1
|
de Vries E, Tscherne DM, Wienholts MJ, Cobos-Jiménez V, Scholte F, García-Sastre A, Rottier PJM, de Haan CAM. Dissection of the influenza A virus endocytic routes reveals macropinocytosis as an alternative entry pathway. PLoS Pathog 2011; 7:e1001329. [PMID: 21483486 PMCID: PMC3068995 DOI: 10.1371/journal.ppat.1001329] [Citation(s) in RCA: 245] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 03/02/2011] [Indexed: 12/20/2022] Open
Abstract
Influenza A virus (IAV) enters host cells upon binding of its hemagglutinin glycoprotein to sialylated host cell receptors. Whereas dynamin-dependent, clathrin-mediated endocytosis (CME) is generally considered as the IAV infection pathway, some observations suggest the occurrence of an as yet uncharacterized alternative entry route. By manipulating entry parameters we established experimental conditions that allow the separate analysis of dynamin-dependent and -independent entry of IAV. Whereas entry of IAV in phosphate-buffered saline could be completely inhibited by dynasore, a specific inhibitor of dynamin, a dynasore-insensitive entry pathway became functional in the presence of fetal calf serum. This finding was confirmed with the use of small interfering RNAs targeting dynamin-2. In the presence of serum, both IAV entry pathways were operational. Under these conditions entry could be fully blocked by combined treatment with dynasore and the amiloride derivative EIPA, the hallmark inhibitor of macropinocytosis, whereas either drug alone had no effect. The sensitivity of the dynamin-independent entry pathway to inhibitors or dominant-negative mutants affecting actomyosin dynamics as well as to a number of specific inhibitors of growth factor receptor tyrosine kinases and downstream effectors thereof all point to the involvement of macropinocytosis in IAV entry. Consistently, IAV particles and soluble FITC-dextran were shown to co-localize in cells in the same vesicles. Thus, in addition to the classical dynamin-dependent, clathrin-mediated endocytosis pathway, IAV enters host cells by a dynamin-independent route that has all the characteristics of macropinocytosis. Attachment to and entry into a host cell are the first crucial steps in establishing a successful virus infection and critical factors in determining host cell and species tropism. Influenza A virus (IAV) attaches to host cells by binding of its major surface protein, hemagglutinin, to sialic acids that are omnipresent on the glycolipids and glycoproteins exposed on the surfaces of cells. IAV subsequently enters cells of birds and a wide variety of mammals via receptor-mediated endocytosis using clathrin as well as via (an) alternative uncharacterized route(s). The elucidation of the endocytic pathways taken by IAV has been hampered by their apparent redundancy in establishing a productive infection. By manipulating the entry conditions we have established experimental settings that allow the separate analysis of dynamin-dependent (including clathrin-mediated endocytosis) and independent entry of IAV. Collectively, our results indicate macropinocytosis, the main route for the non-selective uptake of extracellular fluid by cells, as an alternative IAV entry route. As the dynamin-dependent and -independent IAV entry routes are redundant and independent, their separate manipulation was crucial for the identification and characterization of the alternative IAV entry route. A similar strategy might be applicable to the study of endocytic pathways taken by other viruses.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
245 |
2
|
Yatsuda AP, Krijgsveld J, Cornelissen AWCA, Heck AJR, de Vries E. Comprehensive analysis of the secreted proteins of the parasite Haemonchus contortus reveals extensive sequence variation and differential immune recognition. J Biol Chem 2003; 278:16941-51. [PMID: 12576473 DOI: 10.1074/jbc.m212453200] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Haemonchus contortus is a nematode that infects small ruminants. It releases a variety of molecules, designated excretory/secretory products (ESP), into the host. Although the composition of ESP is largely unknown, it is a source of potential vaccine components because ESP are able to induce up to 90% protection in sheep. We used proteomic tools to analyze ESP proteins and determined the recognition of these individual proteins by hyperimmune sera. Following two-dimensional electrophoresis of ESP, matrix-assisted laser desorption ionization time-of-flight and liquid chromatography-tandem mass spectrometry were used for protein identification. Few sequences of H. contortus have been determined. Therefore, the data base of expressed sequence tags (dbEST) and a data base consisting of contigs from Haemonchus ESTs were also consulted for identification. Approximately 200 individual spots were observed in the two-dimensional gel. Comprehensive proteomics analysis, combined with bioinformatic search tools, identified 107 proteins in 102 spots. The data include known as well as novel proteins such as serine, metallo- and aspartyl proteases, in addition to H. contortus ESP components like Hc24, Hc40, Hc15, and apical gut GA1 proteins. Novel proteins were identified from matches with H. contortus ESTs displaying high similarity with proteins like cyclophilins, nucleoside diphosphate kinase, OV39 antigen, and undescribed homologues of Caenorhabditis elegans. Of special note is the finding of microsomal peptidase H11, a vaccine candidate previously regarded as a "hidden antigen" because it was not found in ESP. Extensive sequence variation is present in the abundant Hc15 proteins. The Hc15 isoforms are differentially recognized by hyperimmune sera, pointing to a possible specific role of Hc15 in the infectious process and/or in immune evasion. This concept and the identification of multiple novel immune-recognized components in ESP should assist future vaccine development strategies.
