1
|
Nedelkov D, Kiernan UA, Niederkofler EE, Tubbs KA, Nelson RW. Investigating diversity in human plasma proteins. Proc Natl Acad Sci U S A 2005; 102:10852-7. [PMID: 16043703 PMCID: PMC1180507 DOI: 10.1073/pnas.0500426102] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plasma proteins represent an important part of the human proteome. Although recent proteomics research efforts focus largely on determining the overall number of proteins circulating in plasma, it is equally important to delineate protein variations among individuals, because they can signal the onset of diseases and be used as biological markers in diagnostics. To date, there has been no systematic proteomics effort to characterize the breadth of structural modifications in individual proteins in the general population. In this work, we have undertaken a population proteomics study to define gene- and protein-level diversity that is encountered in the general population. Twenty-five plasma proteins from a cohort of 96 healthy individuals were investigated through affinity-based mass spectrometric assays. A total of 76 structural forms/variants were observed for the 25 proteins within the samples cohort. Posttranslational modifications were detected in 18 proteins, and point mutations were observed in 4 proteins. The frequency of occurrence of these variations was wide-ranged, with some modifications being observed in only one sample, and others detected in all 96 samples. Even though a relatively small cohort of individuals was investigated, the results from this study illustrate the extent of protein diversity in the human population and can be of immediate aid in clinical proteomics/biomarker studies by laying a basal-level statistical foundation from which protein diversity relating to disease can be evaluated.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
149 |
2
|
Niederkofler EE, Kiernan UA, O'Rear J, Menon S, Saghir S, Protter AA, Nelson RW, Schellenberger U. Detection of endogenous B-type natriuretic peptide at very low concentrations in patients with heart failure. Circ Heart Fail 2008; 1:258-64. [PMID: 19808300 DOI: 10.1161/circheartfailure.108.790774] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The myocardium secretes B-type natriuretic peptide (BNP) in response to stimuli associated with heart failure (HF). However, high immunoreactive-BNP levels in patients with HF are associated with a paradoxical lack of natriuretic response. We hypothesized that commercially available assays for immunoreactive BNP do not reflect the bioactivity of the natriuretic peptide system, because they measure both unprocessed inactive pro-BNP and mature BNP 1-32. We describe an assay for the detection of bioactive BNP 1-32 and confirm very low concentrations in plasma from HF patients. METHODS AND RESULTS We developed a quantitative mass spectrometry immunoassay to capture endogenous BNP peptides using high affinity antibodies. Bound BNP and its truncated fragments were detected by matrix assisted laser desorption ionization-time of flight mass spectrometry based on their predicted masses. Mass spectrometry immunoassay revealed rapid in vitro degradation of BNP 1-32 in plasma, which requires plasma collection in the presence of high protease inhibitor concentrations. In 11 of 12 HF patients BNP 1-32 was detectable, ranging from 25 to 43 pg/mL. Several degraded forms of BNP were also detected at similarly low levels. In contrast, parallel measurements of immunoreactive BNP using the Biosite assay ranged from 900 to 5000 pg/mL. CONCLUSIONS Detection of endogenous BNP 1-32 requires special preservation of plasma samples. Mass spectrometry immunoassay technology demonstrates that HF patients have low levels of BNP 1-32. Commercially available immunoreactive-BNP assays overrepresent biological activity of the natriuretic peptide system because they cannot distinguish between active and inactive forms. This observation may, in part, explain the "natriuretic paradox."
