of inflammatory diseases. The therapeutic potential of MSCs is currently being investigated for various inflammatory diseases, such as kidney injury, lung injury, osteoarthritis (OA), rheumatoid arthritis (RA), and inflammatory bowel disease (IBD). MSCs can perform multiple functions, including immunomodulation, homing, and differentiation, to enable damaged tissues to form a balanced inflammatory and regenerative microenvironment under severe inflammatory conditions. In addition, accumulated evidence indicates that exosomes from extracellular vesicles of MSCs (MSC-Exos) play an extraordinary role, mainly by transferring their components to recipient cells. In this review, we summarize the mechanism and clinical trials of MSCs and MSC-Exos in various inflammatory diseases in detail, with a view to contributing to the treatment of MSCs and MSC-Exos in inflammatory diseases.
Collapse
|
Review |
3 |
85 |
13
|
LaCount MW, Zhang E, Chen YP, Han K, Whitton MM, Lincoln DE, Woodin SA, Lebioda L. The crystal structure and amino acid sequence of dehaloperoxidase from Amphitrite ornata indicate common ancestry with globins. J Biol Chem 2000; 275:18712-6. [PMID: 10751397 DOI: 10.1074/jbc.m001194200] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The full-length, protein coding sequence for dehaloperoxidase was obtained using a reverse genetic approach and a cDNA library from marine worm Amphitrite ornata. The crystal structure of the dehaloperoxidase (DHP) was determined by the multiple isomorphous replacement method and was refined at 1.8-A resolution. The enzyme fold is that of the globin family and, together with the amino acid sequence information, indicates that the enzyme evolved from an ancient oxygen carrier. The peroxidase activity of DHP arose mainly through changes in the positions of the proximal and distal histidines relative to those seen in globins. The structure of a complex of DHP with 4-iodophenol is also reported, and it shows that in contrast to larger heme peroxidases DHP binds organic substrates in the distal cavity. The binding is facilitated by the histidine swinging in and out of the cavity. The modeled position of the oxygen atom bound to the heme suggests that the enzymatic reaction proceeds via direct attack of the oxygen atom on the carbon atom bound to the halogen atom.
Collapse
|
|
25 |
82 |
14
|
Taneera J, Jin Z, Jin Y, Muhammed SJ, Zhang E, Lang S, Salehi A, Korsgren O, Renström E, Groop L, Birnir B. γ-Aminobutyric acid (GABA) signalling in human pancreatic islets is altered in type 2 diabetes. Diabetologia 2012; 55:1985-94. [PMID: 22538358 PMCID: PMC3369140 DOI: 10.1007/s00125-012-2548-7] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 03/07/2012] [Indexed: 12/31/2022]
Abstract
AIMS/HYPOTHESIS γ-Aminobutyric acid (GABA) is a signalling molecule in the interstitial space in pancreatic islets. We examined the expression and function of the GABA signalling system components in human pancreatic islets from normoglycaemic and type 2 diabetic individuals. METHODS Expression of GABA signalling system components was studied by microarray, quantitative PCR analysis, immunohistochemistry and patch-clamp experiments on cells in intact islets. Hormone release was measured from intact islets. RESULTS The GABA signalling system was compromised in islets from type 2 diabetic individuals, where the expression of the genes encoding the α1, α2, β2 and β3 GABA(A) channel subunits was downregulated. GABA originating within the islets evoked tonic currents in the cells. The currents were enhanced by pentobarbital and inhibited by the GABA(A) receptor antagonist, SR95531. The effects of SR95531 on hormone release revealed that activation of GABA(A) channels (GABA(A) receptors) decreased both insulin and glucagon secretion. The GABA(B) receptor antagonist, CPG55845, increased insulin release in islets (16.7 mmol/l glucose) from normoglycaemic and type 2 diabetic individuals. CONCLUSIONS/INTERPRETATION Interstitial GABA activates GABA(A) channels and GABA(B) receptors and effectively modulates hormone release in islets from type 2 diabetic and normoglycaemic individuals.
