Haber-Olguin A, Polania-Baron EJ, Trujillo-Trujillo F, Graue Hernandez EO. Thermographic Behavior of the Cornea During Treatment With Two Excimer Laser Platforms.
Transl Vis Sci Technol 2021;
10:27. [PMID:
34427627 PMCID:
PMC8399240 DOI:
10.1167/tvst.10.9.27]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Purpose
To investigate the temperature of the cornea during treatment with the excimer laser using two platforms, Nidek EC-5000 and Schwind Amaris 750S.
Methods
A prospective case series study was conducted in a reference center in Mexico City including patients aged 18 years or older who had any type of ametropia and underwent excimer laser refractive surgery. The patients had measurements of corneal temperature with an infrared camera before, during, and after ablation treatment. Results of prior corneal surface temperature, temperatures during excimer laser surgery, and delta temperature for each platform were analyzed and compared.
Results
A total of 107 eyes were analyzed. Mean baseline temperature was 32.7 ± 1.03°C for the Nidek group and 31.5 ± 1.4°C for the Amaris group. Mean maximum temperature was 39.94 ± 1.3°C for the Nidek group and 35.6 ± 1.5 °C for the Amaris group. Delta temperature was higher in the Nidek group than in the Amaris group. There were statistically significant associations between treated micrometers, treated diopters, and time in the Nidek group and no such associations in the Amaris group.
Conclusions
The different excimer laser devices used and the variety in the optical design, together with different software ablation algorithms, resulted in different levels of thermal loading; peak temperature rose in all measurements. Eyes treated with Nidek reached temperatures that doubled those found with Amaris.
Translational Relevance
The correlation between Delta of temperature with defocus, depth, and treatment time is different regarding excimer laser generation.
Collapse