Collapse
|
Journal Article |
17 |
136 |
3
|
Krastins B, Prakash A, Sarracino DA, Nedelkov D, Niederkofler EE, Kiernan UA, Nelson R, Vogelsang MS, Vadali G, Garces A, Sutton JN, Peterman S, Byram G, Darbouret B, Pérusse JR, Seidah NG, Coulombe B, Gobom J, Portelius E, Pannee J, Blennow K, Kulasingam V, Couchman L, Moniz C, Lopez MF. Rapid development of sensitive, high-throughput, quantitative and highly selective mass spectrometric targeted immunoassays for clinically important proteins in human plasma and serum. Clin Biochem 2013; 46:399-410. [PMID: 23313081 DOI: 10.1016/j.clinbiochem.2012.12.019] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 12/27/2012] [Accepted: 12/28/2013] [Indexed: 12/24/2022]
Abstract
OBJECTIVES The aim of this study was to develop high-throughput, quantitative and highly selective mass spectrometric, targeted immunoassays for clinically important proteins in human plasma or serum. DESIGN AND METHODS The described method coupled mass spectrometric immunoassay (MSIA), a previously developed technique for immunoenrichment on a monolithic microcolumn activated with an anti-protein antibody and fixed in a pipette tip, to selected reaction monitoring (SRM) detection and accurate quantification of targeted peptides, including clinically relevant sequence or truncated variants. RESULTS In this report, we demonstrate the rapid development of MSIA-SRM assays for sixteen different target proteins spanning seven different clinically important areas (including neurological, Alzheimer's, cardiovascular, endocrine function, cancer and other diseases) and ranging in concentration from pg/mL to mg/mL. The reported MSIA-SRM assays demonstrated high sensitivity (within published clinical ranges), precision, robustness and high-throughput as well as specific detection of clinically relevant isoforms for many of the target proteins. Most of the assays were tested with bona-fide clinical samples. In addition, positive correlations, (R2 0.67-0.87, depending on the target peptide), were demonstrated for MSIA-SRM assay data with clinical analyzer measurements of parathyroid hormone (PTH) and insulin growth factor 1 (IGF1) in clinical sample cohorts. CONCLUSIONS We have presented a practical and scalable method for rapid development and deployment of MS-based SRM assays for clinically relevant proteins and measured levels of the target analytes in bona fide clinical samples. The method permits the specific quantification of individual protein isoforms and addresses the difficult problem of protein heterogeneity in clinical proteomics applications.
Collapse
|
Journal Article |
12 |
92 |
4
|
Niederkofler EE, Tubbs KA, Gruber K, Nedelkov D, Kiernan UA, Williams P, Nelson RW. Determination of beta-2 microglobulin levels in plasma using a high-throughput mass spectrometric immunoassay system. Anal Chem 2001; 73:3294-9. [PMID: 11476228 DOI: 10.1021/ac010143j] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A high-throughput mass spectrometric immunoassay (MSIA) system for the analysis of proteins directly from biological fluids is reported. A 96-well-format robotic workstation equipped with antibody-derivatized affinity pipet tips was used for the parallel extraction of specific proteins from samples and subsequent deposition onto 96-well arrayed matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) targets. Interferences from nonspecifically bound proteins were minimized through choice of appropriate affinity pipet tip derivatization chemistries. Sample preparation for MALDI-TOFMS was enhanced through the use of hydrophobic/hydrophilic contrasting targets, which also presented functionalities found to promote matrix/analyte crystal growth. Automated mass spectrometry was used in the unattended acquisition of data, resulting in an analysis rate of approximately 100 samples/h (biological fluid-->data). The quantitative MSIA of beta2m levels present in human plasma samples is given as illustration.
Collapse
|
|
24 |
71 |
5
|
Abstract
This review outlines the concept of population proteomics and its implication in the discovery and validation of cancer-specific protein modulations. Population proteomics is an applied subdiscipline of proteomics engaging in the investigation of human proteins across and within populations to define and better understand protein diversity. Population proteomics focuses on interrogation of specific proteins from large number of individuals, utilizing top-down, targeted affinity mass spectrometry approaches to probe protein modifications. Deglycosylation, sequence truncations, side-chain residue modifications, and other modifications have been reported for myriad of proteins, yet little is know about their incidence rate in the general population. Such information can be gathered via population proteomics and would greatly aid the biomarker discovery efforts. Discovery of novel protein modifications is also expected from such large scale population proteomics, expanding the protein knowledge database. In regard to cancer protein biomarkers, their validation via population proteomics-based approaches is advantageous as mass spectrometry detection is used both in the discovery and validation process, which is essential for the detection of those structurally modified protein biomarkers.