Collapse
|
research-article |
13 |
80 |
15
|
Lebioda L, LaCount MW, Zhang E, Chen YP, Han K, Whitton MM, Lincoln DE, Woodin SA. An enzymatic globin from a marine worm. Nature 1999; 401:445. [PMID: 10519547 DOI: 10.1038/46728] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
|
26 |
74 |
16
|
Li XF, Charnock-Jones DS, Zhang E, Hiby S, Malik S, Day K, Licence D, Bowen JM, Gardner L, King A, Loke YW, Smith SK. Angiogenic growth factor messenger ribonucleic acids in uterine natural killer cells. J Clin Endocrinol Metab 2001; 86:1823-34. [PMID: 11297624 DOI: 10.1210/jcem.86.4.7418] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Angiogenesis is essential for endometrial growth and repair, and disruption of this process may lead to common disorders of women, including menorrhagia and endometriosis. In pregnancy, failure of the endometrial spiral arterioles to undergo remodeling leads to preeclampsia. Here we report that in addition to vascular endothelial growth factor A (VEGF-A), human endometrium expresses messenger ribonucleic acids (mRNAs) encoding VEGF-C, placenta growth factor (PlGF), the angiopoietins, angiopoietin 1 (Ang1) and Ang2, and the receptors VEGFR-3 (Flt-4), Tie 1, and Tie 2. Levels of VEGF-C, PlGF, and Tie 2 changed during the menstrual cycle. Intense hybridization for VEGF-C and PlGF mRNAs was found in uterine nature killer cells in secretory phase endometrium and for Ang2 mRNA in the same cells in the late secretory phase. Interleukin-2 (IL-2) and IL-15 up-regulated VEGF-C, but not PlGF or Ang2, mRNA levels in isolated NK cells. Conditioned medium from decidual NK cells did not induce human umbilical vein endothelial cell apoptosis. These results indicate that human endometrium expresses a wide range of angiogenic growth factors and that uterine nature killer cells may play an important role in the abnormal endometrial angiogenesis that underlies a range of disorders affecting women.
Collapse
MESH Headings
- Angiogenesis Inducing Agents/genetics
- Angiogenesis Inducing Agents/metabolism
- Angiopoietin-2
- Apoptosis/drug effects
- Cells, Cultured
- Culture Media, Conditioned/pharmacology
- Cytochrome c Group/metabolism
- Endothelial Growth Factors/genetics
- Endothelium, Vascular/cytology
- Endothelium, Vascular/physiology
- Female
- Humans
- Interleukin-15/pharmacology
- Interleukin-2/pharmacology
- Killer Cells, Natural/cytology
- Killer Cells, Natural/metabolism
- Menstrual Cycle/physiology
- Neoplasm Proteins/genetics
- Placenta Growth Factor
- Pregnancy Proteins/genetics
- Proteins/genetics
- Proto-Oncogene Proteins
- RNA, Messenger/metabolism
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor, TIE-1
- Receptor, TIE-2
- Receptors, Growth Factor/genetics
- Receptors, Growth Factor/metabolism
- Receptors, TIE
- Receptors, Vascular Endothelial Growth Factor
- Umbilical Veins/cytology
- Umbilical Veins/physiology
- Uterus/cytology
- Uterus/metabolism
- Vascular Endothelial Growth Factor C
- Vascular Endothelial Growth Factor Receptor-3
Collapse
|
|
24 |
74 |
17
|
Hadji P, Papaioannou N, Gielen E, Feudjo Tepie M, Zhang E, Frieling I, Geusens P, Makras P, Resch H, Möller G, Kalouche-Khalil L, Fahrleitner-Pammer A. Persistence, adherence, and medication-taking behavior in women with postmenopausal osteoporosis receiving denosumab in routine practice in Germany, Austria, Greece, and Belgium: 12-month results from a European non-interventional study. Osteoporos Int 2015; 26:2479-89. [PMID: 26018090 PMCID: PMC4575374 DOI: 10.1007/s00198-015-3164-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 05/01/2015] [Indexed: 11/30/2022]
Abstract