Collapse
|
|
22 |
164 |
3
|
de Vries RP, de Vries E, Bosch BJ, de Groot RJ, Rottier PJM, de Haan CAM. The influenza A virus hemagglutinin glycosylation state affects receptor-binding specificity. Virology 2010; 403:17-25. [PMID: 20441997 DOI: 10.1016/j.virol.2010.03.047] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 03/08/2010] [Accepted: 03/29/2010] [Indexed: 12/30/2022]
Abstract
In this study we evaluated the receptor-binding properties of recombinant soluble hemagglutinin (HA) trimers (subtype H2 and H7) produced in insect S2 cells, human HEK293T or HEK293S GnTI(-) cells, which produce proteins with paucimannose, complex or high-mannose N-linked glycans, respectively. The results show that HA proteins that only differ in their glycosylation status possess different receptor fine specificities. HEK293T cell-produced HA displayed a very narrow receptor specificity. However, when treated with neuraminidase this HA was able to bind more glycans with similar specificity as HEK293S GnTI(-) cell-produced HA. Insect cell-produced HA demonstrated decreased receptor specificity. As a consequence, differences in HA fine receptor specificities could not be observed with the insect cell-, but were readily detected with the HEK293S GnTI(-) cell-produced HAs.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
105 |
4
|
de Vries E, Du W, Guo H, de Haan CA. Influenza A Virus Hemagglutinin-Neuraminidase-Receptor Balance: Preserving Virus Motility. Trends Microbiol 2020; 28:57-67. [PMID: 31629602 PMCID: PMC7172302 DOI: 10.1016/j.tim.2019.08.010] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 12/14/2022]
Abstract
Influenza A viruses (IAVs) occasionally cross the species barrier and adapt to novel host species. This requires readjustment of the functional balance of the sialic acid receptor-binding hemagglutinin (HA) and the receptor-destroying neuraminidase (NA) to the sialoglycan-receptor repertoire of the new host. Novel techniques have revealed mechanistic details of this HA-NA-receptor balance, emphasizing a previously underappreciated crucial role for NA in driving the motility of receptor-associated IAV particles. Motility enables virion penetration of the sialylated mucus layer as well as attachment to, and uptake into, underlying epithelial cells. As IAVs are essentially irreversibly bound in the absence of NA activity, the fine-tuning of the HA-NA-receptor balance rather than the binding avidity of IAV particles per se is an important factor in determining host species tropism.
Collapse
|
review-article |
5 |
104 |
5
|
Guo H, Rabouw H, Slomp A, Dai M, van der Vegt F, van Lent JWM, McBride R, Paulson JC, de Groot RJ, van Kuppeveld FJM, de Vries E, de Haan CAM. Kinetic analysis of the influenza A virus HA/NA balance reveals contribution of NA to virus-receptor binding and NA-dependent rolling on receptor-containing surfaces. PLoS Pathog 2018; 14:e1007233. [PMID: 30102740 PMCID: PMC6107293 DOI: 10.1371/journal.ppat.1007233] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/23/2018] [Accepted: 07/19/2018] [Indexed: 01/02/2023] Open
Abstract
Interactions of influenza A virus (IAV) with sialic acid (SIA) receptors determine viral fitness and host tropism. Binding to mucus decoy receptors and receptors on epithelial host cells is determined by a receptor-binding hemagglutinin (HA), a receptor-destroying neuraminidase (NA) and a complex in vivo receptor-repertoire. The crucial but poorly understood dynamics of these multivalent virus-receptor interactions cannot be properly analyzed using equilibrium binding models and endpoint binding assays. In this study, the use of biolayer interferometric analysis revealed the virtually irreversible nature of IAV binding to surfaces coated with synthetic sialosides or engineered sialoglycoproteins in the absence of NA activity. In addition to HA, NA was shown to be able to contribute to the initial binding rate while catalytically active. Virus-receptor binding in turn contributed to receptor cleavage by NA. Multiple low-affinity HA-SIA interactions resulted in overall extremely high avidity but also permitted a dynamic binding mode, in which NA activity was driving rolling of virus particles over the receptor-surface. Virus dissociation only took place after receptor density of the complete receptor-surface was sufficiently decreased due to NA activity of rolling IAV particles. The results indicate that in vivo IAV particles, after landing on the mucus layer, reside continuously in a receptor-bound state while rolling through the mucus layer and over epithelial cell surfaces driven by the HA-NA-receptor balance. Quantitative BLI analysis enabled functional examination of this balance which governs this dynamic and motile interaction that is expected to be crucial for penetration of the mucus layer and subsequent infection of cells by IAV but likely also by other enveloped viruses carrying a receptor-destroying enzyme in addition to a receptor-binding protein. Influenza A virus (IAV) tropism is largely determined by the interaction of virus particles with the sialic acid receptor repertoire of the host. IAVs encounter a diverse range of sialic acid receptors that can function as decoys (e.g. in the mucus that covers epithelial cells) or as entry receptors. We studied the dynamics of IAV-receptor interactions in real-time using biolayer interferometry (BLI) in combination with synthetic glycans and recombinant sialoglycoproteins mimicking in vivo receptors. Thereby we could show that IAVs do not continuously associate and dissociate with receptor-coated surfaces but actually were rolling over the surface with which they remained permanently associated until the receptors were sufficiently cleared. This required the concerted action of the receptor-binding hemagglutinin (HA) and the receptor-destroying neuraminidase (NA) on the receptor surface. We could quantify the precise HA-NA-receptor balance that determined the speed of rolling and eventual elution from the surface by BLI and propose a model in which IAV is permanently, but dynamically, associated with receptors on mucus or host cells in vivo.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