Collapse
|
|
19 |
69 |
6
|
Kiernan UA, Tubbs KA, Gruber K, Nedelkov D, Niederkofler EE, Williams P, Nelson RW. High-throughput protein characterization using mass spectrometric immunoassay. Anal Biochem 2002; 301:49-56. [PMID: 11811966 DOI: 10.1006/abio.2001.5478] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A high-throughput mass spectrometric immunoassay system for the analysis of proteins directly from plasma is reported. A 96-well format robotic workstation was used to prepare antibody-derivatized affinity pipette tips for subsequent use in the extraction of specific proteins from plasma and deposition onto 96-well format matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) targets. Samples from multiple individuals were screened with regard to the plasma protein transthyretin (TTR), followed by analysis of the same plasma samples for the transthyretin-associated transport protein, retinol-binding protein (RBP). Analyses were able to detect the presence of posttranslationally modified TTR and RBP, as well as a mutation present in the TTR of one individual. Subsequent analyses of wild-type and mutated TTR using enzymatically active MALDI-TOF MS targets were able to identify the site and nature of the point mutation. The approach represents a rapid (approximately 100 samples/2 h, reagent preparation-to-data) and accurate means of characterizing specific proteins present in large numbers of individuals for proteomic and clinical/diagnostic purposes.
Collapse
|
|
23 |
67 |
7
|
Kiernan UA, Tubbs KA, Nedelkov D, Niederkofler EE, Nelson RW. Detection of novel truncated forms of human serum amyloid A protein in human plasma. FEBS Lett 2003; 537:166-70. [PMID: 12606051 DOI: 10.1016/s0014-5793(03)00097-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Serum amyloid A protein (SAA) is a human plasma protein that has been recognized as potential biomarker of multiple ailments including myocardial infarction, inflammatory disease and amyloiosis. Presented here is the application of a novel immunoassay technique, termed mass spectrometric immunoassay for the detection and identification of SAA present in human plasma. Results demonstrate the ability to readily detect known SAA isotypes, and to identify novel truncated forms of SAA, in the plasma of healthy individuals and those suffering from acute and chronic inflammation. The approach represents a rapid and sensitive means for the routine structural characterization of known SAA isotypes and the discovery of associated post-translational modifications.
Collapse
|
|
22 |
65 |
8
|
Niederkofler EE, Tubbs KA, Kiernan UA, Nedelkov D, Nelson RW. Novel mass spectrometric immunoassays for the rapid structural characterization of plasma apolipoproteins. J Lipid Res 2003; 44:630-9. [PMID: 12562854 DOI: 10.1194/jlr.d200034-jlr200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Novel mass spectrometric immunoassays (MSIAs) for the isolation and structural characterization of plasma apolipoprotein A-I (apoA-I), apoA-II, and apoE have been developed. The assays combine selective isolation of apolipoprotein species via affinity capture with mass-specific detection using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. In application, plasma (from 50 microl of whole blood drawn from individuals, using finger lancet) was addressed with affinity pipette tips derivatized with antibodies toward the specific apolipoprotein. The time required for each assay was approximately 15 min, less if assays on multiple individuals were performed in parallel. In a brief study of five individuals, several recently reported apoA-II variants were identified and observed consistently in all individuals. Additionally, the apoE phenotype of E3/E3 was observed in three of the individuals, and E2/E3 and E3/E4 observed in the remaining two individuals, the latter of whom suffers from Alzheimer's disease. Overall, the MSIA approach offers a rapid, sensitive, and highly accurate means of profiling apolipoproteins from small volumes of plasma.
Collapse
|
|
22 |
59 |
9
|
Kiernan UA, Tubbs KA, Nedelkov D, Niederkofler EE, Nelson RW. Comparative phenotypic analyses of human plasma and urinary retinol binding protein using mass spectrometric immunoassay. Biochem Biophys Res Commun 2002; 297:401-5. [PMID: 12237133 DOI: 10.1016/s0006-291x(02)02212-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Mass spectrometric immunoassay (MSIA) is a proteomics technology that combines the selectivity of affinity capture with the sensitivity and resolution of mass spectrometric detection. This unique approach allows for intact protein identification therefore is readily capable of discriminating between protein variants, i.e., mutations, posttranslational modifications, and truncations. In this work, MSIA is used in the comparative analyses of retinol binding protein (RBP) from the plasma and urine of a small study population. Detailed RBP profiles were obtained from both biological fluids, resulting in the identification of several catabolic RBP products (present in urine) that have not been previously reported. In addition, comparative analysis of urine samples taken from healthy and renally impaired individuals revealed different breakdown profiles. These results illustrate the use of MSIA for the rapid, sensitive, and accurate profiling of RBP both within and between individuals.