UNLABELLED Persistence with and adherence to osteoporosis therapy are critical for fracture reduction. This non-interventional study is evaluating medication-taking behavior of women with postmenopausal osteoporosis (PMO) receiving denosumab in Germany, Austria, Greece, and Belgium. Patients were representative of the PMO population and highly persistent with and adherent to denosumab at 12 months. INTRODUCTION Persistence with and adherence to osteoporosis therapy are important for optimal treatment efficacy, namely fracture reduction. This ongoing, non-interventional study will evaluate medication-taking behavior of women with postmenopausal osteoporosis (PMO) receiving denosumab in routine practice in four European countries. METHODS The study enrolled women who had been prescribed subcutaneous denosumab (60 mg every 6 months) in accordance with prescribing information and local guidelines. Persistence was defined as receiving the subsequent injection within 6 months + 8 weeks of the previous injection. Adherence was defined as receiving two consecutive injections within 6 months ± 4 weeks of each other. Medication coverage ratio (MCR) was calculated using the time a patient was covered with denosumab, as assessed from prescription records. Treatment was assigned prior to and independently of enrollment; outcomes are recorded during routine practice. RESULTS These planned 12-month interim analyses included data from 1500 patients from 141 sites. Mean age was 66.4-72.4 years, mean baseline total hip T-scores ranged from -2.0 to -2.1 and femoral neck T-scores from -2.2 to -2.6, and 30.7-62.1% of patients had prior osteoporotic fracture. Persistence was 87.0-95.3%, adherence 82.7-89.3%, and MCR 91.3-95.4%. In a univariate analysis, increased age, decreased mobility, and increased distance to the clinic were associated with significantly decreased persistence; parental history of hip fracture was associated with significantly increased persistence. CONCLUSIONS These data extend the real-world evidence regarding persistence with and adherence to denosumab, both of which are critical for favorable clinical outcomes, including fracture risk reduction.
Collapse
|
Multicenter Study |
10 |
71 |
18
|
Zhang E, St Charles R, Tulinsky A. Structure of extracellular tissue factor complexed with factor VIIa inhibited with a BPTI mutant. J Mol Biol 1999; 285:2089-104. [PMID: 9925787 DOI: 10.1006/jmbi.1998.2452] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The event that initiates the extrinsic pathway of blood coagulation is the association of coagulation factor VIIa (VIIa) with its cell-bound receptor, tissue factor (TF), exposed to blood circulation following tissue injury and/or vascular damage. The natural inhibitor of the TF.VIIa complex is the first Kunitz domain of tissue factor pathway inhibitor (TFPI-K1). The structure of TF. VIIa reversibly inhibited with a potent (Ki=0.4 nM) bovine pancreatic trypsin inhibitor (BPTI) mutant (5L15), a homolog of TFPI-K1, has been determined at 2.1 A resolution. When bound to TF, the four domain VIIa molecule assumes an extended conformation with its light chain wrapping around the framework of the two domain TF cofactor. The 5L15 inhibitor associates with the active site of VIIa similar to trypsin-bound BPTI, but makes several unique interactions near the perimeter of the site that are not observed in the latter. Most of the interactions are polar and involve mutated positions of 5L15. Of the eight rationally engineered mutations distinguishing 5L15 from BPTI, seven are involved in productive interactions stabilizing the enzyme-inhibitor association with four contributing contacts unique to the VIIa.5L15 complex. Two additional unique interactions are due to distinguishing residues in the VIIa sequence: a salt bridge between Arg20 of 5L15 and Asp60 of an insertion loop of VIIa, and a hydrogen bond between Tyr34O of the inhibitor and Lys192NZ of the enzyme. These interactions were used further to model binding of TFPI-K1 to VIIa and TFPI-K2 to factor Xa, the principal activation product of TF.VIIa. The structure of the ternary protein complex identifies the determinants important for binding within and near the active site of VIIa, and provides cogent information for addressing the manner in which substrates of VIIa are bound and hydrolyzed in blood coagulation. It should also provide guidance in structure-aided drug design for the discovery of potent and selective small molecule VIIa inhibitors.