99 |
6
|
Gaffar FR, Yatsuda AP, Franssen FFJ, de Vries E. Erythrocyte invasion by Babesia bovis merozoites is inhibited by polyclonal antisera directed against peptides derived from a homologue of Plasmodium falciparum apical membrane antigen 1. Infect Immun 2004; 72:2947-55. [PMID: 15102807 PMCID: PMC387893 DOI: 10.1128/iai.72.5.2947-2955.2004] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Apical membrane antigen 1 (AMA-1) is a micronemal protein secreted to the surface of merozoites of Plasmodium species and Toxoplasma gondii tachyzoites in order to fulfill an essential but noncharacterized function in host cell invasion. Here we describe cloning and characterization of a Babesia bovis AMA-1 homologue designated BbAMA-1. The overall level of similarity of BbAMA-1 to P. falciparum AMA-1 was low (18%), but characteristic features like a transmembrane domain near the C terminus, a predicted short cytoplasmic C-terminal sequence with conserved sequence properties, and an extracellular domain containing 14 conserved cysteine residues putatively involved in disulfide bridge formation are typical of AMA-1. Rabbit polyclonal antisera were raised against three synthetic peptides derived from the N-terminal region and domains II and III of the putative extracellular domain and were shown to recognize specifically recombinant BbAMA-1 expressed in Escherichia coli. Immunofluorescence microscopy showed that there was labeling of the apical half of merozoites with these antisera. Preincubation of free merozoites with all three antisera reduced the efficiency of invasion of erythrocytes by a maximum of 65%. Antisera raised against the N-terminal peptide detected a 82-kDa protein on Western blots and a 69-kDa protein in the supernatant that was harvested after in vitro invasion, suggesting that proteolytic processing and secretion take place during or shortly after invasion. A combination of two-dimensional Western blotting and metabolic labeling allowing direct identification of spots reacting with the BbAMA-1 peptide antisera together with the very low silver staining intensity of these spots indicated that very low levels of BbAMA-1 are present in Babesia merozoites.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
94 |
7
|
Doorduin J, de Vries E, Dierckx R, Klein H. PET Imaging of the Peripheral Benzodiazepine Receptor: Monitoring Disease Progression and Therapy Response in Neurodegenerative Disorders. Curr Pharm Des 2008; 14:3297-315. [DOI: 10.2174/138161208786549443] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
|
17 |
84 |
8
|
Nijhof AM, Taoufik A, de la Fuente J, Kocan KM, de Vries E, Jongejan F. Gene silencing of the tick protective antigens, Bm86, Bm91 and subolesin, in the one-host tick Boophilus microplus by RNA interference. Int J Parasitol 2006; 37:653-62. [PMID: 17196597 PMCID: PMC1885961 DOI: 10.1016/j.ijpara.2006.11.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Revised: 11/09/2006] [Accepted: 11/14/2006] [Indexed: 11/23/2022]
Abstract
The use of RNA interference (RNAi) to assess gene function has been demonstrated in several three-host tick species but adaptation of RNAi to the one-host tick, Boophilus microplus, has not been reported. We evaluated the application of RNAi in B. microplus and the effect of gene silencing on three tick-protective antigens: Bm86, Bm91 and subolesin. Gene-specific double-stranded (dsRNA) was injected into two tick stages, freshly molted unfed and engorged females, and specific gene silencing was confirmed by real time PCR. Gene silencing occurred in injected unfed females after they were allowed to feed. Injection of dsRNA into engorged females caused gene silencing in the subsequently oviposited eggs and larvae that hatched from these eggs, but not in adults that developed from these larvae. dsRNA injected into engorged females could be detected by quantitative real-time RT-PCR in eggs 14 days from the beginning of oviposition, demonstrating that unprocessed dsRNA was incorporated in the eggs. Eggs produced by engorged females injected with subolesin dsRNA were abnormal, suggesting that subolesin may play a role in embryonic development. The injection of dsRNA into engorged females to obtain gene-specific silencing in eggs and larvae is a novel method which can be used to study gene function in tick embryogenesis.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
77 |
9
|
Nason R, Büll C, Konstantinidi A, Sun L, Ye Z, Halim A, Du W, Sørensen DM, Durbesson F, Furukawa S, Mandel U, Joshi HJ, Dworkin LA, Hansen L, David L, Iverson TM, Bensing BA, Sullam PM, Varki A, Vries ED, de Haan CAM, Vincentelli R, Henrissat B, Vakhrushev SY, Clausen H, Narimatsu Y. Display of the human mucinome with defined O-glycans by gene engineered cells. Nat Commun 2021; 12:4070. [PMID: 34210959 PMCID: PMC8249670 DOI: 10.1038/s41467-021-24366-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 06/08/2021] [Indexed: 02/08/2023] Open