Collapse
|
Comparative Study |
23 |
57 |
10
|
Nedelkov D, Tubbs KA, Niederkofler EE, Kiernan UA, Nelson RW. High-Throughput Comprehensive Analysis of Human Plasma Proteins: A Step toward Population Proteomics. Anal Chem 2004; 76:1733-7. [PMID: 15018576 DOI: 10.1021/ac035105+] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A high-throughput (HT) comprehensive analysis approach was developed for assaying proteins directly from human plasma. Proteins were selectively retrieved, by utilizing antibodies immobilized within affinity pipet tips, and eluted onto enzymatically active mass spectrometer targets for subsequent digestion and structural characterization. Several parameters, including uniform parallel protein elution from 96 affinity pipet tips, proper buffering for on-target digestion, termination of the digestion, and MALDI matrix (re)introduction, were evaluated and optimized. The approach was validated via parallel, high-throughput analysis of transthyretin (TTR) and transferrin (TRFE) from 96 identical plasma samples. The 96 parallel analyses for each protein were completed in less than 90 min, measured from protein extraction to insertion in the mass spectrometer. Virtually identical mass spectra were obtained from the 96 TTR analyses, characterized by the presence of 14 tryptic fragments that allowed TTR sequence mapping with 100% coverage. Database search returned TTR as the best match for all 96 data sets. In regard to the TRFE analyses, database searching using data from the 96 spectra returned TRFE as the best match for all but 1 of the spectra. TRFE was mapped with 47-69% sequence coverage, with gaps in the sequence coverage corresponding to the carbohydrate-containing peptide fragments and large and small trypsin fragments that fell outside the window of mass analysis. Overall, the combined high-throughput affinity capture-protein digestion approach showed high reproducibility and speed and yielded an exceptional level of protein characterization, suggesting its use in future population proteomics endeavors.
Collapse
|
|
21 |
54 |
11
|
Kiernan UA, Tubbs KA, Nedelkov D, Niederkofler EE, McConnell E, Nelson RW. Comparative urine protein phenotyping using mass spectrometric immunoassay. J Proteome Res 2003; 2:191-7. [PMID: 12716133 DOI: 10.1021/pr025574c] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Reported here, human urine samples were analyzed for beta-2-microglobulin (beta2m), transthyretin (TTR), cystatin C, urine protein 1 (UP1), retinol binding protein (RBP), albumin, transferrin, and human neutrophil defensin peptides (HNP) using mass spectrometric immunoassay (MSIA). MSIA is a unique analytical technique, which allows for the generation of distinct protein profiles of specific target proteins from each subject, which may be subsequently used in comparative protein expression profiling between all subjects. Comparative profiling allows for the rapid identification of variations within individual protein expression profiles. Although the majority of analyses performed in this study revealed homology between study participants, roughly one-quarter showed variation in the protein profiles. Some of these observed variants included a point mutation in TTR, absence of wild-type RBP, monomeric forms UP1, a novel beta2m glycated end product and altered HNP ratios. MSIA has been previously used in the analysis of blood proteins, but this study shows how MSIA easily transitions to the analysis, of urine samples. This study displays how qualitative urine protein differentiation is readily achievable with MSIA and is useful in identifying proteomic differences between subjects that might be otherwise overlooked with other analytical techniques due to complexity of the resulting data or insufficient sensitivity.