Collapse
|
Comparative Study |
26 |
69 |
19
|
Tan T, Wu J, Si C, Dai S, Zhang Y, Sun N, Zhang E, Shao H, Si W, Yang P, Wang H, Chen Z, Zhu R, Kang Y, Hernandez-Benitez R, Martinez Martinez L, Nuñez Delicado E, Berggren WT, Schwarz M, Ai Z, Li T, Rodriguez Esteban C, Ji W, Niu Y, Izpisua Belmonte JC. Chimeric contribution of human extended pluripotent stem cells to monkey embryos ex vivo. Cell 2021; 184:2020-2032.e14. [PMID: 33861963 DOI: 10.1016/j.cell.2021.03.020] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/25/2021] [Accepted: 03/09/2021] [Indexed: 12/31/2022]
Abstract
Interspecies chimera formation with human pluripotent stem cells (hPSCs) represents a necessary alternative to evaluate hPSC pluripotency in vivo and might constitute a promising strategy for various regenerative medicine applications, including the generation of organs and tissues for transplantation. Studies using mouse and pig embryos suggest that hPSCs do not robustly contribute to chimera formation in species evolutionarily distant to humans. We studied the chimeric competency of human extended pluripotent stem cells (hEPSCs) in cynomolgus monkey (Macaca fascicularis) embryos cultured ex vivo. We demonstrate that hEPSCs survived, proliferated, and generated several peri- and early post-implantation cell lineages inside monkey embryos. We also uncovered signaling events underlying interspecific crosstalk that may help shape the unique developmental trajectories of human and monkey cells within chimeric embryos. These results may help to better understand early human development and primate evolution and develop strategies to improve human chimerism in evolutionarily distant species.
Collapse
|
Journal Article |
4 |
67 |
20
|
Paramasivam G, Wimalasundera R, Wiechec M, Zhang E, Saeed F, Kumar S. Radiofrequency ablation for selective reduction in complex monochorionic pregnancies. BJOG 2010; 117:1294-8. [PMID: 20722644 DOI: 10.1111/j.1471-0528.2010.02624.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Monochorionic pregnancies present unique challenges for selective fetal reduction, as vaso-occlusive procedures are required to ablate blood flow, usually in the umbilical cord, to achieve asystole in the selected fetus. We describe a case series of 35 monochorionic pregnancies (27 twins and eight triplets) undergoing selective fetal reduction using radiofrequency ablation. All procedures were performed under local anaesthesia. The procedure was technically successful in all cases. The live born rate was 88.6%. One (2.9%) woman miscarried within 2 weeks of the procedure, and two (5.7%) babies were stillborn. The median gestation at delivery was 36 weeks of gestation (range 24-41 weeks). There were no maternal complications. The median gestational age at procedure was 17 + 3 weeks (range from 12 + 5 to 27 + 4 weeks). All women had antenatal magnetic resonance imaging (MRI) post procedure. There were two (5.7%) cases of abnormal brain imaging. Our experience suggests that radiofrequency ablation is a safe and effective procedure for fetal reduction in complicated monochorionic pregnancies.