Abstract
Mucins are a large family of heavily O-glycosylated proteins that cover all mucosal surfaces and constitute the major macromolecules in most body fluids. Mucins are primarily defined by their variable tandem repeat (TR) domains that are densely decorated with different O-glycan structures in distinct patterns, and these arguably convey much of the informational content of mucins. Here, we develop a cell-based platform for the display and production of human TR O-glycodomains (~200 amino acids) with tunable structures and patterns of O-glycans using membrane-bound and secreted reporters expressed in glycoengineered HEK293 cells. Availability of defined mucin TR O-glycodomains advances experimental studies into the versatile role of mucins at the interface with pathogenic microorganisms and the microbiome, and sparks new strategies for molecular dissection of specific roles of adhesins, glycoside hydrolases, glycopeptidases, viruses and other interactions with mucin TRs as highlighted by examples.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
70 |
10
|
Gaffar FR, Yatsuda AP, Franssen FFJ, de Vries E. A Babesia bovis merozoite protein with a domain architecture highly similar to the thrombospondin-related anonymous protein (TRAP) present in Plasmodium sporozoites. Mol Biochem Parasitol 2004; 136:25-34. [PMID: 15138064 DOI: 10.1016/j.molbiopara.2004.02.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2003] [Revised: 02/12/2004] [Accepted: 02/25/2004] [Indexed: 10/26/2022]
Abstract
Recognition and invasion of host cells is a key step in the life-cycle of all apicomplexan parasites. The thrombospondin-related anonymous protein (TRAP) of Plasmodium sporozoites is directly involved in both processes and shares conserved adhesive domains with micronemal transmembrane proteins of other apicomplexans. Here, we report the cloning and characterization of a Babesia bovis TRAP homologue (BbTRAP). It was predicted to be a type 1 transmembrane protein containing a von Willebrand Factor A domain (vWFA), a thrombospondin type 1 domain (TSP1), a conserved transmembrane region and a conserved cytoplasmic C-terminus, thus resembling the domain arrangement of Plasmodium TRAP. In contrast to Plasmodium TRAP, BbTRAP was shown to be present during the asexual erythrocytic cycle, being located mainly at the apical side of merozoites. Polyclonal rabbit antisera directed against synthetic peptides derived from the TSP1 domain or the C-terminal end of the ectodomain were shown to inhibit erythrocyte invasion in vitro. Both antisera recognized a 75 kDa protein in merozoite extracts as well as in a protein fraction that was secreted into the extracellular milieu during in vitro invasion of erythrocytes.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
60 |
11
|
Wojtal KA, de Vries E, Hoekstra D, van IJzendoorn SC. Efficient trafficking of MDR1/P-glycoprotein to apical canalicular plasma membranes in HepG2 cells requires PKA-RIIalpha anchoring and glucosylceramide. Mol Biol Cell 2006; 17:3638-50. [PMID: 16723498 PMCID: PMC1525225 DOI: 10.1091/mbc.e06-03-0230] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In hepatocytes, cAMP/PKA activity stimulates the exocytic insertion of apical proteins and lipids and the biogenesis of bile canalicular plasma membranes. Here, we show that the displacement of PKA-RIIalpha from the Golgi apparatus severely delays the trafficking of the bile canalicular protein MDR1 (P-glycoprotein), but not that of MRP2 (cMOAT), DPP IV and 5'NT, to newly formed apical surfaces. In addition, the direct trafficking of de novo synthesized glycosphingolipid analogues from the Golgi apparatus to the apical surface is inhibited. Instead, newly synthesized glucosylceramide analogues are rerouted to the basolateral surface via a vesicular pathway, from where they are subsequently endocytosed and delivered to the apical surface via transcytosis. Treatment of HepG2 cells with the glucosylceramide synthase inhibitor PDMP delays the appearance of MDR1, but not MRP2, DPP IV, and 5'NT at newly formed apical surfaces, implicating glucosylceramide synthesis as an important parameter for the efficient Golgi-to-apical surface transport of MDR1. Neither PKA-RIIalpha displacement nor PDMP inhibited (cAMP-stimulated) apical plasma membrane biogenesis per se, suggesting that other cAMP effectors may play a role in canalicular development. Taken together, our data implicate the involvement of PKA-RIIalpha anchoring in the efficient direct apical targeting of distinct proteins and glycosphingolipids to newly formed apical plasma membrane domains and suggest that rerouting of Golgi-derived glycosphingolipids may underlie the delayed Golgi-to-apical surface transport of MDR1.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
59 |
12
|
de Vries E, Guo H, Dai M, Rottier PJM, van Kuppeveld FJM, de Haan CAM. Rapid Emergence of Highly Pathogenic Avian Influenza Subtypes from a Subtype H5N1 Hemagglutinin Variant. Emerg Infect Dis 2016; 21:842-6. [PMID: 25897518 PMCID: PMC4412238 DOI: 10.3201/eid2105.141927] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In 2014, novel highly pathogenic avian influenza A H5N2, H5N5, H5N6, and H5N8 viruses caused outbreaks in Asia, Europe, and North America. The H5 genes of these viruses form a monophyletic group that evolved from a clade 2.3.4 H5N1 variant. This rapid emergence of new H5Nx combinations is unprecedented in the H5N1 evolutionary history.