Collapse
|
|
22 |
53 |
12
|
Peterman S, Niederkofler EE, Phillips DA, Krastins B, Kiernan UA, Tubbs KA, Nedelkov D, Prakash A, Vogelsang MS, Schoeder T, Couchman L, Taylor DR, Moniz CF, Vadali G, Byram G, Lopez MF. An automated, high-throughput method for targeted quantification of intact insulin and its therapeutic analogs in human serum or plasma coupling mass spectrometric immunoassay with high resolution and accurate mass detection (MSIA-HR/AM). Proteomics 2014; 14:1445-56. [DOI: 10.1002/pmic.201300300] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 01/08/2014] [Accepted: 03/24/2014] [Indexed: 11/09/2022]
|
|
11 |
51 |
13
|
Kiernan UA, Nedelkov D, Tubbs KA, Niederkofler EE, Nelson RW. Proteomic characterization of novel serum amyloid P component variants from human plasma and urine. Proteomics 2004; 4:1825-9. [PMID: 15174148 DOI: 10.1002/pmic.200300690] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Serum amyloid P component (SAP) is a human plasma protein that has been widely studied for its influence on amyloid plaque formation and stabilization. SAP was characterized directly from human plasma and urine samples via novel affinity mass spectrometry-based proteomic technology that is able to readily discriminate between mass-altered protein variants. These analyses were able to identify several variants of SAP that have not been previously reported. These variants include microheterogeneity of the glycan structure, from the loss of one or both terminal sialic acid residues, as well as the loss of the C-terminal valine residue. Moreover, the analysis of urine allowed for the consistent identification of serum amyloid P component as a normal constituent of the urine proteome.
Collapse
|
|
21 |
47 |
14
|
Flynn CR, Komalavilas P, Tessier D, Thresher J, Niederkofler EE, Dreiza CM, Nelson RW, Panitch A, Joshi L, Brophy CM. Transduction of biologically active motifs of the small heat shock-related protein HSP20 leads to relaxation of vascular smooth muscle. FASEB J 2003; 17:1358-60. [PMID: 12738803 DOI: 10.1096/fj.02-1028fje] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Activation of cyclic nucleotide-dependent signaling pathways leads to phosphorylation of the small heat shock-related protein, HSP20, on serine 16, and relaxation of vascular smooth muscle. In this study, we used an enhanced protein transduction domain (PTD) sequence to deliver HSP20 phosphopeptide analogs into porcine coronary artery. The transduction of phosphoHSP20 analogs led to dose-dependent relaxation of coronary artery smooth muscle. Peptides containing the protein transduction domain coupled to a random orientation of the same amino acids did not. Direct fluorescence microscopy of arterial rings incubated with fluorescein isothiocyanate (FITC)-PTD or FITC-PTD-HSP20 peptides showed a diffuse peptide uptake. Mass spectrometric immunoassays (MSIAs) of smooth muscle homogenates were used to determine whether the phosphopeptide analogs affected the phosphorylation of endogenous HSP20. Treatment with the phosphodiesterase inhibitor papaverine led to a mass shift of 80 Da. However, there was no mass shift of HSP20 in muscles treated with phosphoHSP20 analogs. This suggests that the PTD-phosphoHSP20 peptide alone is sufficient to inhibit force maintenance and likely has a direct effect on the target of phosphorylated HSP20. These results suggest that transduction of phosphopeptide analogs of HSP20 directly alters physiological responses of intact muscles. The data also support a direct role for phosphorylated HSP20 in mediating vasorelaxation.
Collapse
|
|
22 |
46 |
15
|
Suffecool K, Rosenn B, Niederkofler EE, Kiernan UA, Foroutan J, Antwi K, Ribar A, Bapat P, Koren G. Insulin detemir does not cross the human placenta. Diabetes Care 2015; 38:e20-1. [PMID: 25614695 DOI: 10.2337/dc14-2090] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
Letter |
10 |
30 |
16
|
Nedelkov D, Nelson RW, Kiernan UA, Niederkofler EE, Tubbs KA. Detection of bound and free IGF-1 and IGF-2 in human plasma via biomolecular interaction analysis mass spectrometry. FEBS Lett 2003; 536:130-4. [PMID: 12586351 DOI: 10.1016/s0014-5793(03)00042-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Insulin like growth factor (IGF)-1 and IGF-2 were assayed from human plasma via biomolecular interaction analysis mass spectrometry, utilizing antibodies as ligands for affinity retrieval. Detection of both targeted and non-targeted IGFs in the mass spectra indicated possible protein complex retrieval by the individual antibodies. A series of control experiments eliminated the possibility of analyte cross-walking between flow cells, significant antibodies cross-reactivity, and direct IGF interactions. To disrupt the putative protein complex and release its constituent proteins, plasma samples were treated with detergents. An SDS-treated plasma yielded IGF signals in a different ratio than the one observed in the mass spectra from the non-treated plasma, suggesting disruption of the protein complex, and its retrieval from non-treated plasma. Novel truncated IGF-2 variant, missing its N-terminal Alanine, was detected in all mass spectra.