Collapse
|
Journal Article |
15 |
51 |
21
|
Gao B, Huang L, Liu H, Wu H, Zhang E, Yang L, Wu X, Wang Z. Platelet P2Y₁₂ receptors are involved in the haemostatic effect of notoginsenoside Ft1, a saponin isolated from Panax notoginseng. Br J Pharmacol 2014; 171:214-23. [PMID: 24117220 DOI: 10.1111/bph.12435] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 08/29/2013] [Accepted: 09/23/2013] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND AND PURPOSE Saponins isolated from Panax notoginseng (Burk.) F.H. Chen have been shown to relieve thrombogenesis and facilitate haemostasis. However, it is not known which saponin accounts for this haemostatic effect. Hence, in the present study we aimed to identify which saponins contribute to its haemostatic activity and to elucidate the possible underlying mechanisms. EXPERIMENTAL APPROACH Platelet aggregation was analysed using a platelet aggregometer. Prothrombin time, activated partial thromboplastin time and thrombin time were measured using a blood coagulation analyser, which was further corroborated with bleeding time and thrombotic assays. The interaction of notoginsenoside Ft1 with the platelet P2Y₁₂ receptor was determined by molecular docking analysis, cytosolic Ca(2+) and cAMP measurements, and phosphorylation of PI3K and Akt assays. KEY RESULTS Among the saponins examined, Ft1 was the most potent procoagulant and induced dose-dependent platelet aggregation. Ft1 reduced plasma coagulation indexes, decreased tail bleeding time and increased thrombogenesis. Moreover, it potentiated ADP-induced platelet aggregation and increased cytosolic Ca(2+) accumulation, effects that were attenuated by clopidogrel. Molecular docking analysis suggested that Ft1 binds to platelet P2Y₁₂ receptors. The increase in intracellular Ca(2+) evoked by Ft1 in HEK293 cells overexpressing P2Y₁₂ receptors could be blocked by ticagrelor. Ft1 also affected the production of cAMP and increased phosphorylation of PI3K and Akt downstream of P2Y₁₂ signalling pathways. CONCLUSION AND IMPLICATIONS Ft1 enhanced platelet aggregation by activating a signalling network mediated through P2Y₁₂ receptors. These novel findings may contribute to the effective utilization of this compound in the therapy of haematological disorders.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
48 |
22
|
Krishnan R, Zhang E, Hakansson K, Arni RK, Tulinsky A, Lim-Wilby MS, Levy OE, Semple JE, Brunck TK. Highly selective mechanism-based thrombin inhibitors: structures of thrombin and trypsin inhibited with rigid peptidyl aldehydes. Biochemistry 1998; 37:12094-103. [PMID: 9724521 DOI: 10.1021/bi980840e] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The crystal structures of three highly potent and selective low-molecular weight rigid peptidyl aldehyde inhibitors complexed with thrombin have been determined and refined to R values 0.152-0. 170 at 1.8-2.1 A resolution. Since the selectivity of two of the inhibitors was >1600 with respect to trypsin, the structures of trypsin-inhibited complexes of these inhibitors were also determined (R = 0.142-0.157 at 1.9-2.1 A resolution). The selectivity appears to reside in the inability of a benzenesulfonamide group to bind at the equivalent of the D-enantiomorphic S3 site of thrombin, which may be related to the lack of a 60-insertion loop in trypsin. All the inhibitors have a novel lactam moiety at the P3 position, while the two with greatest trypsin selectivity have a guanidinopiperidyl group at the P1 position that binds in the S1 specificity site. Differences in the binding constants of these inhibitors are correlated with their interactions with thrombin and trypsin. The kinetics of inhibition vary from slow to fast with thrombin and are fast in all cases with trypsin. The kinetics are examined in terms of the slow formation of a stable transition-state complex in a two-step mechanism. The structures of both thrombin and trypsin complexes show similar well-defined transition states in the S1 site and at the electrophilic carbon atom and Ser195OG. The trypsin structures, however, suggest that the first step in a two-step kinetic mechanism may involve formation of a weak transition-state complex, rather than binding dominated by the P2-P4 positions.
Collapse
|
|
27 |
48 |
23
|
St Charles R, Matthews JH, Zhang E, Tulinsky A. Bound structures of novel P3-P1' beta-strand mimetic inhibitors of thrombin. J Med Chem 1999; 42:1376-83. [PMID: 10212123 DOI: 10.1021/jm980052n] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The X-ray crystal structures of four beta-strand-templated active site inhibitors of thrombin containing P1' groups have been determined and refined at about 2.1-A resolution to crystallographic R-values between 0.148 and 0.164. Two of the inhibitors have an alpha-ketoamide functionality at the scissile bond; the other two have a nonhydrolyzable electrophilic group at the P1' position. The binding of lysine is compared with that of arginine at the S1 specificity site, while that of D,L-phenylalanine enantiomorphs is compared in the S3 region of thrombin. Four different P1' moieties bind at the S1' subsite in three different ways. The binding constants vary between 2.0 microM and 70 pM. The bound structures are used to intercorrelate the various binding constants and also lead to insightful inferences concerning binding at the S1' site of thrombin.