Collapse
|
Journal Article |
9 |
59 |
13
|
de Vries RP, de Vries E, Moore KS, Rigter A, Rottier PJM, de Haan CAM. Only two residues are responsible for the dramatic difference in receptor binding between swine and new pandemic H1 hemagglutinin. J Biol Chem 2010; 286:5868-75. [PMID: 21173148 DOI: 10.1074/jbc.m110.193557] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In view of its critical role in influenza A virus (IAV) tropism and pathogenesis, we evaluated the receptor binding properties of HA proteins of the closely related swine and new pandemic human IAVs. We generated recombinant soluble trimeric H1 ectodomains of several IAVs and analyzed their sialic acid binding properties using fetuin-binding and glycan array analysis. The results show that closely related swine and new pandemic H1 proteins differ dramatically in their ability to bind these receptors. Although new pandemic H1 protein exhibited hardly any binding, swine H1 bound efficiently to a number of α2-6-linked sialyl glycans. The responsible amino acids were identified by analyzing chimeric H1 proteins and by performing systematic site-directed mutagenesis of swine and new pandemic human H1 proteins. The difference was found to map to residues at positions 200 and 227. Although substitution of either residue significantly affected the binding phenotype, substitution of both was found to act synergistically and reverse the phenotype almost completely. Modeling of the T200A and E227A substitutions into the crystal structure of the new pandemic human H1 protein revealed the loss of potential hydrogen bond formation with Gln(191), which is part of the 190-loop of the receptor binding site, and with the penultimate galactose, respectively. Thus, a residue not belonging to the receptor binding site may affect the interaction of HA with its receptor. Interestingly, whereas alanine at position 200 is found in most new pandemic human viruses, the residue at position 227 in these viruses is invariably a glutamic acid.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
56 |
14
|
Guo H, de Vries E, McBride R, Dekkers J, Peng W, Bouwman KM, Nycholat C, Verheije MH, Paulson JC, van Kuppeveld FJM, de Haan CAM. Highly Pathogenic Influenza A(H5Nx) Viruses with Altered H5 Receptor-Binding Specificity. Emerg Infect Dis 2017; 23:220-231. [PMID: 27869615 PMCID: PMC5324792 DOI: 10.3201/eid2302.161072] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Emergence and intercontinental spread of highly pathogenic avian influenza A(H5Nx) virus clade 2.3.4.4 is unprecedented. H5N8 and H5N2 viruses have caused major economic losses in the poultry industry in Europe and North America, and lethal human infections with H5N6 virus have occurred in Asia. Knowledge of the evolution of receptor-binding specificity of these viruses, which might affect host range, is urgently needed. We report that emergence of these viruses is accompanied by a change in receptor-binding specificity. In contrast to ancestral clade 2.3.4 H5 proteins, novel clade 2.3.4.4 H5 proteins bind to fucosylated sialosides because of substitutions K222Q and S227R, which are unique for highly pathogenic influenza virus H5 proteins. North American clade 2.3.4.4 virus isolates have retained only the K222Q substitution but still bind fucosylated sialosides. Altered receptor-binding specificity of virus clade 2.3.4.4 H5 proteins might have contributed to emergence and spread of H5Nx viruses.
Collapse
|
Journal Article |
8 |
55 |
15
|
Hasnaoui G, Lutje Spelberg JH, de Vries E, Tang L, Hauer B, Janssen DB. Nitrite-mediated hydrolysis of epoxides catalyzed by halohydrin dehalogenase from Agrobacterium radiobacter AD1: a new tool for the kinetic resolution of epoxides. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/j.tetasy.2005.03.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
|
20 |
37 |
16
|
Wallace LE, Liu M, van Kuppeveld FJM, de Vries E, de Haan CAM. Respiratory mucus as a virus-host range determinant. Trends Microbiol 2021; 29:983-992. [PMID: 33875348 PMCID: PMC8503944 DOI: 10.1016/j.tim.2021.03.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 11/19/2022]
Abstract
Efficient penetration of the mucus layer is needed for respiratory viruses to avoid mucociliary clearance prior to infection. Many respiratory viruses bind to glycans on the heavily glycosylated mucins that give mucus its gel-like characteristics. Influenza viruses, some paramyxoviruses, and coronaviruses avoid becoming trapped in the mucus by releasing themselves by means of their envelope-embedded enzymes that destroy glycan receptors. For efficient infection, receptor binding and destruction need to be in balance with the host receptor repertoire. Establishment in a novel host species requires resetting of the balance to adapt to the different glycan repertoire encountered. Growing understanding of species-specific mucosal glycosylation patterns and the dynamic interaction with respiratory viruses identifies the mucus layer as a major host-range determinant and barrier for zoonotic transfer.