Collapse
|
Evaluation Study |
22 |
27 |
17
|
Tubbs KA, Kiernan UA, Niederkofler EE, Nedelkov D, Bieber AL, Nelson RW. Development of recombinant-based mass spectrometric immunoassay with application to resistin expression profiling. Anal Chem 2007; 78:3271-6. [PMID: 16689526 DOI: 10.1021/ac060013g] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This report addresses the need for additional assays for human resistin (hRES) by developing a rational progression of the mass spectrometric immunoassay to incorporate recombinant proteins. The recombinant-based hRES mass spectrometric immunoassay (RES-MSIA) was initially developed for the qualitative analysis of the human resistin homodimer from normal (healthy) plasma samples. The method involved selective extraction and detection of both endogenous and recombinant resistant proteins. RES-MSIA was then applied to the rigorous quantification of resistin. The resistin standard addition curve was constructed from serially diluted concentrations of rhRES using endogenous hRES, inherent in the human plasma, as the internal reference standard (IRS). The roles of endogenous and recombinant resistin were subsequently reversed, using rhRES as the IRS during RES-MSIA quantification. Concurrently, the relative ratio of hRES to rhRES was used as an ancillary technique to rapidly determine the relative concentration of hRES in each of plasma samples. Overall, normal hRES levels determined by RES-MSIA were found to be comparable to those selected and determined by ELISA. With regard to gender, female donor samples were slightly elevated over males. Four single cardiac samples were analyzed and found to have hRES concentrations approximately three times that of the normal. The recombinant-based RES-MSIA is rapid and is amendable to parallel high-throughput robotic processing of resistin related disease cohorts.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
23 |
18
|
Kiernan UA, Nedelkov D, Tubbs KA, Niederkofler EE, Nelson RW. Selected expression profiling of full-length proteins and their variants in human plasma. Clin Proteomics 2004. [DOI: 10.1385/cp:1:1:007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
|
21 |
22 |
19
|
Tubbs KA, Kiernan UA, Niederkofler EE, Nedelkov D, Bieber AL, Nelson RW. High-throughput MS-based protein phenotyping: Application to haptoglobin. Proteomics 2005; 5:5002-7. [PMID: 16281186 DOI: 10.1002/pmic.200500176] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A high-throughput affinity capture and reduction approach was developed for phenotype and post-translational modification analysis of a complexed globular protein, haptoglobin (Hp), directly from human plasma. Hp was selectively retrieved utilizing anti-Hp antibodies immobilized onto affinity pipette tips, eluted onto a formatted mass spectrometer target for reduction of Hp alpha-chains (Hpalpha1 and Hpalpha2) and subjected to subsequent MALDI-MS analysis. The affinity capture and reduction approach was originally developed from a pre-extraction reduction methodology that was optimized to an affinity capture post-reduction technique for intact Hp alpha-chain variant analysis, phenotype classification and ensuing post-translational variant detection. Three common Hp phenotypes (1-1, 2-1 and 2-2) were assigned according to detection of Hpalpha1 and/or Hpalpha2 reduced intact chain(s) average mass(es). The affinity capture post-reduction approach was scaled for high-throughput Hp alpha-chain phenotype analysis from a normal plasma cohort. The entire sample cohort was successfully analyzed and phenotyped using the developed approach. Additionally, Hp post-translational variants were detected and assigned via accurate MS analyses. The results of this study suggest use of the methodology in future analyses of other similarly complexed proteins and in normal versus disease cohort population proteomics studies.