Collapse
|
|
26 |
41 |
24
|
Jiang M, Broering R, Trippler M, Wu J, Zhang E, Zhang X, Gerken G, Lu M, Schlaak JF. MicroRNA-155 controls Toll-like receptor 3- and hepatitis C virus-induced immune responses in the liver. J Viral Hepat 2014; 21:99-110. [PMID: 24383923 DOI: 10.1111/jvh.12126] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Accepted: 05/12/2013] [Indexed: 01/09/2023]
Abstract
The hepatitis C virus (HCV) establishes persistent infections despite strong activation of the innate immune system through TLR3 and other sensors. Therefore, we analysed regulatory mechanisms of TLR3-induced immune responses in nonparenchymal liver cells (NPCs). Effects of Interleukin-10 (IL-10), transforming growth factor beta (TGF-β) and immunoregulatory miR-155 on poly I:C-activated murine (C57BL/6) Kupffer cells (KC) and sinusoidal endothelial cells (LSEC) were assessed in vitro. NPCs were assayed for inflammatory and antiviral cytokines and T-cell (Balb/c)-activating factors. Gene expression of miR-155, IL-10, TGF-β and interferon sensitive genes (ISGs) in biopsies of patients with HCV was determined by qrt-PCR. TLR3-induced antiviral activity in murine NPCs was potently suppressed by IL-10 and TGF-β which correlated with decreased TLR3 expression and inhibition of NF-κB and IRF-3 activation. T-cell activation, induced by TLR3-activated NPCs, was also suppressed by IL-10 and TGF-β, which was associated with a down-regulation of CD80 and CD86. Pretreatment with IL-10 or TGF-β suppressed TLR3-induced miR-155 expression, which itself positively regulated poly I:C-mediated immune responses, thus counteracting IL-10 or TGF-β-induced immunosuppression. In addition, hepatic expression of miR-155 was elevated in chronically infected patients with HCV, was associated with an IL-28B SNP (rs12979860) and was inversely correlated with HCV serum load and ISG expression levels. As miR-155 is a key regulator of anti-inflammatory mechanisms that control innate and adaptive hepatic immune responses during HCV infection, miR-155 based therapies may represent a novel mechanism to control HCV in the future.
Collapse
|
|
11 |
36 |
25
|
Cao M, Hou Y, Zhang E, Tu S, Xiong S. Ascorbic acid induced activation of persulfate for pentachlorophenol degradation. CHEMOSPHERE 2019; 229:200-205. [PMID: 31078034 DOI: 10.1016/j.chemosphere.2019.04.135] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/19/2019] [Accepted: 04/17/2019] [Indexed: 06/09/2023]
Abstract
In the present study, ascorbic acid (AA) induced persulfate activation was investigated for the further exploration of organic pollutants oxidation by persulfate. We interestingly found that AA showed a significant catalytic activity to persulfate. Under neutral pH and room temperature condition, about 71.3% of pentachlorophenol (PCP, 10 mg L-1) was decomposed in 180 min with 40 mmol L-1 persulfate and 1.0 mmol L-1 AA, while only 15.4% and 3.2% of PCP was removed by alone persulfate and AA respectively. The result of EPR spectra identified sulfate radical (SO4•-) and hydroxyl radical (OH) were generated during the reaction between persulfate and AA. Quenching experiments confirmed that both SO4- and OH contributed to the decomposition of PCP. With the addition of AA augmented from 0 to 1 mmol L-1, the PCP degradation ratio continuously increased. However, excess AA could consume the generated reactive oxygen species (ROSs) that led to the inhibition of PCP degradation. Meanwhile, the PCP degradation by persulfate-AA was strongly pH dependent. The PCP degradation rate was declined as the initial pH increased from 3.5 to 10.5. At pH above 12.5, the base activation began to predominate over AA activation of persulfate. Furthermore, it was observed that the AA inducing persulfate activation was related to the extent of AA ionization, while C6H8O6 promoted the highest persulfate activation for the PCP degradation, and C6H6O62- induced the lowest persulfate activation. This study indicates the high potential of AA induced persulfate activation for treatment of organochlorine contaminated water.
Collapse
|
|
6 |
36 |