Collapse
|
Review |
4 |
37 |
17
|
Du W, Guo H, Nijman VS, Doedt J, van der Vries E, van der Lee J, Li Z, Boons GJ, van Kuppeveld FJM, de Vries E, Matrosovich M, de Haan CAM. The 2nd sialic acid-binding site of influenza A virus neuraminidase is an important determinant of the hemagglutinin-neuraminidase-receptor balance. PLoS Pathog 2019; 15:e1007860. [PMID: 31181126 PMCID: PMC6586374 DOI: 10.1371/journal.ppat.1007860] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 06/20/2019] [Accepted: 05/22/2019] [Indexed: 11/18/2022] Open
Abstract
Influenza A virus (IAV) neuraminidase (NA) receptor-destroying activity and hemagglutinin (HA) receptor-binding affinity need to be balanced with the host receptor repertoire for optimal viral fitness. NAs of avian, but not human viruses, contain a functional 2nd sialic acid (SIA)-binding site (2SBS) adjacent to the catalytic site, which contributes to sialidase activity against multivalent substrates. The receptor-binding specificity and potentially crucial contribution of the 2SBS to the HA-NA balance of virus particles is, however, poorly characterized. Here, we elucidated the receptor-binding specificity of the 2SBS of N2 NA and established an important role for this site in the virion HA-NA-receptor balance. NAs of H2N2/1957 pandemic virus with or without a functional 2SBS and viruses containing this NA were analysed. Avian-like N2, with a restored 2SBS due to an amino acid substitution at position 367, was more active than human N2 on multivalent substrates containing α2,3-linked SIAs, corresponding with the pronounced binding-specificity of avian-like N2 for these receptors. When introduced into human viruses, avian-like N2 gave rise to altered plaque morphology and decreased replication compared to human N2. An opposite replication phenotype was observed when N2 was combined with avian-like HA. Specific bio-layer interferometry assays revealed a clear effect of the 2SBS on the dynamic interaction of virus particles with receptors. The absence or presence of a functional 2SBS affected virion-receptor binding and receptor cleavage required for particle movement on a receptor-coated surface and subsequent NA-dependent self-elution. The contribution of the 2SBS to virus-receptor interactions depended on the receptor-binding properties of HA and the identity of the receptors used. We conclude that the 2SBS is an important and underappreciated determinant of the HA-NA-receptor balance. The rapid loss of a functional 2SBS in pandemic viruses may have served to balance the novel host receptor-repertoire and altered receptor-binding properties of the corresponding HA protein.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
35 |
18
|
Du W, de Vries E, van Kuppeveld FJM, Matrosovich M, de Haan CAM. Second sialic acid-binding site of influenza A virus neuraminidase: binding receptors for efficient release. FEBS J 2021; 288:5598-5612. [PMID: 33314755 PMCID: PMC8518505 DOI: 10.1111/febs.15668] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/02/2020] [Accepted: 12/08/2020] [Indexed: 12/11/2022]
Abstract
Influenza A viruses (IAVs) are a major cause of human respiratory tract infections and cause significant disease and mortality. Human IAVs originate from animal viruses that breached the host species barrier. IAV particles contain sialoglycan receptor-binding hemagglutinin (HA) and receptor-destroying neuraminidase (NA) in their envelope. When IAV crosses the species barrier, the functional balance between HA and NA needs to be adjusted to the sialoglycan repertoire of the novel host species. Relatively little is known about the role of NA in host adaptation in contrast to the extensively studied HA. NA prevents virion aggregation and facilitates release of (newly assembled) virions from cell surfaces and from decoy receptors abundantly present in mucus and cell glycocalyx. In addition to a highly conserved catalytic site, NA carries a second sialic acid-binding site (2SBS). The 2SBS preferentially binds α2,3-linked sialic acids and enhances activity of the neighboring catalytic site by bringing/keeping multivalent substrates in close contact with this site. In this way, the 2SBS contributes to the HA-NA balance of virus particles and affects virus replication. The 2SBS is highly conserved in all NA subtypes of avian IAVs, with some notable exceptions associated with changes in the receptor-binding specificity of HA and host tropism. Conservation of the 2SBS is invariably lost in human (pandemic) viruses and in several other viruses adapted to mammalian host species. Preservation or loss of the 2SBS is likely to be an important factor of the viral host range.
Collapse
|
article-commentary |
4 |
34 |
19
|
Franssen FFJ, Gaffar FR, Yatsuda AP, de Vries E. Characterisation of erythrocyte invasion by Babesia bovis merozoites efficiently released from their host cell after high-voltage pulsing. Microbes Infect 2003; 5:365-72. [PMID: 12737991 DOI: 10.1016/s1286-4579(03)00041-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Apicomplexa are a phylum of obligate intracellular parasites critically dependent on invasion of a host cell. An in vitro assay for erythrocyte invasion by Babesia bovis was established, employing free merozoites obtained after the application of high-voltage to the parasitised erythrocytes. The invasion proceeds efficiently in phosphate-buffered saline solution without the requirement for any serum or medium components. The kinetics of invasion can be measured over a time span of 5-60 min after which invasion is completed at an average efficiency of 41%. The fast kinetics and high efficiency exceed those of most previously established apicomplexan invasion assays. The manipulation of intracellular calcium concentration inhibits invasion. Preincubation of merozoites at 37 degrees C also reduces invasion, possibly by the premature secretion of protein. Proteins that are shed into the environment during invasion were directly detectable by protein staining after 2-D gel electrophoresis. The limitations posed by the immunological detection of proteins released during in vitro invasion by other apicomplexan parasites can, therefore, be avoided by this method. A unique feature of the assay is the reversible uncoupling of invasion and intracellular development, the latter taking place only under serum-rich medium conditions. In addition, host cell attachment is uncoupled from invasion by cytochalasin B.