Collapse
|
|
20 |
19 |
20
|
Aksyonov SA, Bittner M, Bloom LB, Reha-Krantz LJ, Gould IR, Hayes MA, Kiernan UA, Niederkofler EE, Pizziconi V, Rivera RS, Williams DJB, Williams P. Multiplexed DNA sequencing-by-synthesis. Anal Biochem 2005; 348:127-38. [PMID: 16289447 DOI: 10.1016/j.ab.2005.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Revised: 09/30/2005] [Accepted: 10/03/2005] [Indexed: 10/25/2022]
Abstract
We report a new DNA sequencing-by-synthesis method in which the sequences of DNA templates, hybridized to a surface-immobilized array of DNA primers, are determined by sensing the number of nucleotides by which the primers in each array spot are extended in sequential DNA polymerase-catalyzed nucleotide incorporation reactions, each with a single fluorescein-labeled deoxyribonucleoside triphosphate (dNTP) species. The fluorescein label is destroyed after each readout by a photostimulated reaction with diphenyliodonium chloride. A DNA polymerase with enhanced ability to incorporate, and to extend beyond, modified nucleotides is used. Self-quenching of adjacent fluorescein labels, which impedes readout of homopolymeric runs, is avoided by diluting the labeled dNTP with unlabeled reagent. Misincorporation effects have been quantified and are small; however, low-level contamination of dNTPs with other nucleotides mimics misincorporation and can produce significant false-positive signals. These impurities are removed by polymerase-catalyzed incorporation into complementary "cleaning duplexes." Here, we demonstrate the accurate sequence readout for a small array of known DNA templates, the ability to quantify homopolymeric runs, and a short sequencing example of sections of the wild-type and mutant BRCA1 gene. For a 20,000-spot array, readout rates in excess of 6000 bases per minute are projected.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
11 |
21
|
Kiernan UA, Nedelkov D, Niederkofler EE, Tubbs KA, Nelson RW. High-throughput affinity mass spectrometry. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2006; 328:141-50. [PMID: 16785646 DOI: 10.1385/1-59745-026-x:141] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Affinity mass spectrometry (AMS) is a proteomics approach for selectively isolating target protein(s) from complex biological fluids for mass spectrometric analysis. The resulting high-content mass spectrometry (MS) data show the unique MS protein signatures (wild-type, posttranslationally modified, as well as genetically modified forms of the protein target) that are present within a biological sample. Information regarding such protein diversity is normally lost in classical proteomic or immunoassay analyses. This chapter presents a step-by-step description of high-throughput AMS in the population proteomic screening of the human plasma protein cystatin C.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
6 |
22
|
Reverter-Branchat G, Groessl M, Nakas CT, Prost JC, Antwi K, Niederkofler EE, Bally L. Rapid quantification of insulin degludec by immunopurification combined with liquid chromatography high-resolution mass spectrometry. Anal Bioanal Chem 2020; 412:8351-8359. [PMID: 33006670 PMCID: PMC7680744 DOI: 10.1007/s00216-020-02971-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/31/2020] [Accepted: 09/24/2020] [Indexed: 12/26/2022]
Abstract
Insulin degludec is an ultra-long-acting insulin analogue that is increasingly being used in diabetes due to its favourable efficacy and safety profile. Thus, there is an increasing demand for a reliable and specific analytical method to quantify insulin degludec for research, pharmaceutical industry and clinical applications. We developed and validated an automated, high-throughput method for quantification of insulin degludec in human blood samples across the expected clinical range combining immunopurification with high-resolution mass spectrometry. Validation was performed according to the requirements of the US Food and Drug Administration. The method satisfyingly met the following parameters: lower limit of quantification (120 pM), linearity, accuracy (error < 5%), precision (CV < 7.7%), selectivity, carry-over, recovery (89.7–97.2%), stability and performance in the presence of other insulin analogues. The method was successfully applied to clinical samples of patients treated with insulin degludec showing a good correlation with the administered dose (r2 = 0.78). High usability of the method is supported by the small specimen volume, automated sample processing and short analysis time. In conclusion, this reliable, easy-to-use and specific mass spectrometric insulin degludec assay offers great promise to address the current unmet need for standardized insulin analytics in academic and industrial research.
|