Collapse
|
Evaluation Study |
22 |
32 |
20
|
de Vries E, Corton C, Harris B, Cornelissen AWCA, Berriman M. Expressed sequence tag (EST) analysis of the erythrocytic stages of Babesia bovis. Vet Parasitol 2006; 138:61-74. [PMID: 16530971 DOI: 10.1016/j.vetpar.2006.01.040] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Expressed sequence tags (ESTs) provide an efficient way to identify large numbers of genes expressed in a specific stage of the life cycle of an organism. Here we analysed approximately 13,000 ESTs derived from the erythrocytic stage of the apicomplexan parasite Babesia bovis. The ESTs were clustered in order to obtain information on the expression level of a gene and to increase sequence length and reliability. A total of 3522 clusters were obtained and annotated using BLAST algorithms. The clusters were estimated to represent approximately 2600 genes of which in total approximately 2.1 Mbp sequence information was obtained. Expression levels of the genes, as determined by the numbers of ESTs contained within a cluster, were compared to those of their closest homologs in the erythrocytic stage of Plasmodium falciparum and Toxoplasma gondii tachyzoites. Pathways that are represented relatively abundant in B. bovis are, amongst others, the purine salvage pathway (displaying characteristics not identified before in apicomplexans), isoprenoid biosynthesis in the apicoplast and many genes encoding mitochondrial proteins. Especially remarkable in the latter group are the F-type ATPases - which are hardly expressed in P. falciparum and T. gondii - and two highly expressed glycerol-3-phosphate dehydrogenases creating a shuttle possibly controlling the cytoplasmic NADH/NAD+ -ratio. A comparison of known antigenic proteins from Australian and American strains of B. bovis with the Israel strain used here identifies considerable sequence variation in the rhoptry associated protein-1 (RAP-1), merozoite surface proteins of the variable merozoite surface antigen (VMSA) family and spherical body proteins. Analysis of the EST clusters representing the variable erythocyte surface antigen family reveals many variant transcripts of which a few are dominant. Two putative pseudogenes also seem to be transcribed at high levels.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
19 |
31 |
21
|
Alkema WBL, de Vries E, Floris R, Janssen DB. Kinetics of enzyme acylation and deacylation in the penicillin acylase-catalyzed synthesis of beta-lactam antibiotics. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:3675-83. [PMID: 12950251 DOI: 10.1046/j.1432-1033.2003.03728.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Penicillin acylase catalyses the hydrolysis and synthesis of semisynthetic beta-lactam antibiotics via formation of a covalent acyl-enzyme intermediate. The kinetic and mechanistic aspects of these reactions were studied. Stopped-flow experiments with the penicillin and ampicillin analogues 2-nitro-5-phenylacetoxy-benzoic acid (NIPAOB) and d-2-nitro-5-[(phenylglycyl)amino]-benzoic acid (NIPGB) showed that the rate-limiting step in the conversion of penicillin G and ampicillin is the formation of the acyl-enzyme. The phenylacetyl- and phenylglycyl-enzymes are hydrolysed with rate constants of at least 1000 s-1 and 75 s-1, respectively. A normal solvent deuterium kinetic isotope effect (KIE) of 2 on the hydrolysis of 2-nitro-5-[(phenylacetyl)amino]-benzoic acid (NIPAB), NIPGB and NIPAOB indicated that the formation of the acyl-enzyme proceeds via a general acid-base mechanism. In agreement with such a mechanism, the proton inventory of the kcat for NIPAB showed that one proton, with a fractionation factor of 0.5, is transferred in the transition state of the rate-limiting step. The overall KIE of 2 for the kcat of NIPAOB resulted from an inverse isotope effect at low concentrations of D2O, which is overridden by a large normal isotope effect at large molar fractions of D2O. Rate measurements in the presence of glycerol indicated that the inverse isotope effect originated from the higher viscosity of D2O compared to H2O. Deacylation of the acyl-enzyme was studied by nucleophile competition and inhibition experiments. The beta-lactam compound 7-aminodesacetoxycephalosporanic acid (7-ADCA) was a better nucleophile than 6-aminopenicillanic acid, caused by a higher affinity of the enzyme for 7-ADCA and complete suppression of hydrolysis of the acyl-enzyme upon binding of 7-ADCA. By combining the results of the steady-state, presteady state and nucleophile binding experiments, values for the relevant kinetic constants for the synthesis and hydrolysis of beta-lactam antibiotics were obtained.
Collapse
|
|
22 |
30 |
22
|
Liu M, Huang LZX, Smits AA, Büll C, Narimatsu Y, van Kuppeveld FJM, Clausen H, de Haan CAM, de Vries E. Human-type sialic acid receptors contribute to avian influenza A virus binding and entry by hetero-multivalent interactions. Nat Commun 2022; 13:4054. [PMID: 35831293 PMCID: PMC9279479 DOI: 10.1038/s41467-022-31840-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/06/2022] [Indexed: 11/09/2022] Open
Abstract
Establishment of zoonotic viruses, causing pandemics like the Spanish flu and Covid-19, requires adaptation to human receptors. Pandemic influenza A viruses (IAV) that crossed the avian-human species barrier switched from binding avian-type α2-3-linked sialic acid (2-3Sia) to human-type 2-6Sia receptors. Here, we show that this specificity switch is however less dichotomous as generally assumed. Binding and entry specificity were compared using mixed synthetic glycan gradients of 2-3Sia and 2-6Sia and by employing a genetically remodeled Sia repertoire on the surface of a Sia-free cell line and on a sialoglycoprotein secreted from these cells. Expression of a range of (mixed) 2-3Sia and 2-6Sia densities shows that non-binding human-type receptors efficiently enhanced avian IAV binding and entry provided the presence of a low density of high affinity avian-type receptors, and vice versa. Considering the heterogeneity of sialoglycan receptors encountered in vivo, hetero-multivalent binding is physiologically relevant and will impact evolutionary pathways leading to host adaptation. It is believed that human Influenza HA glycoprotein attaches to alpha2-6 linked sialic acids (SA) on cells, while avian viruses bind to alpha2-3 linked sialic acids, therewith contributing to host tropism. Here, Liu et al. show that mixing low-affinity alpha2-3 SA with low amounts of high-affinity alpha2-6 SA increases binding and entry of human viruses and the converse for avian virus. This shows that receptor recognition is not as strict as currently assumed and provides evidence that heteromultivalent interactions between human/avian HA and SA contributes to host adaptation.
Collapse
|
|
3 |
29 |
23
|
Roex EWM, de Vries E, van Gestel CAM. Sensitivity of the zebrafish (Danio rerio) early life stage test for compounds with different modes of action. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2002; 120:355-362. [PMID: 12395849 DOI: 10.1016/s0269-7491(02)00118-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The sensitivity of the early life stage (ELS) toxicity test for two compounds with different modes of action was determined, and related to other toxicity tests with the same compounds. The zebrafish. Danio rerio, was used as a test organism, and the two model compounds were 1,2,3-trichlorobenzene (123TCB), a non-polar narcotic, and parathion, an acetylcholinesterase (AChE) inhibitor. Hatching and survival after 28 days were significantly reduced in the highest 123TCB treatment (263 microg/l), but not in any of the parathion treatments. Growth of the larvae was negatively affected at parathion concentrations above 20 microg/l, while AChE was only significantly inhibited at the highest concentration, 93 microg/l. No effects on growth were found in the 123TCB treatments. In comparison with acute and chronic studies with both compounds, the ELS test turned out to be less sensitive than chronic studies and more sensitive than acute studies. The difference in sensitivity between the tests systems seems however, to depend on the mode of action of the compound.
Collapse
|
|
23 |
26 |
24
|
Alkema WBL, Prins AK, de Vries E, Janssen DB. Role of alphaArg145 and betaArg263 in the active site of penicillin acylase of Escherichia coli. Biochem J 2002; 365:303-9. [PMID: 12071857 PMCID: PMC1222674 DOI: 10.1042/bj20011468] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The active site of penicillin acylase of Escherichia coli contains two conserved arginine residues. The function of these arginines, alphaArg145 and betaArg263, was studied by site-directed mutagenesis and kinetic analysis of the mutant enzymes. The mutants alphaArg145-->Leu (alphaArg145Leu), alphaArg145Cys and alphaArg145Lys were normally processed and exported to the periplasm, whereas expression of the mutants betaArg263Leu, betaArg263Asn and betaArg263Lys yielded large amounts of precursor protein in the periplasm, indicating that betaArg263 is crucial for efficient processing of the enzyme. Either modification of both arginine residues by 2,3-butanedione or replacement by site-directed mutagenesis yielded enzymes with a decreased specificity (kcat/K(m)) for 2-nitro-5-[(phenylacetyl)amino]benzoic acid, indicating that both residues are important in catalysis. Compared with the wild type, the alphaArg145 mutants exhibited a 3-6-fold-increased preference for 6-aminopenicillanic acid as the deacylating nucleophile compared with water. Analysis of the steady-state parameters of these mutants for the hydrolysis of penicillin G and phenylacetamide indicated that destabilization of the Michaelis-Menten complex accounts for the improved activity with beta-lactam substrates. Analysis of pH-activity profiles of wild-type enzyme and the betaArg263Lys mutant showed that betaArg263 has to be positively charged for catalysis, but is not involved in substrate binding. The results provide an insight into the catalytic mechanism of penicillin acylase, in which alphaArg145 is involved in binding of beta-lactam substrates and betaArg263 is important both for stabilizing the transition state in the reaction and for correct processing of the precursor protein.
Collapse
|
research-article |
23 |
25 |
25
|
Gaffar FR, Franssen FFJ, de Vries E. Babesia bovis merozoites invade human, ovine, equine, porcine and caprine erythrocytes by a sialic acid-dependent mechanism followed by developmental arrest after a single round of cell fission. Int J Parasitol 2004; 33:1595-603. [PMID: 14636675 DOI: 10.1016/s0020-7519(03)00254-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Babesia bovis infections have only been observed in bovine species in contrast to Babesia divergens that also can infect humans, sheep and rodents. Using an in vitro assay that assesses invasion of erythrocytes by free merozoites after a 1-h incubation period, it was shown that specificity is not determined by host-specific interactions associated with invasion. Human erythrocytes were invaded more efficiently than bovine erythrocytes whereas erythrocytes of sheep, pigs and horses were invaded only slightly less efficiently. In contrast, goat erythrocytes were refractory to efficient invasion. Significant differences in invasion efficiency into erythrocytes from different individuals of the same species were observed. Erythrocytes from all species, except for goats, supported intracellular development of newly invaded merozoites and high numbers of duplicated parasites, located in a morphologically normal accole position, were present. Only in bovine erythrocytes did subsequent rounds of invasion, leading to increased parasitaemia, take place. This suggests that host specificity is determined by factors operating late in the erythrocytic stage of the B. bovis life cycle. Incubation of erythrocytes with neuraminidase prior to invasion led to a decrease in invasion efficiency of approximately 80%. This effect was observed for several species. The removal of either alpha(2-3)-linked or alpha(2-6)-linked sialic acid residues gave similar levels of reduction whereas simultaneous removal did not show an additive effect. Pre-incubation of merozoites with N-acetylneuraminyl-lactose decreased invasion efficiency by approximately 45% whereas addition just prior to invasion had no significant effect. The results demonstrate that invasion is dependent on the presence of sialic-acid containing membrane receptors on erythrocytes that interact with merozoite ligands that are probably already accessible during pre-incubation prior to invasion.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
25 |